|
[1]F. Schedin et al., "Detection of individual gas molecules adsorbed on graphene," Nat Mater, vol. 6, no. 9, pp. 652-5, Sep 2007, doi: 10.1038/nmat1967. [2]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat Nanotechnol, vol. 3, no. 8, pp. 491-5, Aug 2008, doi: 10.1038/nnano.2008.199. [3]K. S. Novoselov et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, Nov 10 2005, doi: 10.1038/nature04233. [4]A. K. Geim and K. S. Novoselov, "The rise of graphene," (in English), Nature Materials, vol. 6, no. 3, pp. 183-191, Mar 2007, doi: DOI 10.1038/nmat1849. [5]G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, "Low-frequency electronic noise in the double-gate single-layer graphene transistors," (in English), Applied Physics Letters, vol. 95, no. 3, Jul 20 2009, doi: Artn 033103 10.1063/1.3180707. [6]A. K. Singh et al., "Electrically tunable molecular doping of graphene," Applied Physics Letters, vol. 102, no. 4, 2013, doi: 10.1063/1.4789509. [7]R. K. Paul, S. Badhulika, N. M. Saucedo, and A. Mulchandani, "Graphene nanomesh as highly sensitive chemiresistor gas sensor," Anal Chem, vol. 84, no. 19, pp. 8171-8, Oct 2 2012, doi: 10.1021/ac3012895. [8]G. Lu, K. Yu, L. E. Ocola, and J. Chen, "Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors," Chem Commun (Camb), vol. 47, no. 27, pp. 7761-3, Jul 21 2011, doi: 10.1039/c1cc12658j. [9]X. Huang et al., "Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing," Journal of Materials Chemistry, vol. 22, no. 42, 2012, doi: 10.1039/c2jm34340a. [10]P.-G. Su and H.-C. Shieh, "Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide," Sensors and Actuators B: Chemical, vol. 190, pp. 865-872, 2014, doi: 10.1016/j.snb.2013.09.078. [11]R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. L. Spetz, and R. Yakimova, "Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection," Sensors and Actuators B: Chemical, vol. 155, no. 2, pp. 451-455, 2011, doi: 10.1016/j.snb.2010.12.046. [12]M. W. K. Nomani et al., "Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC," Sensors and Actuators B: Chemical, vol. 150, no. 1, pp. 301-307, 2010, doi: 10.1016/j.snb.2010.06.069. [13]A. Gutes et al., "Graphene decoration with metal nanoparticles: towards easy integration for sensing applications," Nanoscale, vol. 4, no. 2, pp. 438-40, Jan 21 2012, doi: 10.1039/c1nr11537e. [14]A. Salehi-Khojin et al., "Polycrystalline graphene ribbons as chemiresistors," Adv Mater, vol. 24, no. 1, pp. 53-7, 52, Jan 3 2012, doi: 10.1002/adma.201102663. [15]S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, "Selective gas sensing with a single pristine graphene transistor," Nano Lett, vol. 12, no. 5, pp. 2294-8, May 9 2012, doi: 10.1021/nl3001293. [16]S. Rumyantsev, G. X. Liu, R. A. Potyrailo, A. A. Balandin, and M. S. Shur, "Selective Sensing of Individual Gases Using Graphene Devices," (in English), Ieee Sens J, vol. 13, no. 8, pp. 2818-2822, Aug 2013, doi: 10.1109/Jsen.2013.2251627. [17]F. Niu, J.-M. Liu, L.-M. Tao, W. Wang, and W.-G. Song, "Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing," Journal of Materials Chemistry A, vol. 1, no. 20, 2013, doi: 10.1039/c3ta11070b. [18]P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, no. 5459, pp. 1801-4, Mar 10 2000, doi: 10.1126/science.287.5459.1801. [19]S. Novikov, N. Lebedeva, and A. Satrapinski, "Ultrasensitive NO2Gas Sensor Based on Epitaxial Graphene," Journal of Sensors, vol. 2015, pp. 1-7, 2015, doi: 10.1155/2015/108581. [20]M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11700-11715, 2015, doi: 