跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王捷賢
研究生(外文):WANG, JIE-SIAN
論文名稱:血脂異常與糖尿病腎病變的醫學研究
論文名稱(外文):Medical Research On Dyslipidemia And Diabetic Nephropathy
指導教授:沈明毅
指導教授(外文):SHEN, MING-YI
口試委員:沈明毅周子傑陳朝榮許菁芳楊文欽
口試委員(外文):SHEN, MING-YICHOU, TZU-CHIEHCHEN, CHAO-JUNGHSU, JING-FANGYANG, WEN-CHIN
口試日期:2024-06-13
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:生物醫學研究所博士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:88
中文關鍵詞:糖尿病腎病變殘餘腎功能富含載脂蛋白 C3 之低密度脂蛋白慢性腎衰竭洗腎芝麻酚己酮可可鹼
外文關鍵詞:Diabetic Kidney Diseaseresidual renal functionapolipoprotein C3-rich low-density lipoproteinchronic kidney diseasedialysissesamolpentoxifylline
ORCID或ResearchGate:orcid.org/0000-0002-1943-3709
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病相關腎臟病 (DKD) 治療已成為現今臨床巨大的挑戰,為推動綜合管理策略。本論文綜合三項研究結果,探討 DKD 及相關併發症的新穎預防標的、治療方針和生物標記。

第一項研究闡明富含載脂蛋白 C3 的脂蛋白 (AC3RL) 作為 DKD 生物標記的潛力。據中國醫藥大學附屬醫院臨床收案觀察數據顯示,DKD 和慢性腎臟病 (CKD) 患者的 AC3RL 水平升高,且與腎小球濾過率 (GFR) 呈負相關。蛋白質印跡分析證實了 AC3RL 與糖尿病腎病變的關聯,此研究強調了其作為生物指標的前景。

第二項研究探討天然抗氧化物-芝麻酚 (Sesamol, SM) 在減輕腎損傷相關動脈粥狀硬化和發炎方面的治療潛力。使用以六分之五腎臟摘除手術 (5/6 Nx) 建立小鼠腎損傷模型,管餵給予口服芝麻酚,研究結果顯示天然抗氧化物-芝麻酚可顯著減少動脈粥狀硬化標記物並抑制氧化壓力引起的內皮細胞凋亡。此外,透過抑制 IKKα-NF-κB 路徑減輕巨噬細胞介導的腎臟炎症,綜合以上研究,提供腎病變相關併發症新穎的穎預防與治療途徑。

第三項研究透過健保資料庫數據調查了己酮可可鹼 (Pentoxifylline, PTX) 對尚未確診心血管疾病 (CVD) 的 DKD 患者心血管保護作用。使用回顧性隊列進行分析,結果表明,PTX 透過劑量依賴性降低動脈粥狀硬化性心血管疾病 (ASCVD) 風險,透過實驗發現其主要透過 Klotho 介導的途徑降低內皮細胞氧化壓力,減少動脈粥狀硬化。

綜合以上研究,進行整合多面向在治療 DKD 及相關併發症的重要性。 AC3RL 將成為 DKD 疾病進程中,具潛力的生物標誌物;天然抗氧化物-芝麻酚和 PTX 為可減輕腎損傷、動脈粥樣硬化和發炎,研究提供潛在的治療途徑。透過研究結果,闡明 DKD 管理的潛在機制並優化預防與治療策略。

Diabetes-related kidney disease (DKD) presents a formidable challenge, driving the need for comprehensive management strategies. This abstract synthesizes findings from three studies investigating novel interventions and biomarkers in DKD and associated complications.

The first study elucidates the potential of apolipoprotein C3-rich lipoprotein (AC3RL) as a biomarker for DKD progression. Observational data from China Medical University Hospital reveal elevated AC3RL levels in DKD and chronic kidney disease (CKD) patients, with a negative correlation to glomerular filtration rate (GFR). Western blot analysis confirms AC3RL's association with diabetic nephropathy, highlighting its promise as a prognostic indicator.

The second study explores sesamol's therapeutic potential in attenuating renal injury-associated atherosclerosis and inflammation in CKD. Using a rodent CKD model, sesamol administration significantly reduces atherosclerotic markers and suppresses oxidative stress-induced damage. Furthermore, sesamol mitigates macrophage-mediated renal inflammation via inhibition of the IKKα-NF-κB pathway, offering a novel therapeutic avenue for CKD-associated complications.

