跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家華
研究生(外文):CHEN, CHIA-HUA
論文名稱:以化學氣相沉積法製備二硫化鉬/石墨烯與石墨烯於丙酮氣體偵測器特性之對比與研究
論文名稱(外文):Comparative Study on the Characteristics of Molybdenum Disulfide/Graphene and Graphene Acetone Gas Sensors Prepared by Chemical Vapor Deposition
指導教授:丁初稷
指導教授(外文):TING, CHU-CHI
口試委員:丁初稷謝雅萍鄭岳世葉志庭
口試委員(外文):TING, CHU-CHIHSIEH, YA-PINGJENG, YUE-SHIHYE, ZHI-TING
口試日期:2024-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:100
中文關鍵詞:石墨烯化學氣相沉積法二硫化鉬氣體偵測器
外文關鍵詞:graphenechemical vapor depositionmolybdenum disulfidegas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二維(2D)材料的原子層厚度使其能夠與氣體分子有效地相互作用,促進這些材料內部的電荷轉移,並使氣體分子在其表面上快速吸附與脫附。石墨烯和過渡金屬二硫化物具有高比表面積與體積比、低噪聲水平和對周圍環境變化敏感的電子性質的2D材料,因此是具有潛力的偵測器元件。在這裡,我們使用了化學氣相沉積法(CVD)生長MoS2並將其堆疊在石墨烯上,以此設計了一種丙酮氣體偵測器,並以該偵測器量測其在不同濃度的丙酮響應度以及響應回復時間,以此做為對比去比較沒有混合二硫化鉬的純石墨烯氣體偵測器。
The atomic layer thickness of two-dimensional (2D) materials enables them to effectively interact with gas molecules, promoting charge transfer within these materials and allowing for rapid adsorption and desorption of gas molecules on their surface. Graphene and transition metal dichalcogenides, with their high surface area-to-volume ratio, low noise levels, and electronic properties sensitive to environmental changes, are promising candidates for sensor components. In this study, we employed chemical vapor deposition (CVD) to grow MoS₂ and stack it on graphene, designing an acetone gas sensor. We measured the sensor's response to acetone at different concentrations, as well as its rise and fall times, and compared these results with a pure graphene gas sensor without MoS₂.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
第二章 理論基礎與文獻回顧 3
2-1 石墨烯簡介 3
2-2 石墨烯製備方法 5
2-2-1 機械剝離法 5
2-2-2 氧化石墨烯還原法 6
2-2-3 碳化矽表面磊晶生長法 6
2-2-4 超臨界流體法 7
2-2-5 電化學剝離法 8
2-2-6 化學氣相沈積法 9
2-3 石墨烯轉印方法 11
2-4 二硫化鉬簡介 13
2-5 二硫化鉬製備方法 16
2-5-1 機械剝離法 16
2-5-2 化學氣相沈積法 17
2-6 氣體偵測器分類 19
2-6-1 純石墨烯氣體偵測器 19
2-6-2 二硫化鉬/石墨烯氣體偵測器 20
2-7 氣體偵測器的常用指標 21
2-7-1 靈敏度/響應度 21
2-7-2 響應時間 & 回復時間 22
第三章 實驗流程及方法 23
3-1 實驗藥品 23
3-2 實驗流程及步驟 24
3-2-1 清洗生長基板 (玻璃/矽基板) 25
3-2-2 化學氣相沉積法 (CVD) 沉積二硫化鉬 26
3-2-3 二硫化鉬轉印 28
3-2-4 石墨烯生長 30
3-2-5 石墨烯轉印 31
3-2-6 指叉電極 33
3-3 實驗儀器 35
3-3-1 電子天平 36
3-3-2 超音波震盪器 37
3-3-3 旋轉塗佈機 38
3-3-4 化學氣相高溫管狀爐 39
3-3-5 旋轉式等離子處理機 41
3-3-6 蒸鍍機 42
3-4 量測儀器 43
3-4-1 電性量測系統 44
3-4-2 金相顯微鏡 46
3-4-3 拉曼光譜儀 47
第四章 結果與討論 48
4-1 石墨烯電性量測與分析 48
4-1-1 不同堆疊層數之石墨烯 OM 圖分析 48
4-1-2 石墨烯拉曼光譜分析 49
4-1-3 不同堆疊層數之石墨烯霍爾效應與電性分析 51
4-2 二硫化鉬元件量測與分析 52
4-2-1 石墨烯/二硫化鉬複合元件製作流程 52
4-2-2 二硫化鉬 OM 圖分析 53
4-2-3 二硫化鉬轉印石墨烯 OM圖分析 54
4-2-4 二硫化鉬拉曼光譜分析 55
4-3 純石墨烯氣體偵測器響應分析 56
4-3-1不同接觸面積的氣體偵測器響應圖 56
4-3-2單層時墨西的氣體偵測器響應圖 57
4-3-3雙層石墨烯的氣體偵測器響應圖 60
4-4 二硫化鉬/石墨烯氣體偵測器響應圖分析 63
4-5 純石墨烯氣體偵測器響應回復時間分析 66
4-5-1單層石墨烯氣體偵測器響應回復時間圖 66
4-5-2雙層石墨烯氣體偵測器響應回復時間圖 69
4-6 二硫化鉬/石墨烯氣體偵測器響應回復時間分析 72
4-6-1二硫化鉬/石墨烯氣體偵測器響應回復時間圖 72
4-7 純石墨烯與二硫化鉬/石墨烯氣體偵測器比較 75
第五章 結論 76
參考文獻 77

[1]F. Schedin et al., "Detection of individual gas molecules adsorbed on graphene," Nat Mater, vol. 6, no. 9, pp. 652-5, Sep 2007, doi: 10.1038/nmat1967.