10.1039/c5ta00252d. [21]W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958. [22]X. Li et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat Nanotechnol, vol. 3, no. 9, pp. 538-42, Sep 2008, doi: 10.1038/nnano.2008.210. [23]P. Moozarm Nia, P. M. Woi, and Y. Alias, "Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor," Applied Surface Science, vol. 413, pp. 56-65, 2017, doi: 10.1016/j.apsusc.2017.04.043. [24]R. Morales Ibarra, M. Goto, J. García-Serna, and S. M. García Montes, "Graphene exfoliation with supercritical fluids," Carbon Letters, vol. 31, no. 1, pp. 99-105, 2020, doi: 10.1007/s42823-020-00153-x. [25]H. Gao and G. Hu, "Graphene production via supercritical fluids," RSC Advances, vol. 6, no. 12, pp. 10132-10143, 2016, doi: 10.1039/c5ra15568a. [26]P. Yu, S. E. Lowe, G. P. Simon, and Y. L. Zhong, "Electrochemical exfoliation of graphite and production of functional graphene," Current Opinion in Colloid & Interface Science, vol. 20, no. 5-6, pp. 329-338, 2015, doi: 10.1016/j.cocis.2015.10.007. [27]M. Coroş et al., "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods," RSC Advances, vol. 6, no. 4, pp. 2651-2661, 2016, doi: 10.1039/c5ra19277c. [28]S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano Lett, vol. 10, no. 10, pp. 4128-33, Oct 13 2010, doi: 10.1021/nl102355e. [29]Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," (in English), Applied Physics Letters, vol. 93, no. 11, Sep 15 2008, doi: Artn 113103 10.1063/1.2982585. [30]X. S. Li et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," (in English), Science, vol. 324, no. 5932, pp. 1312-1314, Jun 5 2009, doi: 10.1126/science.1171245. [31]X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," (in English), Nano Letters, vol. 9, no. 12, pp. 4268-4272, Dec 2009, doi: 10.1021/nl902515k. [32]G. Borin Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, "Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance," Carbon, vol. 84, pp. 82-90, 2015, doi: 10.1016/j.carbon.2014.11.040. [33]T. S. Li and G. L. Galli, "Electronic properties of MOS nanoparticles," (in English), J Phys Chem C, vol. 111, no. 44, pp. 16192-16196, Nov 8 2007, doi: 10.1021/jp075424v. [34]A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano Lett, vol. 10, no. 4, pp. 1271-5, Apr 14 2010, doi: 10.1021/nl903868w. [35]R. Fivaz and E. Mooser, "Mobility of Charge Carriers in Semiconducting Layer Structures," Physical Review, vol. 163, no. 3, pp. 743-755, 1967, doi: 10.1103/PhysRev.163.743. [36]P. Zhao et al., "A novel ultrasensitive electrochemical quercetin sensor based on MoS2 - carbon nanotube @ graphene oxide nanoribbons / HS-cyclodextrin / graphene quantum dots composite film," Sensors and Actuators B: Chemical, vol. 299, 2019, doi: 10.1016/j.snb.2019.126997. [37]O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS2," Nat Nanotechnol, vol. 8, no. 7, pp. 497-501, Jul 2013, doi: 10.1038/nnano.2013.100. [38]F. Zhang, T. Li, L. Pan, A. Asthagiri, and J. F. Weaver, "CO oxidation on single and multilayer Pd oxides on Pd(111): mechanistic insights from RAIRS," Catal. Sci. Technol., vol. 4, no. 11, pp. 3826-3834, 2014, doi: 10.1039/c4cy00938j. [39]B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, "Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide," Nat Nanotechnol, vol. 9, no. 4, pp. 262-7, Apr 2014, doi: 10.1038/nnano.2014.25. [40]A. Pospischil, M. M. Furchi, and T. Mueller, "Solar-energy conversion and light emission in an atomic monolayer p-n diode," Nat Nanotechnol, vol. 9, no. 4, pp. 257-61, Apr 2014, doi: 