|
1.WHO. (9 December 2020). The top 10 causes of death. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death 2.Burns, A., liffe S.(2009). Alzheimer’s disease. BMJ. 338: p. b158. 3.Sveinbjornsdottir, S., The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 2016. 139: p. 318-324. 4.Kiernan, M.C., et al., Amyotrophic lateral sclerosis. The lancet, 2011. 377(9769): p. 942-955. 5.Folch, A. and M. Toner, Microengineering of cellular interactions. Annual review of biomedical engineering, 2000. 2(1): p. 227-256. 6.de LaCoste, M.-C. and C.L. White III, The role of cortical connectivity in Alzheimer's disease pathogenesis: a review and model system. Neurobiology of aging, 1993. 14(1): p. 1-16. 7.Lee, G., et al., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. nature, 2009. 461(7262): p. 402-406. 8.Paz, J.T. and J.R. Huguenard, Microcircuits and their interactions in epilepsy: is the focus out of focus? Nature neuroscience, 2015. 18(3): p. 351-359. 9.Liu, Q., et al., Cell-based biosensors and their application in biomedicine. Chemical reviews, 2014. 114(12): p. 6423-6461. 10.Banerjee, P. and A.K. Bhunia, Mammalian cell-based biosensors for pathogens and toxins. Trends in biotechnology, 2009. 27(3): p. 179-188. 11.Banerjee, P., B. Franz, and A.K. Bhunia, Mammalian cell-based sensor system. Whole Cell Sensing Systems I: Reporter Cells and Devices, 2010: p. 21-55. 12.Brooks, D.J., Imaging approaches to Parkinson disease. Journal of Nuclear Medicine, 2010. 51(4): p. 596-609. 13.Hamill, O.P., et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv, 1981. 391: p. 85-100. 14.Sakmann, B. and E. Neher, Patch clamp techniques for studying ionic channels in excitable membranes. Annual review of physiology, 1984. 46(1): p. 455-472. 15.Yang, C.-M., et al., A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. Sensors and Actuators B: Chemical, 2021. 341: p. 130003. 16.Bernard, A., et al., Printing patterns of proteins. Langmuir, 1998. 14(9): p. 2225-2229. 17.Bernard, A., et al., Microcontact printing of proteins. Advanced Materials, 2000. 12(14): p. 1067-1070. 18.Lange, S.A., et al., Microcontact printing of DNA molecules. Analytical chemistry, 2004. 76(6): p. 1641-1647. 19.Zychowicz, M., et al., Developmental stage dependent neural stem cells sensitivity to methylmercury chloride on different biofunctional surfaces. Toxicology in Vitro, 2014. 28(1): p. 76-87. 20.Delamarche, E., et al., Biopatterning: The art of patterning biomolecules on surfaces. Langmuir, 2021. 37(32): p. 9637-9651. 21.Khademhosseini, A., et al., Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences, 2006. 103(8): p. 2480-2487. 22.Théry, M., Micropatterning as a tool to decipher cell morphogenesis and functions. Journal of cell science, 2010. 123(24): p. 4201-4213. 23.Christman, K.L., et al., Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers. Journal of the American Chemical Society, 2009. 131(2): p. 521-527. 24.Liu, W.-D. and B. Yang, Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials. Chinese Chemical Letters, 2017. 28(4): p. 675-690. 25.Whitesides, G.M., et al., Soft lithography in biology and biochemistry. Annual review of biomedical engineering, 2001. 3(1): p. 335-373. 26.Steiner, K. and C. Humpel, Microcontact printing of cholinergic neurons in organotypic brain slices. Frontiers in Neurology, 2021. 12: p. 775621. 27.Folch, A., et al., Microfabricated elastomeric stencils for micropatterning cell cultures. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000. 52(2): p. 346-353. 28.Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663. 29.Bat, E., et al., Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography. Nature communications, 2015. 6(1): p. 6654. 30.Derby, B., Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 2010. 40: p. 395-414. 31.Cui, X., et al., Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnology and bioengineering, 2010. 106(6): p. 963-969. 32.Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chemistry, 1998. 70(23): p. 4974-4984. 33.Lee, H.-P. and W. Ryu, Wet microcontact printing (µCP) for micro-reservoir drug delivery systems. Biofabrication, 2013. 5(2): p. 025011. 34.Fendler, C., et al., Neurite guidance and neuro-caging on steps and grooves in 2.5 dimensions. Nanoscale Advances, 2020. 2(11): p. 5192-5200. 35.Schöning, M.J., et al., A semiconductor-based field-effect platform for (bio-) chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices. MRS Online Proceedings Library (OPL), 2006. 952: p. 0952-F08-02. 36.Xu, G., et al., Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensors and Bioelectronics, 2005. 20(9): p. 1757-1763. 37.Yoshinobu, T., et al., High-speed and high-precision chemical-imaging sensor. Sensors and Actuators A: Physical, 1995. 51(2-3): p. 231-235. 38.Schöning, M.J. and A. Poghossian, Bio FEDs (field‐effect devices): state‐of‐the‐art and new directions. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2006. 18(19‐20): p. 1893-1900. 39.Yang, C.-M., et al., A revised manuscript submitted to sensors and actuators B: Chemical illumination modification from an LED to a laser to improve the spatial resolution of IGZO thin film light-addressable potentiometric sensors in pH detections. Sensors and Actuators B: Chemical, 2021. 329: p. 128953. 40.Schift, H., Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008. 26(2): p. 458-480. 41.Calvert, P., Inkjet printing for materials and devices. Chemistry of materials, 2001. 13(10): p. 3299-3305. 42.Roth, E.A., et al., Inkjet printing for high-throughput cell patterning. Biomaterials, 2004. 25(17): p. 3707-3715. 43.Haynes, C.L. and R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. 2001, ACS Publications. p. 5599-5611. 44.Madou, M.J., Fundamentals of microfabrication: the science of miniaturization. 2002: CRC press. 45.Kumar, P., S. Ebbens, and X. Zhao, Inkjet printing of mammalian cells–Theory and applications. Bioprinting, 2021. 23: p. e00157. 46.Siqueira, J.R., et al., Biosensors Based on Field-Effect Devices. Nanobioelectrochemistry: From Implantable Biosensors to Green Power Generation, 2013: p. 67-86.
|