[2]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat Nanotechnol, vol. 3, no. 8, pp. 491-5, Aug 2008, doi: 10.1038/nnano.2008.199.
[3]K. S. Novoselov et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, Nov 10 2005, doi: 10.1038/nature04233.
[4]A. K. Geim and K. S. Novoselov, "The rise of graphene," (in English), Nature Materials, vol. 6, no. 3, pp. 183-191, Mar 2007, doi: DOI 10.1038/nmat1849.
[5]G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, "Low-frequency electronic noise in the double-gate single-layer graphene transistors," (in English), Applied Physics Letters, vol. 95, no. 3, Jul 20 2009, doi: Artn 033103
10.1063/1.3180707.
[6]A. K. Singh et al., "Electrically tunable molecular doping of graphene," Applied Physics Letters, vol. 102, no. 4, 2013, doi: 10.1063/1.4789509.
[7]R. K. Paul, S. Badhulika, N. M. Saucedo, and A. Mulchandani, "Graphene nanomesh as highly sensitive chemiresistor gas sensor," Anal Chem, vol. 84, no. 19, pp. 8171-8, Oct 2 2012, doi: 10.1021/ac3012895.
[8]G. Lu, K. Yu, L. E. Ocola, and J. Chen, "Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors," Chem Commun (Camb), vol. 47, no. 27, pp. 7761-3, Jul 21 2011, doi: 10.1039/c1cc12658j.
[9]X. Huang et al., "Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing," Journal of Materials Chemistry, vol. 22, no. 42, 2012, doi: 10.1039/c2jm34340a.
[10]P.-G. Su and H.-C. Shieh, "Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide," Sensors and Actuators B: Chemical, vol. 190, pp. 865-872, 2014, doi: 10.1016/j.snb.2013.09.078.
[11]R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. L. Spetz, and R. Yakimova, "Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection," Sensors and Actuators B: Chemical, vol. 155, no. 2, pp. 451-455, 2011, doi: 10.1016/j.snb.2010.12.046.
[12]M. W. K. Nomani et al., "Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC," Sensors and Actuators B: Chemical, vol. 150, no. 1, pp. 301-307, 2010, doi: 10.1016/j.snb.2010.06.069.
[13]A. Gutes et al., "Graphene decoration with metal nanoparticles: towards easy integration for sensing applications," Nanoscale, vol. 4, no. 2, pp. 438-40, Jan 21 2012, doi: 10.1039/c1nr11537e.
[14]A. Salehi-Khojin et al., "Polycrystalline graphene ribbons as chemiresistors," Adv Mater, vol. 24, no. 1, pp. 53-7, 52, Jan 3 2012, doi: 10.1002/adma.201102663.
[15]S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, "Selective gas sensing with a single pristine graphene transistor," Nano Lett, vol. 12, no. 5, pp. 2294-8, May 9 2012, doi: 10.1021/nl3001293.
[16]S. Rumyantsev, G. X. Liu, R. A. Potyrailo, A. A. Balandin, and M. S. Shur, "Selective Sensing of Individual Gases Using Graphene Devices," (in English), Ieee Sens J, vol. 13, no. 8, pp. 2818-2822, Aug 2013, doi: 10.1109/Jsen.2013.2251627.
