跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳沛澄
研究生(外文):WU,PEI-CHENG
論文名稱:客製化3D列印鈦合金頭蓋骨之有限元素分析
論文名稱(外文):Finite Element Analysis of Impact for 3D printed titanium alloy skull
指導教授:劉德騏
指導教授(外文):LIU,DE-SHIN
口試委員:劉德騏林派臣吳亦莊吳瑋特
口試委員(外文):LIU,DE-SHINLIN,PAI-CHENWU,YI-ZHUANGWU,WEI-TE
口試日期:2024-07-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:141
中文關鍵詞:顱骨成形術鈦合金選擇性雷射熔化落槌衝擊測試有限元素法Johnson-Cook 本構模型
外文關鍵詞:CranioplastyTi6Al4VSelective laser melting(SLM)Drop weight impact testFinite element methodJohnson-Cook constitutive model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目標是以鈦合金(Ti6Al4V)材料建立有限元素模型,以更高的效率以及精確度量身打造適合病患的人工頭蓋骨,使用此材料原因為其優異的生物相容性和機械性能,運用選擇性雷射熔化(SLM)製程技術結合有限元素分析(FEA),於頭蓋骨修補手術提供醫生與病患更加準確的列印成品。在實驗方面,利用 MTS 液壓伺服測試系統與 Instron 9450 落槌衝擊試驗機對積層製造的材料進行測試,在不同的應變率條件下取得應力-應變曲線(Stress-Strain Curve),擬合出 Johnson-Cook 材料模型係數,最後進行圓形試片的衝擊,模擬病患於術後可能遭受到的二次損傷,通過改變 SLM製程技術的列印參數,研發適用的吸能結構設計,用以提升植入物在人體中的吸能效果,並通過建立有限元素分析模型進行驗證與預測完整的3D列印鈦合金頭蓋骨性能。
The objective of this research is to develop a finite element model utilizing titanium alloy (Ti6Al4V) for crafting patient-specific artificial cranial implants with enhanced efficiency and accuracy, chosen for its exceptional biocompatibility and mechanical properties. The study employs Selective Laser Melting (SLM) combined with Finite Element Analysis (FEA) to offer more precise implant printing for cranial repair surgeries. Through experimental testing with an MTS hydraulic servo system and Instron 9450 drop-weight impact tester,
we obtained stress-strain curves under various strain rates to calibrate the Johnson-Cook material model coefficients. The research also focused on the impact resistance of circular Gs to assess potential secondary damages postsurgery. By modifying SLM process parameters, we aimed to develop an optimized energy-absorbing structure, enhancing the implant's energy absorption within the human body. The established finite element model allows for the verification and prediction of the 3D-printed titanium cranial implant's performance, offering significant improvements in surgical outcomes.
摘要 i
Abstract
目錄 iii
圖目錄 vi
表目錄 xv

第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 5
1.3 文獻回顧 5
1.3.1 人工頭蓋骨植入物的設計探討 6
1.3.2 Johnson-Cook 材料模型探討 16
1.3.3 材料衝擊吸能行為探討 22
1.4 研究方法與流程 32

第二章 基本理論 33
2.1 Johnson-Cook 材料模型理論 33

第三章 拉伸實驗 38
3.1 準靜態拉伸實驗 38
3.1.1 實驗架設 40

第三章 拉伸實驗 38
3.1 準靜態拉伸實驗 38
3.1.1 實驗架設 40
3.1.2 實驗製備 42
3.1.3 實驗結果討論 46
3.2 落槌式反向衝擊拉伸實驗 56
3.2.1 實驗架設 58
3.2.2 實驗製備 61
3.2.3 實驗結果討論 63

第四章 落槌式衝擊實驗 75
4.1 落槌式衝擊實驗 75
4.2 實驗架設 77
4.3 實驗製備 79
4.4 實驗結果與數值模擬驗證 92
4.4.1 衝擊結果討論 92
4.4.2 有限元素模擬分析驗證 100

第五章 鈦合金頭蓋骨有限元素模擬預測 114
5.1 人工頭蓋骨之模型建立 114
5.2 人工頭蓋骨之有限元素模擬分析 123
5.2.1 靜態分析 123
5.2.2 動態分析 126

