跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陶陳壹風
研究生(外文):DAO TRAN NHAT PHONG
論文名稱:中藥複方SS1治療乾燥症之有效成分分析
論文名稱(外文):IDENTIFICATION OF POTENTIAL EFFECTIVE COMPOUNDS IN THE SS1 HERBAL REMEDY FOR MANAGING SJÖGREN'S SYNDROME
指導教授:張恒鴻張恒鴻引用關係
指導教授(外文):CHANG, HEN-HONG
口試委員:王昭能陳朝榮張恒鴻
口試委員(外文):WANG, CHARLES C.N.CHEN, CHAO-JUNGCHANG, HEN-HONG
口試日期:2024-06-14
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中西醫結合研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:85
中文關鍵詞:乾燥症中藥複方SS1中醫藥IL-17高效液相色譜法液相層析與串聯質譜電腦模擬Schrödinger平台
外文關鍵詞:Sjögren's syndromeSS1Traditional Chinese MedicineInterleukin-17HPLCLC‒MS/MSin silicoSchrödinger
ORCID或ResearchGate:0000-0002-5794-8447
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:乾燥症為常見的自體免疫疾病,主要特徵為口乾和眼乾,嚴重影響患者的生活品質。中西整合醫療已被用於提高療效並減少副作用,中藥SS1複方已在細胞、動物模式及臨床試驗顯示其對乾燥症具療效,本研究進一步探討其有效成份。
方法:濃縮中藥複方SS1通過高效液相色譜法質量檢測、液相層析與串聯質譜和建立的資料庫對其中的植物化學成分進行鑑定。利用 Schrödinger平台作為主要運算工具,評估IL-17在乾燥症的潛在治療標靶。各活性成分和參考化合物進行了對接分析、ADMET預測和分子動力學模擬,以評估受體-配體複合物的穩定性,並分析蛋白質配體相互作用期間的波動和構象變化。
結果:高效液相色譜測試確認了SS1藥方的品質;液相層析與串聯質譜鑑定出SS1內含90種化合物;分子對接研究揭示了SS1粉末萃取物中的14種化合物在特定殘基處表現出比參考配體更高的Glide分數和MMGBSA值。這些化合物對特定殘基具有較強的結合親和力,且大多數不違反 Lipinski五法則。此外,分子動力學模擬的結果顯示:與參考配體相比,候選化合物和受體的穩定性較高。ADMET分析顯示:有6種成份在藥物研發中具有進一步研究的藥物適用性。
結論:中藥複方SS1所含生物活性成分可能是在開發IL-17抑制劑方面具有潛力的先導化合物,為乾燥症及其相關併發症提供了潛在的治療可能。
Background: Sjögren's syndrome is a common autoimmune disease, primarily characterized by dry mouth and dry eyes and significantly impacts patients's quality of life. Integrated medicine has been used to increase treatment effectiveness and reduce side effects. The traditional Chinese medicine SS1 remedy has demonstrated efficacy in treating Sjögren's syndrome through evidence from in vitro, in vivo and clinical trials.
Materials and Methods: The traditional Chinese medicine SS1 remedy was extracted and subjected to HPLC quality testing. Phytochemicals in SS1 were identified by using LC‒MS/MS and a built database. The Schrödinger platform was utilized as the primary computational tool to evaluate the potential therapeutic targets of IL-17 for Sjögren's syndrome. The bioactive components and reference compounds were subjected to docking analysis, ADMET prediction, and molecular dynamics simulation to assess the stability of the receptor‒ligand complex and analyze fluctuations and conformational changes during protein‒ligand interactions.
Results: HPLC analysis confirmed the quality of the SS1 remedy. LC‒MS/MS identified 90 compounds in SS1. Molecular docking studies revealed that selected compounds within the SS1 powdered extract exhibited higher glide scores and MMGBSA values compared to reference ligands at specific residues. These compounds exhibit strong binding affinity to specific residues, with most of them not violating the Lipinski’s rule of five. Furthermore, the results from the molecular dynamic simulation demonstrated the stability of the candidates and receptors compared to that of the reference ligands. ADMET analysis indicated that the selected ligands exhibited drug-like suitability for further investigation in new drug development.