[17]F. Niu, J.-M. Liu, L.-M. Tao, W. Wang, and W.-G. Song, "Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing," Journal of Materials Chemistry A, vol. 1, no. 20, 2013, doi: 10.1039/c3ta11070b.
[18]P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, no. 5459, pp. 1801-4, Mar 10 2000, doi: 10.1126/science.287.5459.1801.
[19]S. Novikov, N. Lebedeva, and A. Satrapinski, "Ultrasensitive NO2Gas Sensor Based on Epitaxial Graphene," Journal of Sensors, vol. 2015, pp. 1-7, 2015, doi: 10.1155/2015/108581.
[20]M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11700-11715, 2015, doi: 10.1039/c5ta00252d.
[21]W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
[22]X. Li et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat Nanotechnol, vol. 3, no. 9, pp. 538-42, Sep 2008, doi: 10.1038/nnano.2008.210.
[23]P. Moozarm Nia, P. M. Woi, and Y. Alias, "Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor," Applied Surface Science, vol. 413, pp. 56-65, 2017, doi: 10.1016/j.apsusc.2017.04.043.
[24]R. Morales Ibarra, M. Goto, J. García-Serna, and S. M. García Montes, "Graphene exfoliation with supercritical fluids," Carbon Letters, vol. 31, no. 1, pp. 99-105, 2020, doi: 10.1007/s42823-020-00153-x.
[25]H. Gao and G. Hu, "Graphene production via supercritical fluids," RSC Advances, vol. 6, no. 12, pp. 10132-10143, 2016, doi: 10.1039/c5ra15568a.
[26]P. Yu, S. E. Lowe, G. P. Simon, and Y. L. Zhong, "Electrochemical exfoliation of graphite and production of functional graphene," Current Opinion in Colloid & Interface Science, vol. 20, no. 5-6, pp. 329-338, 2015, doi: 10.1016/j.cocis.2015.10.007.
[27]M. Coroş et al., "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods," RSC Advances, vol. 6, no. 4, pp. 2651-2661, 2016, doi: 10.1039/c5ra19277c.
[28]S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano Lett, vol. 10, no. 10, pp. 4128-33, Oct 13 2010, doi: 10.1021/nl102355e.
[29]Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," (in English), Applied Physics Letters, vol. 93, no. 11, Sep 15 2008, doi: Artn 113103
10.1063/1.2982585.
[30]X. S. Li et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," (in English), Science, vol. 324, no. 5932, pp. 1312-1314, Jun 5 2009, doi: 10.1126/science.1171245.
[31]X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," (in English), Nano Letters, vol. 9, no. 12, pp. 4268-4272, Dec 2009, doi: 10.1021/nl902515k.
[32]G. Borin Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, "Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance," Carbon, vol. 84, pp. 82-90, 2015, doi: 10.1016/j.carbon.2014.11.040.
[33]T. S. Li and G. L. Galli, "Electronic properties of MOS
nanoparticles," (in English), J Phys Chem C, vol. 111, no. 44, pp. 16192-16196, Nov 8 2007, doi: 10.1021/jp075424v.
[34]A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano Lett, vol. 10, no. 4, pp. 1271-5, Apr 14 2010, doi: 10.1021/nl903868w.
[35]R. Fivaz and E. Mooser, "Mobility of Charge Carriers in Semiconducting Layer Structures," Physical Review, vol. 163, no. 3, pp. 743-755, 1967, doi: 10.1103/PhysRev.163.743.
[36]P. Zhao et al., "A novel ultrasensitive electrochemical quercetin sensor based on MoS2 - carbon nanotube @ graphene oxide nanoribbons / HS-cyclodextrin / graphene quantum dots composite film," Sensors and Actuators B: Chemical, vol. 299, 2019, doi: 10.1016/j.snb.2019.126997.
[37]O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS2," Nat Nanotechnol, vol. 8, no. 7, pp. 497-501, Jul 2013, doi: 10.1038/nnano.2013.100.
[38]F. Zhang, T. Li, L. Pan, A. Asthagiri, and J. F. Weaver, "CO oxidation on single and multilayer Pd oxides on Pd(111): mechanistic insights from RAIRS," Catal. Sci. Technol., vol. 4, no. 11, pp. 3826-3834, 2014, doi: 10.1039/c4cy00938j.
[39]B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, "Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide," Nat Nanotechnol, vol. 9, no. 4, pp. 262-7, Apr 2014, doi: 10.1038/nnano.2014.25.
