|
1.Ng, S.C., et al., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet, 2017. 390(10114): p. 2769-2778. 2.Wei, S.C., et al., A nationwide population-based study of the inflammatory bowel diseases between 1998 and 2008 in Taiwan. BMC Gastroenterol, 2013. 13: p. 166. 3.M'Koma, A.E., Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina (Kaunas), 2022. 58(5). 4.Le Berre, C., S. Honap, and L. Peyrin-Biroulet, Ulcerative colitis. Lancet, 2023. 402(10401): p. 571-584. 5.Barnes, A., et al., A systematic review and meta-analysis of the prevalence of poor sleep in inflammatory bowel disease. Sleep Adv, 2022. 3(1): p. zpac025. 6.Salwen-Deremer, J.K., et al., Poor Sleep in Inflammatory Bowel Disease Is Reflective of Distinct Sleep Disorders. Dig Dis Sci, 2022. 67(7): p. 3096-3107. 7.Irwin, M.R., Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol, 2019. 19(11): p. 702-715. 8.Moulton, C.D., et al., Depressive symptoms in inflammatory bowel disease: an extraintestinal manifestation of inflammation? Clin Exp Immunol, 2019. 197(3): p. 308-318. 9.Czuber-Dochan, W., E. Ream, and C. Norton, Review article: Description and management of fatigue in inflammatory bowel disease. Aliment Pharmacol Ther, 2013. 37(5): p. 505-16. 10.Graff, L.A., et al., A population-based study of fatigue and sleep difficulties in inflammatory bowel disease. Inflamm Bowel Dis, 2011. 17(9): p. 1882-9. 11.Mikocka-Walus, A., V. Pittet, J.B. Rossel, and R. von Känel, Symptoms of Depression and Anxiety Are Independently Associated With Clinical Recurrence of Inflammatory Bowel Disease. Clin Gastroenterol Hepatol, 2016. 14(6): p. 829-835.e1. 12.Stuart, M.J. and B.T. Baune, Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev, 2014. 42: p. 93-115. 13.Stevens, B.W., et al., Vedolizumab Therapy Is Associated with an Improvement in Sleep Quality and Mood in Inflammatory Bowel Diseases. Dig Dis Sci, 2017. 62(1): p. 197-206. 14.Petrovsky, N. and L.C. Harrison, Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol, 1997. 158(11): p. 5163-8. 15.Petrovsky, N. and L.C. Harrison, The chronobiology of human cytokine production. Int Rev Immunol, 1998. 16(5-6): p. 635-49. 16.Dimitrov, S., et al., Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun, 2004. 18(4): p. 341-8. 17.Westermann, J., T. Lange, J. Textor, and J. Born, System consolidation during sleep - a common principle underlying psychological and immunological memory formation. Trends Neurosci, 2015. 38(10): p. 585-597. 18.Imeri, L. and M.R. Opp, How (and why) the immune system makes us sleep. Nat Rev Neurosci, 2009. 10(3): p. 199-210. 19.Irwin, M.R., Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol, 2015. 66: p. 143-72. 20.Irwin, M.R. and M.R. Opp, Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology, 2017. 42(1): p. 129-155. 21.Tang, Y., et al., Sleep deprivation worsens inflammation and delays recovery in a mouse model of colitis. Sleep Med, 2009. 10(6): p. 597-603. 22.Ananthakrishnan, A.N., et al., Sleep disturbance and risk of active disease in patients with Crohn's disease and ulcerative colitis. Clin Gastroenterol Hepatol, 2013. 11(8): p. 965-71. 23.Ananthakrishnan, A.N., et al., Sleep duration affects risk for ulcerative colitis: a prospective cohort study. Clin Gastroenterol Hepatol, 2014. 12(11): p. 1879-86. 24.Kaplan, G.G., The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol, 2015. 12(12): p. 720-7. 25.Sun, M., W. Wu, Z. Liu, and Y. Cong, Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol, 2017. 52(1): p. 1-8. 26.Farzi, A., E.E. Fröhlich, and P. Holzer, Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018. 15(1): p. 5-22. 27.Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke, The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019. 16(8): p. 461-478. 28.Frank, D.N., et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13780-5. 29.Sokol, H., et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16731-6. 30.Caruso, R., B.C. Lo, and G. Núñez, Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol, 2020. 20(7): p. 411-426. 31.Andoh, A. and A. Nishida, Alteration of the Gut Microbiome in Inflammatory Bowel Disease. Digestion, 2023. 104(1): p. 16-23. 32.Wang, Z., et al., Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry, 2021. 26(11): p. 6277-6292. 33.Wang, Z., et al., The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev, 2022. 65: p. 101691. 34.Smith, R.P., et al., Gut microbiome diversity is associated with sleep physiology in humans. PLoS One, 2019. 