第六章 結論與未來展望 134
6.1 結論 134
6.2 未來展望 136

參考文獻 137

[1] Shah, A. M., Jung, H., & Skirboll, S. (2014). Materials used in cranioplasty: a history and analysis. Neurosurgical focus, 36(4), E19.
[2] Medtronic (2024, March 15). Timesh-cranial-plating-system. Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/cranial-repair/timesh-cranial-plating-system.html
[3] Booth, J. A., & Curtis, B. F. (1893). I. Report of a case of tumor of the left frontal lobe of the cerebrum; operation; recovery. Annals of surgery, 17(2), 127.
[4] Matsuno, A., Tanaka, H., Iwamuro, H., Takanashi, S., Miyawaki, S., Nakashima, M., ... & Nagashima, T. (2006). Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta neurochirurgica, 148, 535-540.
[5] Ponnappan, R. K., Serhan, H., Zarda, B., Patel, R., Albert, T., & Vaccaro, A. R. (2009). Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. The Spine Journal, 9(3), 263-267.
[6] Punchak, M., Chung, L. K., Lagman, C., Bui, T. T., Lazareff, J., Rezzadeh, K., ... & Yang, I. (2017). Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. Journal of Clinical Neuroscience, 41, 30-35.
[7] Camarini, E. T., Tomeh, J. K., Dias, R. R., & da Silva, E. J. (2011). Reconstruction of frontal bone using specific implant polyether-ether-ketone.Journal of Craniofacial Surgery, 22(6), 2205-2207.
[8] Flores, A. R., Srinivasan, V. M., Seeley, J., Huggins, C., Kan, P., & Burkhardt, J. K. (2020). Safety, feasibility, and patient-rated outcome of sonolucent cranioplasty in extracranial-intracranial bypass surgery to allow for transcranioplasty ultrasound assessment. World Neurosurgery, 144, e277-e284.
[9] Hassan, H., Ali, A., & Abdalla, A. (2019). Autogenous bone graft versus artificial substitutes in cranioplasty. Open Journal of Modern Neurosurgery, 9(03), 338.
[10] Motherway, J. A., Verschueren, P., Van der Perre, G., Vander Sloten, J., & Gilchrist, M. D. (2009). The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. Journal of biomechanics, 42(13), 2129-2135.
[11] Stock, J. T. (2018). Wolff's law (bone functional adaptation). The international encyclopedia of biological anthropology, 1-2.
[12] Ibrahim, H., Esfahani, S. N., Poorganji, B., Dean, D., & Elahinia, M. (2017). Resorbable bone fixation alloys, forming, and post-fabrication treatments. Materials Science and Engineering: C, 70, 870-888.
[13] Dhandapani, R., Krishnan, P. D., Zennifer, A., Kannan, V., Manigandan, A., Arul, M. R., ... & Sethuraman, S. (2020). Additive manufacturing of biodegradable porous orthopaedic screw. Bioactive materials, 5(3), 458-467.
[14] Jardini, A. L., Larosa, M. A., Macedo, M. F., Bernardes, L. F., Lambert, C. S., Zavaglia, C. A. C., ... & Kharmandayan, P. (2016). Improvement in cranioplasty: advanced prosthesis biomanufacturing. Procedia Cirp, 49, 203-208.
[15] Ameen, W., Al-Ahmari, A., Mohammed, M. K., Abdulhameed, O., Umer, U., & Moiduddin, K. (2018). Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing. Advances in Production Engineering & Management, 13(3), 267- 278.
[16] ISO 5832-3:2021 Implants for surgery - Metallic materials - Part 3: Wrought titanium 6-aluminium 4-vanadium alloy
[17] ASTM F136-13, Standard Specification for Wrought Titanium-6 Aluminum4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)
[18] ASTM F3001-14(Reapproved 2021),Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion
[19]林德威,“Ti-6Al-4V 鈦合金選擇性雷射熔融積層製造之原位熱處理技術 開發”中正大學碩士論文, 2021.
[20] ASTM E8/E8M-24, Standard Test Methods for Tension Testing of Metallic Materials
[21] Johnson, G. R. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, 1983.
[22] Murugesan, M., & Jung, D. W. (2019). Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials, 12(4), 609.
[23] Kang, W. J., Cho, S. S., Huh, H., & Chung, D. T. (1998). Identification of dynamic behavior of sheet metals for an auto-body with tension split Hopkinson bar. SAE transactions, 908-913.
[24] Chen, G., Ren, C., Yang, X., Jin, X., & Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56, 1027-1038.
[25] Głowacki, D., Moćko, W., Marczak, M., Głowacka, A., & Kraśkiewicz, C. (2021). Energy absorbing properties analysis of layers structure of titanium alloy Ti6Al4V during dynamic impact loading tests. Materials, 14(23), 7209.
[26] Petersmann, S., Spoerk, M., Huber, P., Lang, M., Pinter, G., & Arbeiter, F. (2019). Impact optimization of 3D‐printed poly (methyl methacrylate) for cranial implants. Macromolecular materials and engineering, 304(11), 1900263.
[27] Monea, A. G., Van der Perre, G., Baeck, K., Delye, H., Verschueren, P., Forausebergher, E., ... & Depreitere, B. (2014). The relation between mechanical impact parameters and most frequent bicycle related head injuries. Journal of the mechanical behavior of biomedical materials, 33, 3-15.
[28] ULMEANU, M. E., DOICIN, C. V., MATES, I., MURZAC, R., & DAVITOIU, D. (2001). Impact FEA simulation and analysis of custom-made cranial implants. Revista de Chimie, 71, 367-376.
[29] Perogamvros, N., Mitropoulos, T., & Lampeas, G. (2016). Drop tower adaptation for medium strain rate tensile testing. Experimental Mechanics, 56, 419-436.
[30] 王鷹宇. (2018). Abaqus 分析用戶手冊-材料卷. 機械工業出版社.
[31] A.D.A.M. Medical Encyclopedia [Internet].Linda J. Vorvick, MD.Body temperature norms;[reviewed 2023 Feb 2; cited 2024 Mar 1].Available from: https://medlineplus.gov/ency/article/001982.htm
[32] Special Tensile Impact fixtures CP128792, Instron 9450 Operating Instructions.
[33]嘉義基督教醫院, https://www.cych.org.tw/service1.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