[40]A. Pospischil, M. M. Furchi, and T. Mueller, "Solar-energy conversion and light emission in an atomic monolayer p-n diode," Nat Nanotechnol, vol. 9, no. 4, pp. 257-61, Apr 2014, doi: 10.1038/nnano.2014.14.
[41]Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, "Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors," Physical Review B, vol. 84, no. 15, 2011, doi: 10.1103/PhysRevB.84.153402.
[42]Z. Wang and B. Mi, "Environmental Applications of 2D Molybdenum Disulfide (MoS(2)) Nanosheets," Environ Sci Technol, vol. 51, no. 15, pp. 8229-8244, Aug 1 2017, doi: 10.1021/acs.est.7b01466.
[43]H. Zhao, G. Yang, X. Gao, C. H. Pang, S. W. Kingman, and T. Wu, "Hg(0) Capture over CoMoS/gamma-Al2O3 with MoS2 Nanosheets at Low Temperatures," Environ Sci Technol, vol. 50, no. 2, pp. 1056-64, Jan 19 2016, doi: 10.1021/acs.est.5b04278.
[44]M. Sangeetha and D. Madhan, "Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method," Optics & Laser Technology, vol. 127, 2020, doi: 10.1016/j.optlastec.2020.106193.
[45]P. Qi et al., "Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films," Electrochimica Acta, vol. 292, pp. 667-675, 2018, doi: 10.1016/j.electacta.2018.09.187.
[46]B. Cho et al., "Chemical Sensing of 2D Graphene/MoS2 Heterostructure device," ACS Appl Mater Interfaces, vol. 7, no. 30, pp. 16775-80, Aug 5 2015, doi: 10.1021/acsami.5b04541.
[47]Y. Xue, G. Maduraiveeran, M. Wang, S. Zheng, Y. Zhang, and W. Jin, "Hierarchical oxygen-implanted MoS(2) nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media," Talanta, vol. 176, pp. 397-405, Jan 1 2018, doi: 10.1016/j.talanta.2017.08.060.
[48]D. J. Late et al., "Sensing Behavior of Atomically Thin-Layered MoS
Transistors," (in English), Acs Nano, vol. 7, no. 6, pp. 4879-4891, Jun 2013, doi: 10.1021/nn400026u.
[49]B. L. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, and C. W. Zhou, "High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Mono layer MoS
Transistors," (in English), Acs Nano, vol. 8, no. 5, pp. 5304-5314, May 2014, doi: 10.1021/nn5015215.
[50]S.-L. Zhang, H. Yue, X. Liang, and W.-C. Yang, "Liquid-Phase Co-Exfoliated Graphene/MoS2 Nanocomposite for Methanol Gas Sensing," Journal of Nanoscience and Nanotechnology, vol. 15, no. 10, pp. 8004-8009, 2015, doi: 10.1166/jnn.2015.11254.
[51]B. Cho et al., "Charge-transfer-based gas sensing using atomic-layer MoS2," Sci Rep, vol. 5, p. 8052, Jan 27 2015, doi: 10.1038/srep08052.
[52]M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, "Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films," Photonics, vol. 2, no. 1, pp. 288-307, 2015, doi: 10.3390/photonics2010288.
[53]G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, "Exfoliation of large-area transition metal chalcogenide single layers," Sci Rep, vol. 5, p. 14714, Oct 7 2015, doi: 10.1038/srep14714.
[54]J. Jeon et al., "Layer-controlled CVD growth of large-area two-dimensional MoS2 films," Nanoscale, vol. 7, no. 5, pp. 1688-95, Feb 7 2015, doi: 10.1039/c4nr04532g.
[55]J. Wang et al., "Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition," RSC Advances, vol. 5, no. 6, pp. 4364-4367, 2015, doi: 10.1039/c4ra10644j.
[56]S. S. Withanage, H. Kalita, H. S. Chung, T. Roy, Y. Jung, and S. I. Khondaker, "Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS(2) Using MoO(3) Thin Film as a Precursor for Coevaporation," ACS Omega, vol. 3, no. 12, pp. 18943-18949, Dec 31 2018, doi: 10.1021/acsomega.8b02978.
[57]C. Ahn et al., "Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition," Adv Mater, vol. 27, no. 35, pp. 5223-9, Sep 16 2015, doi: 10.1002/adma.201501678.
[58]C. Altavilla, M. Sarno, and P. Ciambelli, "A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W)," Chemistry of Materials, vol. 23, no. 17, pp. 3879-3885, 2011, doi: 10.1021/cm200837g.