Conclusion: The SS1 remedy and its various bioactive components could be promising lead compounds for IL-17 inhibitors, providing potential treatments for Sjögren's syndrome and its related complications.
Table of contents

Chapter 1. INTRODUCTION 1
Chapter 2. LITERATURE REVIEW 3
2.1. Sjögren's syndrome and interleukin 17 (IL-17) 3
2.1.1. Overview about Sjögren's syndrome 3
2.1.2. Interleukin 17 (IL-17) and its receptor 6
2.2. Sjögren's syndrome in Traditional Chinese Medicine (TCM) 7
2.3. SS1 remedy and Sjögren's syndrome 9
Chapter 3. MATERIALS AND METHODS 13
3.1. Experiments 13
3.1.1. SS1 medica materials and preparation 13
3.1.2. SS1 chemical quantifications 14
3.1.3. Identification of the extract composition by LC‒MS/MS 18
3.2. Computations 20
3.2.1. Molecular docking 20
3.2.2. Pharmacokinetics and pharmacology prediction 21
3.2.3. Molecular Dynamics Simulations (MDs) 21
Chapter 4. RESULTS 23
4.1. Experiments 23
4.1.1. Quantitative and qualitative analysis of SS1 components using HPLC 23
4.1.2. Phytochemical compounds of SS1 remedy 23
4.2. Computations 31
4.2.1. Docking analysis 31
4.2.2. ADMET analysis 47
4.2.3. Molecular Dynamics simulation (MDs) 55
Chapter 5. DISCUSSION 62
Chapter 6. CONCLUSION 70


REFFERENCE

1.Mariette X, Criswell LA. Primary Sjögren’s Syndrome. New England Journal of Medicine. 2018;378(10):931-939. doi:10.1056/NEJMcp1702514
2.Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren’s syndrome: Review and update. Frontiers in Immunology. 2023;14. Accessed January 8, 2024. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1127417
3.Carsons SE, Patel BC. Sjogren Syndrome. In: StatPearls. StatPearls Publishing; 2024. Accessed April 6, 2024. http://www.ncbi.nlm.nih.gov/books/NBK431049/
4.Qin B, Wang J, Yang Z, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(11):1983-1989. doi:10.1136/annrheumdis-2014-205375
5.Thurtle E, Grosjean A, Steenackers M, Strege K, Barcelos G, Goswami P. Epidemiology of Sjögren’s: A Systematic Literature Review. Rheumatol Ther. 2024;11(1):1-17. doi:10.1007/s40744-023-00611-8
6.Weng MY, Huang YT, Liu MF, Lu TH. Incidence and mortality of treated primary Sjogren’s syndrome in Taiwan: a population-based study. J Rheumatol. 2011;38(4):706-708. doi:10.3899/jrheum.100883
7.Jonsson R, Brokstad KA, Jonsson MV, Delaleu N, Skarstein K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur J Oral Sci. 2018;126 Suppl 1(Suppl Suppl 1):37-48. doi:10.1111/eos.12536
8.Witas R, Gupta S, Nguyen CQ. Contributions of Major Cell Populations to Sjögren’s Syndrome. Journal of Clinical Medicine. 2020;9(9):3057. doi:10.3390/jcm9093057
9.Blinova VG, Vasilyev VI, Rodionova EB, Zhdanov DD. The Role of Regulatory T Cells in the Onset and Progression of Primary Sjögren’s Syndrome. Cells. 2023;12(10):1359. doi:10.3390/cells12101359
10.Jin L, Dai M, Li C, Wang J, Wu B. Risk factors for primary Sjögren’s Syndrome: a systematic review and meta-analysis. Clin Rheumatol. 2023;42(2):327-338. doi:10.1007/s10067-022-06474-8
