跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂琬琪
研究生(外文):LU, WAN-CHI
論文名稱:探索在三陰性乳癌中新穎的代謝調控機制
論文名稱(外文):Defining a Novel Metabolic Switch in Triple-Negative Breast Cancer
指導教授:張君如張君如引用關係楊哲彥楊哲彥引用關係
指導教授(外文):CHANG, CHUN-JUYANG, JER-YEN
口試委員:饒坤銘
口試委員(外文):RAU, KUN-MING
口試日期:2024-07-05
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物化學暨分子生物研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:45
中文關鍵詞:三陰性乳癌代謝重編程丙酮酸激酶
外文關鍵詞:Triple-negative breast cancermetabolic reprogrammingPKM2EZH2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳癌為我國女性癌症中發生率第 1 位,台灣每年有超過一萬兩千名女性罹患乳癌,在這之中,至少有 12%是高侵略性乳癌,包括三陰性乳癌(Triple negative breast cancer, TNBC)。罹患此類型癌症的患者因而具有早期轉移或是復發的現象,並且治療方式有限。因此了解能控制 TNBC 細胞特性的機轉,是發展根除此類高侵略性乳癌有效治療方式的關鍵。近年研究證據指出代謝重編程對乳癌惡性進展至關重要。丙酮酸激酶PKM2 在癌細胞糖解作用中扮演重要角色。然而,儘管在 PKM2/糖解作用缺失的情況下,TNBC 仍可持續生長,而維持這些乳癌細胞生長的關鍵機制尚未確定。我們最新的發現指出 PKM2/糖解作用的缺乏會激活 TNBC 乳癌細胞趨向脂肪酸氧化 (FAO) 的代謝轉換,從而維持 TNBC 的生長。我們的試驗結果顯示,PKM2 與组蛋白甲基轉移酶 EZH2 在乳癌細胞中會形成相互作用的複合體,共同抑制與 FAO 有關的重要基因表現,包括 SLC16A9。SLC16A9 是轉運肉鹼 (Carnitine) 進細胞的受體,而 Carnitine 是促進 FAO 重要物質。我們發現抑制 PKM2-EZH2 信息傳導,會增加細胞內 Carnitine 的量並促進 FAO,並使乳癌細胞高度依賴 FAO 作用。我們在此研究中得到的結論是,PKM2/EZH2/SLC16A9 的嶄新代謝途徑有機會成為高度臨床相關性的治療生物標記,通過調節 PKM2-EZH2 複合體調控代謝轉換,可以有潛力成為臨床上有效治療 TNBC 的新型療法。

Breast cancer remains to be the most common cancer among women with over 12,000 cases diagnosed annually in Taiwan. Among these cases, at least 12% are highly aggressive breast cancer, including triple-negative breast cancer (TNBC). Patients with this type of cancer often experience early metastasis or recurrence, and treatment options are limited. Therefore, understanding the mechanisms that maintain the TNBC cell growth is crucial for developing effective treatments for this aggressive type of breast cancer. Recent research indicates that metabolic reprogramming is crucial for breast cancer progression. Pyruvate kinase PKM2 has a key role in oxidative glycolysis, a key metabolic pathway in cancer cells. However, TNBC cells continue to grow even loss of PKM2/glycolysis, and the central mechanism that is involved remains unclear. Our latest findings suggest that the blockade/deficiency of PKM2/glycolysis initiates a metabolic switch towards fatty acid β-oxidation (FAO) in TNBC cells to sustain their growth. Our results show that PKM2 forms a chromatin complex with histone methyltransferase EZH2 in TNBC cells, which epigenetically suppresses the expression of genes related to FAO, SLC16A9, a key carnitine transporter that promotes FAO. As a result, inhibiting PKM2/EZH2 prompts TNBC cells to become highly dependent on FAO. In conclusion, our finding implies that the PKM2/EZH2/SLC16A9 regulatory axis has the potential to become a clinically relevant biomarker and a critical therapeutic target in TNBC.
Introduction.........................................................................1
Gap & Hypothesis..............................................................22
Materials and Methods......................................................24
Results................................................................................27
Figures................................................................................30
Discussion...........................................................................39
Conclusion..........................................................................41
References..........................................................................42
Fig 1. Direct interaction of PKM2 and EZH2……………30
Fig 2. Specific domains of PKM2 and EZH2 that mediate PKM2-EZH2 protein-protein interaction…………31
Fig 3. PKM2-EZH2 interaction is critical for nuclear translocation and dimerization of PKM2……..…..34
Fig 4. PKM2-EZH2 complex transcriptionally represses SLC16A9 expression……………………...……..….36
Fig 5. PKM2-EZH2-SLC16A9 regulatory axis clinically correlates with breast cancer subtypes and patient survival………………………….…………………....37


1.Zhang, Y., et al., Metabolic switch regulates lineage plasticity and induces synthetic lethality in triple-negative breast cancer. Cell Metab, 2024. 36(1): p. 193-208 e8.
