|
1.Zhang, Y., et al., Metabolic switch regulates lineage plasticity and induces synthetic lethality in triple-negative breast cancer. Cell Metab, 2024. 36(1): p. 193-208 e8. 2.Yang, R., et al., Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. Mol Biomed, 2022. 3(1): p. 8. 3.Asleh, K., N. Riaz, and T.O. Nielsen, Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. J Exp Clin Cancer Res, 2022. 41(1): p. 265. 4.Shin, E. and J.S. Koo, Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol, 2021. 9: p. 728759. 5.Samuel, S.M., et al., Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy. Biomed Pharmacother, 2023. 164: p. 114911. 6.Arundhathi, J.R.D., et al., Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep, 2021. 48(5): p. 4733-4745. 7.Wang, Z., Q. Jiang, and C. Dong, Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med, 2020. 17(1): p. 44-59. 8.Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov, 2022. 12(1): p. 31-46. 9.Koppenol, W.H., P.L. Bounds, and C.V. Dang, Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011. 11(5): p. 325-37. 10.Martinez-Reyes, I. and N.S. Chandel, Cancer metabolism: looking forward. Nat Rev Cancer, 2021. 21(10): p. 669-680. 11.Ye, Y., et al., Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci, 2023. 10: p. 1242059. 12.Chakraborty, S., et al., Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim Biophys Acta Rev Cancer, 2021. 1876(1): p. 188559. 13.Ahmad, F., M.K. Cherukuri, and P.L. Choyke, Metabolic reprogramming in prostate cancer. Br J Cancer, 2021. 125(9): p. 1185-1196. 14.Azoitei, N., et al., PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol Cancer, 2016. 15: p. 3. 15.Hitosugi, T., et al., Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal, 2009. 2(97): p. ra73. 16.Lv, L., et al., Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011. 42(6): p. 719-30. 17.Anastasiou, D., et al., Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 2011. 334(6060): p. 1278-83. 18.Dombrauckas, J.D., B.D. Santarsiero, and A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 2005. 44(27): p. 9417-29. 19.Yang, W., et al., PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012. 150(4): p. 685-96. 20.Wu, B., et al., The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem, 2024. 80(2): p. 261-275. 21.Yang, W., et al., Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 2011. 480(7375): p. 118-22. 22.Ma, C., et al., Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-kB Activity in Triple-Negative Breast Cancer Cells. Mol Cells, 2019. 42(9): p. 628-636. 23.Xu, H., et al., TRAF6 promotes chemoresistance to paclitaxel of triple negative breast cancer via regulating PKM2-mediated glycolysis. Cancer Med, 2023. 12(19): p. 19807-19820. 24.Su, Q., et al., The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett, 2019. 18(6): p. 5663-5672. 25.Chen, J., et al., Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene, 2011. 30(42): p. 4297-306. 26.Zhao, X., et al., Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis. Sci Rep, 2018. 8(1): p. 14517. 27.Tao, T., et al., Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol, 2019. 234(3): p. 3088-3104. 28.Tang, J.C., et al., Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo. J Cancer, 2018. 9(1): p. 32-40. 29.Boulos, J.C., et al., Shikonin derivatives for cancer prevention and therapy. Cancer Lett, 2019. 459: p. 248-267. 30.Shang, D., et al., Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol, 2017. 50(5): p. 1848-1856. 31.Chen, G., et al., Metformin inhibits gastric cancer via the inhibition of HIF1alpha/PKM2 signaling. Am J Cancer Res, 2015. 5(4): p. 1423-34. 32.Cheng, K. and M. Hao, Metformin Inhibits TGF-beta1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells. Int J Mol Sci, 2016. 17(12). 33.Israelsen, W.J., et al., PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell, 2013. 155(2): p. 397-409. 34.Galluzzi, L., et al., Metabolic targets for cancer therapy. Nat Rev Drug Discov, 2013. 12(11): p. 829-46. 35.Chen, J., et al., EZH2 mediated metabolic rewiring promotes tumor growth independently of histone methyltransferase activity in ovarian cancer. Mol Cancer, 2023. 22(1): p. 85. 36.Yuan, H., et al., SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell, 2020. 38(3): p. 350-365 e7. 37.Zhang, L., et al., EZH2 engages TGFbeta signaling to promote breast cancer bone metastasis via integrin beta1-FAK activation. Nat Commun, 2022. 