The third study investigates pentoxifylline's (PTX) cardiovascular protection in DKD patients without established cardiovascular disease (CVD). Retrospective cohort analysis demonstrates PTX's dose-dependent reduction in atherosclerotic cardiovascular disease (ASCVD) risk, mediated by endothelial cell protection through Klotho-mediated pathways.

Integration of these findings underscores the importance of multifaceted approaches in managing DKD and associated complications. AC3RL emerges as a promising biomarker for DKD progression, while sesamol and PTX offer potential therapeutic avenues for mitigating renal injury, atherosclerosis, and inflammation in CKD. Further research is warranted to elucidate underlying mechanisms and optimize therapeutic strategies for DKD management.

CONTENT IV
LIST OF FIGURES/TABLES VII
CHAPTER 1. PREFACE 1
CHAPTER 2. RESEARCH MOTIVATION 2
CHAPTER 3. LITERATURE REVIEW 3
III. 1. Chronic kidney disease, CKD 3
III. 2. CKD and low-density lipoprotein (LDL) 7
III. 3. Oxidative stress and atherosclerosis 9
III. 4. Lipoproteins influence lipoprotein lipase and cause hypertriglyceridemia 11
III. 5. Link of hypertriglyceridemia to atherosclerotic cardiovascular disease (ASCVD) and treatment guidelines 13
III. 6. Novel interventions and biomarkers in DKD 14
III. 7. Sesamol 15
III. 8. Pentoxifylline 15
CHAPTER 4. AIMS OF INVESTIGATION 17
CHAPTER 5. RESEARCH DESIGN AND EXPERIMENTAL METHODS 18
V. 1. Research design and acceptance conditions 18
V. 2. Experimental method 23
V. 2.1. Separation of AC3RL 23
V. 2.2. Data and Sample Source 25
V. 2.3. Cell Culture and Viability and Cellular Apoptosis Assay 26
V. 2.4. Western Blot 27
V. 2.5. Animal Model and Experimental Design 28
V. 2.6. Hematoxylin-Eosin Y stain, and TUNEL staining 28
V. 2.7. Biochemical Test 29
V. 2.8. Statistical analysis 29
CHAPTER 6. RESEARCH RESULT 30
VI. 1. Basic information of each group and AC3RL% 30
VI. 2. DKD and CKD patients have higher mean AC3RL% 32
VI. 3. There is a moderate negative correlation between AC3RL% and GFR in the DKD group 33
VI. 4. AC3RL is present in the plasma LDL of patients with diabetic kidney disease 37
VI. 5. The Impact of Sesamol (SM) on the survival and intracellular reactive oxygen species (ROS) generation of Human Aortic Endothelial Cells (HAECs) Exposed to Hydrogen Peroxide (H2O2) 38
VI. 6. The protective effects of SM against hydrogen peroxide-induced apoptosis in human aortic endothelial cells 41
VI. 7. The impact of SM on the protein expression of Phosphorylated-IKKα, p53, and Cleaved Caspase-3 in Hydrogen Peroxide-treated Human Aortic Endothelial Cells 43
VI. 8. The cytoprotective effects of SM against 5/6 nephrectomy-induced endothelial cell apoptosis in ApoE–/– mice 44
VI. 9. ASCVD risks vary among participants based on their respective pentoxifylline-days-supply 61
VI. 10. Pentoxifylline reduces endothelial cell apoptosis dose-dependently 64
VI. 11. Protective effect of Long-term Pentoxifylline exposure against H2O2-induced endothelial cell is facilitated through the Klotho signaling pathway 68
VI. 12. Pentoxifylline Inhibits Atherosclerosis in DKD Mice Model 71
VI. 13. H&E and TUNEL images showed microscopic features of isolated mice aorta 73
CHAPTER 7. DISCUSSION AND RESEARCH LIMITATIONS 75
VII. 1. AC3RL may be associated with glomerulonephritis 75
VII. 2. Patients with high cardiovascular risk (TG/HDL) may have higher AC3RL% 75
VII. 3. Diabetic nephropathy may be related to AC3RL 76
VII. 4. AC3RL may be associated with oxidative stress 76
VII. 5. Sesamol and Pentoxifylline are protective against the formation of reactive oxygen species (ROS) 77
VII. 6. Research limitations 79
CHAPTER 8. CONCLUSIONS 81
LIST OF ABBREVIATIONS 82
REFERENCES 85