[59]H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B: Chemical, vol. 157, no. 1, pp. 310-313, 2011, doi: 10.1016/j.snb.2011.03.035.
[60]S. Kumar and T. T. John, "Quick surface adsorption and sensing of ammonia at room temperature by In2S3 thin films," Applied Surface Science, vol. 620, 2023, doi: 10.1016/j.apsusc.2023.156816.
[61]J. C. John et al., "In2S3-Gr and In2S3-CNT nanocomposite thin films as gas sensors," Diamond and Related Materials, vol. 128, 2022, doi: 10.1016/j.diamond.2022.109215.
[62]Y. Cheng et al., "3D micro-combs self-assembled from 2D N-doped In2S3 for room-temperature reversible NO2 gas sensing," Applied Materials Today, vol. 26, 2022, doi: 10.1016/j.apmt.2021.101355.
[63]R. Souissi, N. Bouguila, and A. Labidi, "Ethanol sensing properties of sprayed β-In2S3 thin films," Sensors and Actuators B: Chemical, vol. 261, pp. 522-530, 2018, doi: 10.1016/j.snb.2018.01.175.
[64]K. Zhang et al., "Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide," ACS Appl Mater Interfaces, vol. 10, no. 47, pp. 40831-40837, Nov 28 2018, doi: 10.1021/acsami.8b16374.
[65]A. Singh, M. Moun, M. Sharma, A. Barman, A. Kumar Kapoor, and R. Singh, "NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2," Applied Surface Science, vol. 538, 2021, doi: 10.1016/j.apsusc.2020.148201.
[66]X. Liu, K. Huang, M. Zhao, F. Li, and H. Liu, "A modified wrinkle-free MoS(2) film transfer method for large area high mobility field-effect transistor," Nanotechnology, vol. 31, no. 5, p. 055707, Jan 24 2020, doi: 10.1088/1361-6528/ab49b8.
[67]D. Zhang, C. Jiang, and X. Zhou, "Fabrication of Pd-decorated TiO(2)/MoS(2) ternary nanocomposite for enhanced benzene gas sensing performance at room temperature," Talanta, vol. 182, pp. 324-332, May 15 2018, doi: 10.1016/j.talanta.2018.01.064.
[68]B. Cho et al., "Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2," ACS Appl Mater Interfaces, vol. 7, no. 4, pp. 2952-9, Feb 4 2015, doi: 10.1021/am508535x.
[69]R. Souissi et al., "Ozone sensing study of sprayed β-In2S3 thin films," Journal of Alloys and Compounds, vol. 900, 2022, doi: 10.1016/j.jallcom.2021.163513.
[70]Y. Zhao, B. Yang, and J. Liu, "Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor," Sensors and Actuators B: Chemical, vol. 271, pp. 256-263, 2018, doi: 10.1016/j.snb.2018.05.084.
[71]Y. Zhou, G. Liu, X. Zhu, and Y. Guo, "Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature," Sensors and Actuators B: Chemical, vol. 251, pp. 280-290, 2017, doi: 10.1016/j.snb.2017.05.060.
[72]K. Rathi, A. N. Kumar, and K. Pal, "Fabrication of flexible La-MoS(2) hybrid-heterostructure based sensor for NO(2) gas sensing at room temperature," Nanotechnology, vol. 31, no. 39, p. 395504, Sep 25 2020, doi: 10.1088/1361-6528/ab9c55.
[73]A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," (in English), Nature Nanotechnology, vol. 8, no. 4, pp. 235-246, Apr 2013, doi: 10.1038/nnano.2013.46.
[74]Q. L. Bao and K. P. Loh, "Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices," (in English), Acs Nano, vol. 6, no. 5, pp. 3677-3694, May 2012, doi: 10.1021/nn300989g.
[75]M. A. Kang et al., "Fabrication of flexible optoelectronic devices based on MoS
/graphene hybrid patterns by a soft lithographic patterning method," (in English), Carbon, vol. 116, pp. 167-173, May 2017, doi: 10.1016/j.carbon.2017.02.001.
[76]G. W. Lee, Y. B. Lee, D. H. Baek, J. G. Kim, and H. S. Kim, "Raman Scattering Study on the Influence of E-Beam Bombardment on Si Electron Lens," (in English), Molecules, vol. 26, no. 9, May 2021, doi: ARTN 2766
10.3390/molecules26092766.

電子全文 電子全文(網際網路公開日期:20290812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