14(10): p. e0222394. 35.Ogawa, Y., et al., Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep, 2020. 10(1): p. 19554. 36.Gracie, D.J., P.J. Hamlin, and A.C. Ford, The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019. 4(8): p. 632-642. 37.Misiak, B., et al., The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry, 2020. 102: p. 109951. 38.Moreira, C.G., et al., Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut. mBio, 2016. 7(3). 39.Benjafield, A.V., et al., Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med, 2019. 7(8): p. 687-698. 40.Duarte, R.L.M., F.J. Magalhães-da-Silveira, and D. Gozal, Screening for obstructive sleep apnea: comparing the American Academy of Sleep Medicine proposed criteria with the STOP-Bang, NoSAS, and GOAL instruments. J Clin Sleep Med, 2023. 19(7): p. 1239-1246. 41.Okayasu, I., et al., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702. 42.Gaudio, E., et al., Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci, 1999. 44(7): p. 1458-75. 43.Jurjus, A.R., N.N. Khoury, and J.M. Reimund, Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods, 2004. 50(2): p. 81-92. 44.De Fazio, L., et al., Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World J Gastroenterol, 2014. 20(8): p. 2051-61. 45.Dharmani, P., P. Leung, and K. Chadee, Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PLoS One, 2011. 6(9): p. e25058. 46.Ni, J., S.F. Chen, and D. Hollander, Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut, 1996. 39(2): p. 234-41. 47.Perše, M. and A. Cerar, Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol, 2012. 2012: p. 718617. 48.Kim, J.J., M.S. Shajib, M.M. Manocha, and W.I. Khan, Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp, 2012(60). 49.Corrêa, R.O., et al., Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cell Microbiol, 2017. 19(7). 50.Dinallo, V., et al., Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis, 2019. 13(6): p. 772-784. 51.Yuen, J., et al., NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Front Immunol, 2016. 7: p. 137. 52.Drury, B., G. Hardisty, R.D. Gray, and G.T. Ho, Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol, 2021. 12(1): p. 321-333. 53.Saez, A., et al., Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci, 2023. 24(2). 54.Sehgal, A., et al., The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun, 2018. 9(1): p. 1272. 55.Muller, P.A., et al., Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 2014. 158(2): p. 300-313. 56.Rivollier, A., et al., Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med, 2012. 209(1): p. 139-55. 57.Murai, M., et al., Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol, 2009. 10(11): p. 1178-84. 58.Rugtveit, J., et al., Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology, 1997. 112(5): p. 1493-505. 59.Yao, H. and G. Tang, Macrophages in intestinal fibrosis and regression. Cell Immunol, 2022. 381: p. 104614. 60.Ma, C., et al., Critical Role of CD6highCD4+ T Cells in Driving Th1/Th17 Cell Immune Responses and Mucosal Inflammation in IBD. J Crohns Colitis, 2019. 13(4): p. 510-524. 61.Boirivant, M., I.J. Fuss, A. Chu, and W. Strober, Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med, 1998. 188(10): p. 1929-39. 62.Nakase, H., N. Sato, N. Mizuno, and Y. Ikawa, The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev, 2022. 21(3): p. 103017. 63.Gomez-Bris, R., et al., CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci, 2023. 24(3). 64.Maul, J., et al., Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 2005. 128(7): p. 1868-78. 65.Wright, K.P., Jr., et al., Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun, 2015. 47: p. 24-34. 66.Cullen, T., G. Thomas, and A.J. Wadley, Sleep Deprivation: Cytokine and Neuroendocrine Effects on Perception of Effort. Med Sci Sports Exerc, 2020. 52(4): p. 909-918. 67.Gao, T., et al., Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J Pineal Res, 2019. 67(1): p. e12574. 68.Ren, Y., et al., Total flavones from Sonchus arvensis L. ameliorate colitis by adjusting the gut microbiota. Ann Med, 2023. 55(2): p. 2292246. 69.Xia, P., et al., Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food Funct, 2022. 13(10): p. 5626-5639. 70.Mills, R.H., et al., Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol, 2022. 7(2): p. 262-276. 71.Gul, L., et al., Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease. J Extracell Vesicles, 2022. 11(1): p. e12189.
|