1.Chiu, H.F., Chen, H.C., Lu, K.C., Shu, K.H. & Taiwan Society of, N. Distribution of glomerular diseases in Taiwan: preliminary report of National Renal Biopsy Registry-publication on behalf of Taiwan Society of Nephrology. BMC Nephrol 19, 6 (2018).
2.Ozieh, M.N., Bishu, K.G., Dismuke, C.E. & Egede, L.E. Trends in healthcare expenditure in United States adults with chronic kidney disease: 2002-2011. BMC Health Serv Res 17, 368 (2017).
3.Wang, J.S., et al. Epidemiological characteristics of diabetic kidney disease in Taiwan. J Diabetes Investig 12, 2112-2123 (2021).
4.Sakuma, M., et al. Optimal target of LDL cholesterol level for statin treatment: challenges to monotonic relationship with cardiovascular events. BMC Med 20, 441 (2022).
5.Ivanova, E.A., Myasoedova, V.A., Melnichenko, A.A., Grechko, A.V. & Orekhov, A.N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid Med Cell Longev 2017, 1273042 (2017).
6.Vekic, J., et al. Atherosclerosis Development and Progression: The Role of Atherogenic Small, Dense LDL. Medicina (Kaunas) 58(2022).
7.Makar, M.S. & Pun, P.H. Sudden Cardiac Death Among Hemodialysis Patients. Am J Kidney Dis 69, 684-695 (2017).
8.Schoolwerth, A.C., et al. Chronic kidney disease: a public health problem that needs a public health action plan. Prev Chronic Dis 3, A57 (2006).
9.Kim, K.M., Oh, H.J., Choi, H.Y., Lee, H. & Ryu, D.R. Impact of chronic kidney disease on mortality: A nationwide cohort study. Kidney Res Clin Pract 38, 382-390 (2019).
10.Alani, H., Tamimi, A. & Tamimi, N. Cardiovascular co-morbidity in chronic kidney disease: Current knowledge and future research needs. World J Nephrol 3, 156-168 (2014).
11.Osawa, T., et al. Association of the estimated glomerular filtration rate (eGFR) and/or proteinuria to predict the risk of initiation of dialysis in people with and without diabetes. Diabetol Int 14, 86-93 (2023).
12.Kuznik, A., Mardekian, J. & Tarasenko, L. Evaluation of cardiovascular disease burden and therapeutic goal attainment in US adults with chronic kidney disease: an analysis of national health and nutritional examination survey data, 2001-2010. BMC Nephrol 14, 132 (2013).
13.Gluba-Brzozka, A., Franczyk, B. & Rysz, J. Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients 11(2019).
14.Leopold, J.A. & Loscalzo, J. Oxidative mechanisms and atherothrombotic cardiovascular disease. Drug Discov Today Ther Strateg 5, 5-13 (2008).
15.Batty, M., Bennett, M.R. & Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 11(2022).
16.Cook-Mills, J.M., Marchese, M.E. & Abdala-Valencia, H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 15, 1607-1638 (2011).
17.Mudau, M., Genis, A., Lochner, A. & Strijdom, H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 23, 222-231 (2012).
18.Lenna, S., Han, R. & Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 66, 530-537 (2014).
19.Moore, K.J., Sheedy, F.J. & Fisher, E.A. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13, 709-721 (2013).
20.Wang, Y.C., et al. Human electronegative LDL induces mitochondrial dysfunction and premature senescence of vascular cells in vivo. Aging cell 17, e12792 (2018).
21.Wang, J.C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circulation research 111, 245-259 (2012).
22.Tsai, P.H., Chen, L.Z., Tseng, K.F., Chen, F.Y. & Shen, M.Y. Apolipoprotein C3-Rich Low-Density Lipoprotein Induces Endothelial Cell Senescence via FBXO31 and Its Inhibition by Sesamol In Vitro and In Vivo. Biomedicines 10(2022).
23.Mikolasevic, I., Zutelija, M., Mavrinac, V. & Orlic, L. Dyslipidemia in patients with chronic kidney disease: etiology and management. Int J Nephrol Renovasc Dis 10, 35-45 (2017).
24.Huang, J.K. & Lee, H.C. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 23(2022).