13(1): p. 2543. 38.Chammas, P., I. Mocavini, and L. Di Croce, Engaging chromatin: PRC2 structure meets function. Br J Cancer, 2020. 122(3): p. 315-328. 39.Wu, H., et al., Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS One, 2013. 8(12): p. e83737. 40.Wu, L., et al., Binding interactions between long noncoding RNA HOTAIR and PRC2 proteins. Biochemistry, 2013. 52(52): p. 9519-27. 41.You, B.H., et al., HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci U S A, 2019. 116(49): p. 24620-24629. 42.Gonzalez, M.E., et al., EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci U S A, 2014. 111(8): p. 3098-103. 43.Wang, H., et al., Single-Cell Analyses Reveal Mechanisms of Cancer Stem Cell Maintenance and Epithelial-Mesenchymal Transition in Recurrent Bladder Cancer. Clin Cancer Res, 2021. 27(22): p. 6265-6278. 44.Duan, R., W. Du, and W. Guo, EZH2: a novel target for cancer treatment. J Hematol Oncol, 2020. 13(1): p. 104. 45.Sha, M., et al., DZNep inhibits the proliferation of colon cancer HCT116 cells by inducing senescence and apoptosis. Acta Pharm Sin B, 2015. 5(3): p. 188-93. 46.McCabe, M.T., et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 2012. 492(7427): p. 108-12. 47.Ratz, L., et al., Combined inhibition of EZH2 and ATM is synthetic lethal in BRCA1-deficient breast cancer. Breast Cancer Res, 2022. 24(1): p. 41. 48.Li, Y.J., et al., Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep, 2022. 39(9): p. 110870. 49.Wu, X., et al., Lipid metabolism in prostate cancer. Am J Clin Exp Urol, 2014. 2(2): p. 111-20. 50.Monaco, M.E., Fatty acid metabolism in breast cancer subtypes. Oncotarget, 2017. 8(17): p. 29487-29500. 51.Suhre, K., et al., Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011. 477(7362): p. 54-60. 52.Doyen, J., et al., Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun, 2014. 451(1): p. 54-61. 53.McCleland, M.L., et al., An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res, 2012. 72(22): p. 5812-23. 54.Longo, N., M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation. Biochim Biophys Acta, 2016. 1863(10): p. 2422-35. 55.Martinez-Reyes, I. and N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun, 2020. 11(1): p. 102. 56.Lei, I., et al., Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. Elife, 2021. 10. 57.Feron, O., The many metabolic sources of acetyl-CoA to support histone acetylation and influence cancer progression. Ann Transl Med, 2019. 7(Suppl 8): p. S277. 58.Jiang, N., et al., Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun, 2022. 13(1): p. 1511. 59.Cheng, S., et al., Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARgamma-mediated pathway in bladder cancer. Clin Sci (Lond), 2019. 133(15): p. 1745-1758. 60.Reyes-Castellanos, G., et al., Combining the antianginal drug perhexiline with chemotherapy induces complete pancreatic cancer regression in vivo. iScience, 2023. 26(6): p. 106899. 61.Dhakal, B., et al., The Antianginal Drug Perhexiline Displays Cytotoxicity against Colorectal Cancer Cells In Vitro: A Potential for Drug Repurposing. Cancers (Basel), 2022. 14(4). 62.Ren, X.R., et al., Perhexiline promotes HER3 ablation through receptor internalization and inhibits tumor growth. Breast Cancer Res, 2015. 17(1): p. 20. 63.Gugiatti, E., et al., A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica, 2018. 103(11): p. e531-e536. 64.Pacilli, A., et al., Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. J Natl Cancer Inst, 2013. 105(7): p. 489-98. 65.Boumahdi, S. and F.J. de Sauvage, The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov, 2020. 19(1): p. 39-56. 66.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 67.Dayton, T.L., T. Jacks, and M.G. Vander Heiden, PKM2, cancer metabolism, and the road ahead. EMBO Rep, 2016. 17(12): p. 1721-1730. 68.Tamada, M., M. Suematsu, and H. Saya, Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res, 2012. 18(20): p. 5554-61. 69.Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-3. 70.Lv, L., et al., Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell, 2013. 52(3): p. 340-52. 71.Giafaglione, J.M., et al., Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol, 2023. 25(12): p. 1821-1832. 72.de Wet, L., et al., SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene, 2022. 41(8): p. 1190-1202. 73.Wanjari, U.R., et al., Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites, 2023. 13(2).
|