跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜明蒔
研究生(外文):Ming Shih Tu
論文名稱:不同程度的睡眠干擾對小鼠潰瘍性結腸炎之影響
論文名稱(外文):Investigating the Effects of Varying Degrees of Sleep Disruption on Ulcerative Colitis in a Mouse Model
指導教授:劉耕豪劉耕豪引用關係
指導教授(外文):G. H. Liu
口試委員:楊賢鴻李宗諺劉耕豪
口試委員(外文):S. H. YangT. Y. LeeG. H. Liu
口試日期:2024-07-15
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系傳統中醫學
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:89
中文關鍵詞:發炎性腸炎潰瘍性腸炎睡眠剝奪腸道微生物緊密連接
外文關鍵詞:Inflammatory bowel diseaseulcerative colitissleep deprivationgut microbiotatight junctions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:0
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
發炎性腸道疾病如今在其他新興工業化地區的發病率症在上升,台灣也不例外。IBD患者的睡眠品質與他們的發炎狀態緊密相連。目前有許多研究探討了睡眠對IBD的影響,但尚且缺乏針對不同程度的睡眠間斷對IBD病情的量化研究。因此,本研究將專注於探討這一關聯。
本研究使用40隻10週大的C57BL雄性小鼠。以2%,36-50kDa的葡聚糖硫酸鈉(DSS)誘發小鼠潰瘍性結腸炎。實驗分成五組,分別是對照組、高頻率睡眠剝奪組、DSS組、低頻率睡眠剝奪加DSS組與高頻率睡眠剝奪加DSS組。本研究發現單純高強度睡眠剝奪會導致發炎與腸道屏障受損。結腸炎的情況下,再加上睡眠剝奪會使疾病的嚴重程度加劇,然而嚴重程度與睡眠剝奪的強度卻不是線性關係。在小鼠體重、腸道長度與腸道屏障上,高頻率睡眠剝奪加DSS組影響較為劇烈;而在組織學分數、腸道菌叢與短鏈脂肪酸上,低頻率睡眠剝奪加DSS組損害較為嚴重。然而,還需要後續研究來探討背後的機轉與原因。
The incidence of inflammatory bowel disease (IBD) is rising in newly industrialized regions, including Taiwan. IBD patients' sleep quality is closely linked to their inflammatory state. Although many studies have explored sleep's impact on IBD, research on the effects of varying levels of sleep disruption is lacking. This study addresses this gap.
Using 40 male C57BL mice aged 10 weeks, we induced ulcerative colitis with 2% dextran sulfate sodium (DSS). The mice were divided into five groups: control, high-frequency sleep deprivation, DSS, low-frequency sleep deprivation plus DSS, and high-frequency sleep deprivation plus DSS. Results showed that high-intensity sleep deprivation alone causes inflammation and intestinal barrier damage. When combined with colitis, sleep deprivation worsens the disease, but not in a linear relationship to its intensity. The high-frequency sleep deprivation plus DSS group had more severe effects on body weight, intestinal length, and barrier integrity. In contrast, the low-frequency sleep deprivation plus DSS group showed greater damage in histological scores, gut microbiota, and short-chain fatty acids. Further research is needed to understand the underlying mechanisms.
目 錄
中文摘要 i
Abstract ii
目 錄 iii
圖 目 錄 v
表 目 錄 vii
第一章 緒論 1
1-1發炎性腸炎之介紹 1
1-2 IBD與睡眠的雙向關係—發炎性腸道疾病造成睡眠問題 3
1-3 IBD與睡眠的雙向關係—睡眠問題加重發炎性腸道疾病 5
1-4 IBD、睡眠與腸道微生物 7
1-5腸腦軸 9
1-6不同層次的睡眠剝奪對IBD之影響 10
第二章 研究目的 13
第三章 實驗方法 15
3-1實驗動物 15
3-2睡眠剝奪裝置及光照/黑暗時間 16
3-3潰瘍性結腸炎的模型 17
3-4實驗分組 18
3-5實驗結果評估 19
3-6統計分析 25
第四章 結果 26
4-1 生理變化與臨床指標 26
4-2 腸道巨觀變化 33
4-3 腸道組織學變化 34
4-4 腸道免疫化學染色 35
4-5生化標記物 37
4-6 流式細胞儀分析 45
4-7 腸道微生物與短鏈脂肪酸分析 46
第五章 討論 63
第六章 結論 73
參考資料 74

圖 目 錄
圖一:小鼠睡眠碎片化裝置 17
圖二:實驗流程 19
圖三:小鼠體重變化表 26
圖四:小鼠每日攝食量 28
圖五:小鼠每日飲水量 30
圖六:小鼠疾病活動指數變化 32
圖七:小鼠腸道長度 34
圖八:小鼠組織學分數與腸道切片 35
圖九:小鼠的腸道屏障指標 36
圖十:小鼠腸道之血管活性肽指標 37
圖十一:小鼠之CRP、GM-CSF與G-CSF含量 39
圖十二:小鼠Eotaxin、KC和MCP-1之含量 40
圖十三:小鼠IL-1α、IL-1β、IL-6與IL-17之含量 42
圖十四:小鼠IL-12(70)、IFN-γ之含量 43
圖十五:小鼠IL-4、IL-9之含量 44
圖十六:流式細胞儀分析結果 46
圖十七:腸道微生物α diversity 48
圖十八:腸道菌稀釋曲線 49
圖十九:腸道微生物排序階梯圖 51
圖二十:腸道微生物UpSet plot分析圖 52
圖二十一:Weighted UniFrac 53
圖二十二:β diversity中的PCA圖 55
圖二十三:NMDS分析圖 56
圖二十四:科階層上的物種相對豐度柱狀圖 57
圖二十五:各組小鼠腸道內厚壁菌門與擬桿菌門豐富度比例 58
圖二十六:各組小鼠腸道內物種群落的顯著性差異 60
圖二十七:進化分支圖及 LDA 值分布柱狀圖 61
圖二十八:各組小鼠腸道短鏈脂肪酸的含量 62

表 目 錄
表一:體重減輕評分表 20
表二:糞便稠度評分表 20
表三:組織發炎評分表 22
1.Ng, S.C., et al., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet, 2017. 390(10114): p. 2769-2778.