25.Vaziri, N.D. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial 22, 644-651 (2009).
26.Barbagallo, C.M., et al. Lipoprotein Abnormalities in Chronic Kidney Disease and Renal Transplantation. Life (Basel) 11(2021).
27.Boren, J., Packard, C.J. & Taskinen, M.R. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front Endocrinol (Lausanne) 11, 474 (2020).
28.Koo, B.K., Park, S., Han, K.D. & Moon, M.K. Hypertriglyceridemia Is an Independent Risk Factor for Cardiovascular Diseases in Korean Adults Aged 30-49 Years: a Nationwide Population-Based Study. J Lipid Atheroscler 10, 88-98 (2021).
29.Gunasekaran, P., Jeevanantham, V., Sharma, S., Thapa, R. & Gupta, K. Implications of the 2013 ACC/AHA cholesterol guidelines on contemporary clinical practice for patients with atherosclerotic coronary and peripheral arterial disease. Indian Heart J 69, 464-468 (2017).
30.Gibson, C.M., et al. Effect of intensive statin therapy on clinical outcomes among patients undergoing percutaneous coronary intervention for acute coronary syndrome. PCI-PROVE IT: A PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction 22) Substudy. J Am Coll Cardiol 54, 2290-2295 (2009).
31.Novikov, A. & Vallon, V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens 25, 50-58 (2016).
32.Ferhatbegovic, L., Mrsic, D. & Macic-Dzankovic, A. The benefits of GLP1 receptors in cardiovascular diseases. Front Clin Diabetes Healthc 4, 1293926 (2023).
33.Kolkhof, P., Lawatscheck, R., Filippatos, G. & Bakris, G.L. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 23(2022).
34.Reisman, S.A., et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J Am Soc Nephrol 23, 1663-1673 (2012).
35.Daza-Arnedo, R., et al. Dipeptidyl Peptidase-4 Inhibitors and Diabetic Kidney Disease: A Narrative Review. Kidney Med 3, 1065-1073 (2021).
36.Christofides, E.A. & Desai, N. Optimal Early Diagnosis and Monitoring of Diabetic Kidney Disease in Type 2 Diabetes Mellitus: Addressing the Barriers to Albuminuria Testing. J Prim Care Community Health 12, 21501327211003683 (2021).
37.Kim, S.Y., et al. Plasma Neutrophil Gelatinase-Associated Lipocalin as a Marker of Tubular Damage in Diabetic Nephropathy. Ann Lab Med 38, 524-529 (2018).
38.Gohda, T., et al. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic kidney disease. J Diabetes Investig 11, 435-440 (2020).
39.Wang, N., et al. Serum Cystatin C Trajectory Is a Marker Associated With Diabetic Kidney Disease. Front Endocrinol (Lausanne) 13, 824279 (2022).
40.Mello, M.F., et al. Evaluating TIMP-2 and IGFBP-7 as a predictive tool for kidney injury in ureteropelvic junction obstruction. Int Braz J Urol 48, 284-293 (2022).
41.Imig, J.D. & Ryan, M.J. Immune and inflammatory role in renal disease. Compr Physiol 3, 957-976 (2013).
42.Cornelissen, A., et al. Intact fibroblast growth factor 23 levels and outcome prediction in patients with acute heart failure. Sci Rep 11, 15507 (2021).
43.Liu, C. & Huang, Y. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action. Front Pharmacol 7, 469 (2016).
44.Mashour, N.H., Lin, G.I. & Frishman, W.H. Herbal medicine for the treatment of cardiovascular disease: clinical considerations. Arch Intern Med 158, 2225-2234 (1998).
45.Chen, W.Y., et al. Sesamol reduces the atherogenicity of electronegative L5 LDL in vivo and in vitro. J Nat Prod 78, 225-233 (2015).
46.Liu, Z., et al. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Scientific reports 7, 45728 (2017).
47.Ruankham, W., et al. Sesamin and sesamol attenuate H2O2 -induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutritional neuroscience, 1-12 (2019).
48.Henrich, T.J., et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS medicine 14, e1002417 (2017).
49.Sharma, S. & Kaur, I.P. Development and evaluation of sesamol as an antiaging agent. International journal of dermatology 45, 200-208 (2006).