10.1038/nnano.2014.14. [41]Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, "Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors," Physical Review B, vol. 84, no. 15, 2011, doi: 10.1103/PhysRevB.84.153402. [42]Z. Wang and B. Mi, "Environmental Applications of 2D Molybdenum Disulfide (MoS(2)) Nanosheets," Environ Sci Technol, vol. 51, no. 15, pp. 8229-8244, Aug 1 2017, doi: 10.1021/acs.est.7b01466. [43]H. Zhao, G. Yang, X. Gao, C. H. Pang, S. W. Kingman, and T. Wu, "Hg(0) Capture over CoMoS/gamma-Al2O3 with MoS2 Nanosheets at Low Temperatures," Environ Sci Technol, vol. 50, no. 2, pp. 1056-64, Jan 19 2016, doi: 10.1021/acs.est.5b04278. [44]M. Sangeetha and D. Madhan, "Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method," Optics & Laser Technology, vol. 127, 2020, doi: 10.1016/j.optlastec.2020.106193. [45]P. Qi et al., "Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films," Electrochimica Acta, vol. 292, pp. 667-675, 2018, doi: 10.1016/j.electacta.2018.09.187. [46]B. Cho et al., "Chemical Sensing of 2D Graphene/MoS2 Heterostructure device," ACS Appl Mater Interfaces, vol. 7, no. 30, pp. 16775-80, Aug 5 2015, doi: 10.1021/acsami.5b04541. [47]Y. Xue, G. Maduraiveeran, M. Wang, S. Zheng, Y. Zhang, and W. Jin, "Hierarchical oxygen-implanted MoS(2) nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media," Talanta, vol. 176, pp. 397-405, Jan 1 2018, doi: 10.1016/j.talanta.2017.08.060. [48]D. J. Late et al., "Sensing Behavior of Atomically Thin-Layered MoS Transistors," (in English), Acs Nano, vol. 7, no. 6, pp. 4879-4891, Jun 2013, doi: 10.1021/nn400026u. [49]B. L. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, and C. W. Zhou, "High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Mono layer MoS Transistors," (in English), Acs Nano, vol. 8, no. 5, pp. 5304-5314, May 2014, doi: 10.1021/nn5015215. [50]S.-L. Zhang, H. Yue, X. Liang, and W.-C. Yang, "Liquid-Phase Co-Exfoliated Graphene/MoS2 Nanocomposite for Methanol Gas Sensing," Journal of Nanoscience and Nanotechnology, vol. 15, no. 10, pp. 8004-8009, 2015, doi: 10.1166/jnn.2015.11254. [51]B. Cho et al., "Charge-transfer-based gas sensing using atomic-layer MoS2," Sci Rep, vol. 5, p. 8052, Jan 27 2015, doi: 10.1038/srep08052. [52]M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, "Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films," Photonics, vol. 2, no. 1, pp. 288-307, 2015, doi: 10.3390/photonics2010288. [53]G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, "Exfoliation of large-area transition metal chalcogenide single layers," Sci Rep, vol. 5, p. 14714, Oct 7 2015, doi: 10.1038/srep14714. [54]J. Jeon et al., "Layer-controlled CVD growth of large-area two-dimensional MoS2 films," Nanoscale, vol. 7, no. 5, pp. 1688-95, Feb 7 2015, doi: 10.1039/c4nr04532g. [55]J. Wang et al., "Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition," RSC Advances, vol. 5, no. 6, pp. 4364-4367, 2015, doi: 10.1039/c4ra10644j. [56]S. S. Withanage, H. Kalita, H. S. Chung, T. Roy, Y. Jung, and S. I. Khondaker, "Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS(2) Using MoO(3) Thin Film as a Precursor for Coevaporation," ACS Omega, vol. 3, no. 12, pp. 18943-18949, Dec 31 2018, doi: 10.1021/acsomega.8b02978. [57]C. Ahn et al., "Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition," Adv Mater, vol. 27, no. 35, pp. 5223-9, Sep 16 2015, doi: 10.1002/adma.201501678. [58]C. Altavilla, M. Sarno, and P. Ciambelli, "A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W)," Chemistry of Materials, vol. 23, no. 17, pp. 3879-3885, 2011, doi: 