2.Wei, S.C., et al., A nationwide population-based study of the inflammatory bowel diseases between 1998 and 2008 in Taiwan. BMC Gastroenterol, 2013. 13: p. 166.
3.M'Koma, A.E., Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina (Kaunas), 2022. 58(5).
4.Le Berre, C., S. Honap, and L. Peyrin-Biroulet, Ulcerative colitis. Lancet, 2023. 402(10401): p. 571-584.
5.Barnes, A., et al., A systematic review and meta-analysis of the prevalence of poor sleep in inflammatory bowel disease. Sleep Adv, 2022. 3(1): p. zpac025.
6.Salwen-Deremer, J.K., et al., Poor Sleep in Inflammatory Bowel Disease Is Reflective of Distinct Sleep Disorders. Dig Dis Sci, 2022. 67(7): p. 3096-3107.
7.Irwin, M.R., Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol, 2019. 19(11): p. 702-715.
8.Moulton, C.D., et al., Depressive symptoms in inflammatory bowel disease: an extraintestinal manifestation of inflammation? Clin Exp Immunol, 2019. 197(3): p. 308-318.
9.Czuber-Dochan, W., E. Ream, and C. Norton, Review article: Description and management of fatigue in inflammatory bowel disease. Aliment Pharmacol Ther, 2013. 37(5): p. 505-16.
10.Graff, L.A., et al., A population-based study of fatigue and sleep difficulties in inflammatory bowel disease. Inflamm Bowel Dis, 2011. 17(9): p. 1882-9.
11.Mikocka-Walus, A., V. Pittet, J.B. Rossel, and R. von Känel, Symptoms of Depression and Anxiety Are Independently Associated With Clinical Recurrence of Inflammatory Bowel Disease. Clin Gastroenterol Hepatol, 2016. 14(6): p. 829-835.e1.
12.Stuart, M.J. and B.T. Baune, Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev, 2014. 42: p. 93-115.
13.Stevens, B.W., et al., Vedolizumab Therapy Is Associated with an Improvement in Sleep Quality and Mood in Inflammatory Bowel Diseases. Dig Dis Sci, 2017. 62(1): p. 197-206.
14.Petrovsky, N. and L.C. Harrison, Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol, 1997. 158(11): p. 5163-8.
15.Petrovsky, N. and L.C. Harrison, The chronobiology of human cytokine production. Int Rev Immunol, 1998. 16(5-6): p. 635-49.
16.Dimitrov, S., et al., Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun, 2004. 18(4): p. 341-8.
17.Westermann, J., T. Lange, J. Textor, and J. Born, System consolidation during sleep - a common principle underlying psychological and immunological memory formation. Trends Neurosci, 2015. 38(10): p. 585-597.
18.Imeri, L. and M.R. Opp, How (and why) the immune system makes us sleep. Nat Rev Neurosci, 2009. 10(3): p. 199-210.
19.Irwin, M.R., Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol, 2015. 66: p. 143-72.
20.Irwin, M.R. and M.R. Opp, Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology, 2017. 42(1): p. 129-155.
21.Tang, Y., et al., Sleep deprivation worsens inflammation and delays recovery in a mouse model of colitis. Sleep Med, 2009. 10(6): p. 597-603.
22.Ananthakrishnan, A.N., et al., Sleep disturbance and risk of active disease in patients with Crohn's disease and ulcerative colitis. Clin Gastroenterol Hepatol, 2013. 11(8): p. 965-71.
23.Ananthakrishnan, A.N., et al., Sleep duration affects risk for ulcerative colitis: a prospective cohort study. Clin Gastroenterol Hepatol, 2014. 12(11): p. 1879-86.
24.Kaplan, G.G., The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol, 2015. 12(12): p. 720-7.
25.Sun, M., W. Wu, Z. Liu, and Y. Cong, Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol, 2017. 52(1): p. 1-8.