50.Singh, N., Khullar, N., Kakkar, V. & Kaur, I.P. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. Environmental toxicology 31, 520-532 (2016).
51.Hsu, D.Z., Wan, C.H., Hsu, H.F., Lin, Y.M. & Liu, M.Y. The prophylactic protective effect of sesamol against ferric-nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol 46, 2736-2741 (2008).
52.Xie, W., et al. Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells 7(2018).
53.Kim, J.W., et al. Coffee intake and decreased amyloid pathology in human brain. Translational psychiatry 9, 270 (2019).
54.Zhang, B., Saatman, K.E. & Chen, L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural regeneration research 15, 416-424 (2020).
55.Salhiyyah, K., et al. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev 9, CD005262 (2015).
56.Movassaghi, S., Nadia Sharifi, Z., Mohammadzadeh, F. & Soleimani, M. Pentoxifylline Protects the Rat Liver Against Fibrosis and Apoptosis Induced by Acute Administration of 3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy). Iran J Basic Med Sci 16, 922-927 (2013).
57.Chen, Y.M., Chiang, W.C., Lin, S.L. & Tsai, T.J. Therapeutic efficacy of pentoxifylline on proteinuria and renal progression: an update. J Biomed Sci 24, 84 (2017).
58.Navarro-Gonzalez, J.F., et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol 26, 220-229 (2015).
59.Chen, P.M., et al. Renoprotective effect of combining pentoxifylline with angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in advanced chronic kidney disease. J Formos Med Assoc 113, 219-226 (2014).
60.Prasad, K. & Lee, P. Suppression of hypercholesterolemic atherosclerosis by pentoxifylline and its mechanism. Atherosclerosis 192, 313-322 (2007).
61.Crouch, S.P. & Fletcher, J. Effect of ingested pentoxifylline on neutrophil superoxide anion production. Infect Immun 60, 4504-4509 (1992).
62.Lehr, H.A., et al. In vitro effects of oxidized low density lipoprotein on CD11b/CD18 and L-selectin presentation on neutrophils and monocytes with relevance for the in vivo situation. Am J Pathol 146, 218-227 (1995).
63.Li, Y.H., et al. 2017 Taiwan lipid guidelines for high risk patients. J Formos Med Assoc 116, 217-248 (2017).
64.Khoo, C., Campos, H., Judge, H. & Sacks, F.M. Effects of estrogenic oral contraceptives on the lipoprotein B particle system defined by apolipoproteins E and C-III content. J Lipid Res 40, 202-212 (1999).
65.Salazar-Martin, A.G., et al. Single-Cell RNA Sequencing Reveals That Adaptation of Human Aortic Endothelial Cells to Antiproliferative Therapies Is Modulated by Flow-Induced Shear Stress. Arterioscler Thromb Vasc Biol 43, 2265-2281 (2023).
66.Wang, J.S., et al. Sesamol Ameliorates Renal Injury-Mediated Atherosclerosis via Inhibition of Oxidative Stress/IKKalpha/p53. Antioxidants (Basel) 10(2021).
67.Tseng, K.F., Tsai, P.H., Wang, J.S., Chen, F.Y. & Shen, M.Y. Sesamol Attenuates Renal Inflammation and Arrests Reactive-Oxygen-Species-Mediated IL-1beta Secretion via the HO-1-Induced Inhibition of the IKKalpha/NFkappaB Pathway In Vivo and In Vitro. Antioxidants (Basel) 11(2022).
68.Wang, H., et al. Apolipoprotein C3 aggravates diabetic nephropathy in type 1 diabetes by activating the renal TLR2/NF-kappaB pathway. Metabolism 119, 154740 (2021).
69.Fernandez-Lucas, M., et al. Recovery of renal function in patients receiving haemodialysis treatment. Nefrologia 32, 166-171 (2012).
70.Fakhruddin, S., Alanazi, W. & Jackson, K.E. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017, 8379327 (2017).
71.Makris, K. & Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin Biochem Rev 37, 85-98 (2016).
72.Tong, L.L. & Adler, S.G. Diabetic kidney disease treatment: new perspectives. Kidney Res Clin Pract 41, S63-S73 (2022).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