10.1021/cm200837g. [59]H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B: Chemical, vol. 157, no. 1, pp. 310-313, 2011, doi: 10.1016/j.snb.2011.03.035. [60]S. Kumar and T. T. John, "Quick surface adsorption and sensing of ammonia at room temperature by In2S3 thin films," Applied Surface Science, vol. 620, 2023, doi: 10.1016/j.apsusc.2023.156816. [61]J. C. John et al., "In2S3-Gr and In2S3-CNT nanocomposite thin films as gas sensors," Diamond and Related Materials, vol. 128, 2022, doi: 10.1016/j.diamond.2022.109215. [62]Y. Cheng et al., "3D micro-combs self-assembled from 2D N-doped In2S3 for room-temperature reversible NO2 gas sensing," Applied Materials Today, vol. 26, 2022, doi: 10.1016/j.apmt.2021.101355. [63]R. Souissi, N. Bouguila, and A. Labidi, "Ethanol sensing properties of sprayed β-In2S3 thin films," Sensors and Actuators B: Chemical, vol. 261, pp. 522-530, 2018, doi: 10.1016/j.snb.2018.01.175. [64]K. Zhang et al., "Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide," ACS Appl Mater Interfaces, vol. 10, no. 47, pp. 40831-40837, Nov 28 2018, doi: 10.1021/acsami.8b16374. [65]A. Singh, M. Moun, M. Sharma, A. Barman, A. Kumar Kapoor, and R. Singh, "NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2," Applied Surface Science, vol. 538, 2021, doi: 10.1016/j.apsusc.2020.148201. [66]X. Liu, K. Huang, M. Zhao, F. Li, and H. Liu, "A modified wrinkle-free MoS(2) film transfer method for large area high mobility field-effect transistor," Nanotechnology, vol. 31, no. 5, p. 055707, Jan 24 2020, doi: 10.1088/1361-6528/ab49b8. [67]D. Zhang, C. Jiang, and X. Zhou, "Fabrication of Pd-decorated TiO(2)/MoS(2) ternary nanocomposite for enhanced benzene gas sensing performance at room temperature," Talanta, vol. 182, pp. 324-332, May 15 2018, doi: 10.1016/j.talanta.2018.01.064. [68]B. Cho et al., "Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2," ACS Appl Mater Interfaces, vol. 7, no. 4, pp. 2952-9, Feb 4 2015, doi: 10.1021/am508535x. [69]R. Souissi et al., "Ozone sensing study of sprayed β-In2S3 thin films," Journal of Alloys and Compounds, vol. 900, 2022, doi: 10.1016/j.jallcom.2021.163513. [70]Y. Zhao, B. Yang, and J. Liu, "Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor," Sensors and Actuators B: Chemical, vol. 271, pp. 256-263, 2018, doi: 10.1016/j.snb.2018.05.084. [71]Y. Zhou, G. Liu, X. Zhu, and Y. Guo, "Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature," Sensors and Actuators B: Chemical, vol. 251, pp. 280-290, 2017, doi: 10.1016/j.snb.2017.05.060. [72]K. Rathi, A. N. Kumar, and K. Pal, "Fabrication of flexible La-MoS(2) hybrid-heterostructure based sensor for NO(2) gas sensing at room temperature," Nanotechnology, vol. 31, no. 39, p. 395504, Sep 25 2020, doi: 10.1088/1361-6528/ab9c55. [73]A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," (in English), Nature Nanotechnology, vol. 8, no. 4, pp. 235-246, Apr 2013, doi: 10.1038/nnano.2013.46. [74]Q. L. Bao and K. P. Loh, "Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices," (in English), Acs Nano, vol. 6, no. 5, pp. 3677-3694, May 2012, doi: 10.1021/nn300989g. [75]M. A. Kang et al., "Fabrication of flexible optoelectronic devices based on MoS /graphene hybrid patterns by a soft lithographic patterning method," (in English), Carbon, vol. 116, pp. 167-173, May 2017, doi: 10.1016/j.carbon.2017.02.001. [76]G. W. Lee, Y. B. Lee, D. H. Baek, J. G. Kim, and H. S. Kim, "Raman Scattering Study on the Influence of E-Beam Bombardment on Si Electron Lens," (in English), Molecules, vol. 26, no. 9, May 2021, doi: ARTN 2766 10.3390/molecules26092766.
|