2.Yang, R., et al., Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. Mol Biomed, 2022. 3(1): p. 8.
3.Asleh, K., N. Riaz, and T.O. Nielsen, Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. J Exp Clin Cancer Res, 2022. 41(1): p. 265.
4.Shin, E. and J.S. Koo, Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol, 2021. 9: p. 728759.
5.Samuel, S.M., et al., Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy. Biomed Pharmacother, 2023. 164: p. 114911.
6.Arundhathi, J.R.D., et al., Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep, 2021. 48(5): p. 4733-4745.
7.Wang, Z., Q. Jiang, and C. Dong, Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med, 2020. 17(1): p. 44-59.
8.Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov, 2022. 12(1): p. 31-46.
9.Koppenol, W.H., P.L. Bounds, and C.V. Dang, Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011. 11(5): p. 325-37.
10.Martinez-Reyes, I. and N.S. Chandel, Cancer metabolism: looking forward. Nat Rev Cancer, 2021. 21(10): p. 669-680.
11.Ye, Y., et al., Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci, 2023. 10: p. 1242059.
12.Chakraborty, S., et al., Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim Biophys Acta Rev Cancer, 2021. 1876(1): p. 188559.
13.Ahmad, F., M.K. Cherukuri, and P.L. Choyke, Metabolic reprogramming in prostate cancer. Br J Cancer, 2021. 125(9): p. 1185-1196.
14.Azoitei, N., et al., PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol Cancer, 2016. 15: p. 3.
15.Hitosugi, T., et al., Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal, 2009. 2(97): p. ra73.
16.Lv, L., et al., Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell, 2011. 42(6): p. 719-30.
17.Anastasiou, D., et al., Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 2011. 334(6060): p. 1278-83.
18.Dombrauckas, J.D., B.D. Santarsiero, and A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 2005. 44(27): p. 9417-29.
19.Yang, W., et al., PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012. 150(4): p. 685-96.
20.Wu, B., et al., The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem, 2024. 80(2): p. 261-275.
21.Yang, W., et al., Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 2011. 480(7375): p. 118-22.
22.Ma, C., et al., Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-kB Activity in Triple-Negative Breast Cancer Cells. Mol Cells, 2019. 42(9): p. 628-636.
23.Xu, H., et al., TRAF6 promotes chemoresistance to paclitaxel of triple negative breast cancer via regulating PKM2-mediated glycolysis. Cancer Med, 2023. 12(19): p. 19807-19820.
24.Su, Q., et al., The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett, 2019. 18(6): p. 5663-5672.
25.Chen, J., et al., Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene, 2011. 30(42): p. 4297-306.
26.Zhao, X., et al., Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis. Sci Rep, 2018. 8(1): p. 14517.
27.Tao, T., et al., Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol, 2019. 234(3): p. 3088-3104.
28.Tang, J.C., et al., Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo. J Cancer, 2018. 9(1): p. 32-40.
29.Boulos, J.C., et al., Shikonin derivatives for cancer prevention and therapy. Cancer Lett, 2019. 459: p. 248-267.
30.Shang, D., et al., Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol, 2017. 50(5): p. 1848-1856.
31.Chen, G., et al., Metformin inhibits gastric cancer via the inhibition of HIF1alpha/PKM2 signaling. Am J Cancer Res, 2015. 5(4): p. 1423-34.
32.Cheng, K. and M. Hao, Metformin Inhibits TGF-beta1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells. Int J Mol Sci, 2016. 17(12).
33.Israelsen, W.J., et al., PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell, 2013. 155(2): p. 397-409.
34.Galluzzi, L., et al., Metabolic targets for cancer therapy. Nat Rev Drug Discov, 2013. 12(11): p. 829-46.
35.Chen, J., et al., EZH2 mediated metabolic rewiring promotes tumor growth independently of histone methyltransferase activity in ovarian cancer. Mol Cancer, 2023. 22(1): p. 85.
36.Yuan, H., et al., SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell, 2020. 38(3): p. 350-365 e7.
37.Zhang, L., et al., EZH2 engages TGFbeta signaling to promote breast cancer bone metastasis via integrin beta1-FAK activation. Nat Commun, 2022. 13(1): p. 2543.