26.Farzi, A., E.E. Fröhlich, and P. Holzer, Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018. 15(1): p. 5-22.
27.Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke, The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019. 16(8): p. 461-478.
28.Frank, D.N., et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13780-5.
29.Sokol, H., et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16731-6.
30.Caruso, R., B.C. Lo, and G. Núñez, Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol, 2020. 20(7): p. 411-426.
31.Andoh, A. and A. Nishida, Alteration of the Gut Microbiome in Inflammatory Bowel Disease. Digestion, 2023. 104(1): p. 16-23.
32.Wang, Z., et al., Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry, 2021. 26(11): p. 6277-6292.
33.Wang, Z., et al., The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev, 2022. 65: p. 101691.
34.Smith, R.P., et al., Gut microbiome diversity is associated with sleep physiology in humans. PLoS One, 2019. 14(10): p. e0222394.
35.Ogawa, Y., et al., Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep, 2020. 10(1): p. 19554.
36.Gracie, D.J., P.J. Hamlin, and A.C. Ford, The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019. 4(8): p. 632-642.
37.Misiak, B., et al., The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry, 2020. 102: p. 109951.
38.Moreira, C.G., et al., Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut. mBio, 2016. 7(3).
39.Benjafield, A.V., et al., Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med, 2019. 7(8): p. 687-698.
40.Duarte, R.L.M., F.J. Magalhães-da-Silveira, and D. Gozal, Screening for obstructive sleep apnea: comparing the American Academy of Sleep Medicine proposed criteria with the STOP-Bang, NoSAS, and GOAL instruments. J Clin Sleep Med, 2023. 19(7): p. 1239-1246.
41.Okayasu, I., et al., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702.
42.Gaudio, E., et al., Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci, 1999. 44(7): p. 1458-75.
43.Jurjus, A.R., N.N. Khoury, and J.M. Reimund, Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods, 2004. 50(2): p. 81-92.
44.De Fazio, L., et al., Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World J Gastroenterol, 2014. 20(8): p. 2051-61.
45.Dharmani, P., P. Leung, and K. Chadee, Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PLoS One, 2011. 6(9): p. e25058.
46.Ni, J., S.F. Chen, and D. Hollander, Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut, 1996. 39(2): p. 234-41.
47.Perše, M. and A. Cerar, Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol, 2012. 2012: p. 718617.
48.Kim, J.J., M.S. Shajib, M.M. Manocha, and W.I. Khan, Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp, 2012(60).
49.Corrêa, R.O., et al., Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cell Microbiol, 2017. 19(7).
50.Dinallo, V., et al., Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis, 2019. 13(6): p. 772-784.
51.Yuen, J., et al., NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Front Immunol, 2016. 7: p. 137.
52.Drury, B., G. Hardisty, R.D. Gray, and G.T. Ho, Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol, 2021. 12(1): p. 321-333.
53.Saez, A., et al., Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci, 2023. 24(2).
54.Sehgal, A., et al., The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun, 2018. 9(1): p. 1272.
55.Muller, P.A., et al., Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 2014. 158(2): p. 300-313.
56.Rivollier, A., et al., Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med, 2012. 209(1): p. 139-55.
57.Murai, M., et al., Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol, 2009. 10(11): p. 1178-84.
58.Rugtveit, J., et al., Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology, 1997. 112(5): p. 1493-505.
59.Yao, H. and G. Tang, Macrophages in intestinal fibrosis and regression. Cell Immunol, 2022. 381: p. 104614.
60.Ma, C., et al., Critical Role of CD6highCD4+ T Cells in Driving Th1/Th17 Cell Immune Responses and Mucosal Inflammation in IBD. J Crohns Colitis, 2019. 13(4): p. 510-524.
61.Boirivant, M., I.J. Fuss, A. Chu, and W. Strober, Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med, 1998. 188(10): p. 1929-39.
62.Nakase, H., N. Sato, N. Mizuno, and Y. Ikawa, The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev, 2022. 21(3): p. 103017.
63.Gomez-Bris, R., et al., CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci, 2023. 24(3).
64.Maul, J., et al., Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 2005. 128(7): p. 1868-78.
65.Wright, K.P., Jr., et al., Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun, 2015. 47: p. 24-34.
66.Cullen, T., G. Thomas, and A.J. Wadley, Sleep Deprivation: Cytokine and Neuroendocrine Effects on Perception of Effort. Med Sci Sports Exerc, 2020. 52(4): p. 909-918.
67.Gao, T., et al., Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J Pineal Res, 2019. 67(1): p. e12574.
68.Ren, Y., et al., Total flavones from Sonchus arvensis L. ameliorate colitis by adjusting the gut microbiota. Ann Med, 2023. 55(2): p. 2292246.
69.Xia, P., et al., Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food Funct, 2022. 13(10): p. 5626-5639.
70.Mills, R.H., et al., Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol, 2022. 7(2): p. 262-276.
71.Gul, L., et al., Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease. J Extracell Vesicles, 2022. 11(1): p. e12189.
電子全文 電子全文(網際網路公開日期:20250726)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top