38.Chammas, P., I. Mocavini, and L. Di Croce, Engaging chromatin: PRC2 structure meets function. Br J Cancer, 2020. 122(3): p. 315-328.
39.Wu, H., et al., Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS One, 2013. 8(12): p. e83737.
40.Wu, L., et al., Binding interactions between long noncoding RNA HOTAIR and PRC2 proteins. Biochemistry, 2013. 52(52): p. 9519-27.
41.You, B.H., et al., HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci U S A, 2019. 116(49): p. 24620-24629.
42.Gonzalez, M.E., et al., EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci U S A, 2014. 111(8): p. 3098-103.
43.Wang, H., et al., Single-Cell Analyses Reveal Mechanisms of Cancer Stem Cell Maintenance and Epithelial-Mesenchymal Transition in Recurrent Bladder Cancer. Clin Cancer Res, 2021. 27(22): p. 6265-6278.
44.Duan, R., W. Du, and W. Guo, EZH2: a novel target for cancer treatment. J Hematol Oncol, 2020. 13(1): p. 104.
45.Sha, M., et al., DZNep inhibits the proliferation of colon cancer HCT116 cells by inducing senescence and apoptosis. Acta Pharm Sin B, 2015. 5(3): p. 188-93.
46.McCabe, M.T., et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 2012. 492(7427): p. 108-12.
47.Ratz, L., et al., Combined inhibition of EZH2 and ATM is synthetic lethal in BRCA1-deficient breast cancer. Breast Cancer Res, 2022. 24(1): p. 41.
48.Li, Y.J., et al., Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep, 2022. 39(9): p. 110870.
49.Wu, X., et al., Lipid metabolism in prostate cancer. Am J Clin Exp Urol, 2014. 2(2): p. 111-20.
50.Monaco, M.E., Fatty acid metabolism in breast cancer subtypes. Oncotarget, 2017. 8(17): p. 29487-29500.
51.Suhre, K., et al., Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011. 477(7362): p. 54-60.
52.Doyen, J., et al., Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun, 2014. 451(1): p. 54-61.
53.McCleland, M.L., et al., An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res, 2012. 72(22): p. 5812-23.
54.Longo, N., M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation. Biochim Biophys Acta, 2016. 1863(10): p. 2422-35.
55.Martinez-Reyes, I. and N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun, 2020. 11(1): p. 102.
56.Lei, I., et al., Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. Elife, 2021. 10.
57.Feron, O., The many metabolic sources of acetyl-CoA to support histone acetylation and influence cancer progression. Ann Transl Med, 2019. 7(Suppl 8): p. S277.
58.Jiang, N., et al., Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun, 2022. 13(1): p. 1511.
59.Cheng, S., et al., Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARgamma-mediated pathway in bladder cancer. Clin Sci (Lond), 2019. 133(15): p. 1745-1758.
60.Reyes-Castellanos, G., et al., Combining the antianginal drug perhexiline with chemotherapy induces complete pancreatic cancer regression in vivo. iScience, 2023. 26(6): p. 106899.
61.Dhakal, B., et al., The Antianginal Drug Perhexiline Displays Cytotoxicity against Colorectal Cancer Cells In Vitro: A Potential for Drug Repurposing. Cancers (Basel), 2022. 14(4).
62.Ren, X.R., et al., Perhexiline promotes HER3 ablation through receptor internalization and inhibits tumor growth. Breast Cancer Res, 2015. 17(1): p. 20.
63.Gugiatti, E., et al., A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica, 2018. 103(11): p. e531-e536.
64.Pacilli, A., et al., Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. J Natl Cancer Inst, 2013. 105(7): p. 489-98.
65.Boumahdi, S. and F.J. de Sauvage, The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov, 2020. 19(1): p. 39-56.
66.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
67.Dayton, T.L., T. Jacks, and M.G. Vander Heiden, PKM2, cancer metabolism, and the road ahead. EMBO Rep, 2016. 17(12): p. 1721-1730.
68.Tamada, M., M. Suematsu, and H. Saya, Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res, 2012. 18(20): p. 5554-61.
69.Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-3.
70.Lv, L., et al., Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell, 2013. 52(3): p. 340-52.
71.Giafaglione, J.M., et al., Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol, 2023. 25(12): p. 1821-1832.
72.de Wet, L., et al., SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene, 2022. 41(8): p. 1190-1202.
73.Wanjari, U.R., et al., Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites, 2023. 13(2).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文