11.Brito-Zerón P, Flores-Chávez A, Horváth IF, et al. Mortality risk factors in primary Sjögren syndrome: a real-world, retrospective, cohort study. eClinicalMedicine. 2023;61. doi:10.1016/j.eclinm.2023.102062
12.Shiboski CH, Shiboski SC, Seror R, et al. 2016 ACR-EULAR Classification Criteria for primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017;69(1):35-45. doi:10.1002/art.39859
13.Huang YT, Lu TH, Chou PL, Weng MY. Diagnostic Delay in Patients with Primary Sjögren’s Syndrome: A Population-Based Cohort Study in Taiwan. Healthcare. 2021;9(3):363. doi:10.3390/healthcare9030363
14.Sisó-Almirall A, Meijer JM, Brito-Zerón P, et al. Practical guidelines for the early diagnosis of Sjögren’s syndrome in primary healthcare. Clin Exp Rheumatol. 2021;39 Suppl 133(6):197-205. doi:10.55563/clinexprheumatol/pal3z7
15.Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Rüdiger Burmester G, Dörner T. The Diagnosis and Treatment of Sjögren’s Syndrome. Dtsch Arztebl Int. 2017;114(20):354-361. doi:10.3238/arztebl.2017.0354
16.Chen X, Wu H, Wei W. Advances in the diagnosis and treatment of Sjogren’s syndrome. Clin Rheumatol. 2018;37(7):1743-1749. doi:10.1007/s10067-018-4153-8
17.Shih KC, Lun CN, Jhanji V, Thong BYH, Tong L. Systematic review of randomized controlled trials in the treatment of dry eye disease in Sjogren syndrome. J Inflamm. 2017;14(1):26. doi:10.1186/s12950-017-0174-3
18.Saraux A, Pers JO, Devauchelle-Pensec V. Treatment of primary Sjögren syndrome. Nat Rev Rheumatol. 2016;12(8):456-471. doi:10.1038/nrrheum.2016.100
19.Thalayasingam N, Baldwin K, Judd C, Ng WF. New developments in Sjogren’s syndrome. Rheumatology. 2021;60(Supplement_6):vi53-vi61. doi:10.1093/rheumatology/keab466
20.Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjögren syndrome. Nat Rev Rheumatol. 2018;14(3):133-145. doi:10.1038/nrrheum.2018.1
21.Verstappen GM, Kroese FGM, Bootsma H. T cells in primary Sjögren’s syndrome: targets for early intervention. Rheumatology (Oxford). 2021;60(7):3088-3098. doi:10.1093/rheumatology/kez004
22.Deng F, Chen J, Zheng J, et al. Association of BAFF and IL-17A with subphenotypes of primary Sjögren’s syndrome. Int J Rheum Dis. 2016;19(7):715-720. doi:10.1111/1756-185X.12569
23.Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi:10.1038/s41577-022-00746-9
24.Guo H, Ju Y, Choi M, et al. Supra-lacrimal protein-based carriers for Cyclosporine A reduce Th17-mediated autoimmunity in murine model of Sjögren’s Syndrome. Biomaterials. 2022;283:121441. doi:10.1016/j.biomaterials.2022.121441
25.Zhang LW, Zhou PR, Wei P, Cong X, Wu LL, Hua H. Expression of interleukin-17 in primary Sjögren’s syndrome and the correlation with disease severity: A systematic review and meta-analysis. Scand J Immunol. 2018;87(4):e12649. doi:10.1111/sji.12649
26.Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity. Journal of Autoimmunity. 2018;87:16-25. doi:10.1016/j.jaut.2017.11.003
27.Hwang SH, Woo JS, Moon J, et al. IL-17 and CCR9+α4β7– Th17 Cells Promote Salivary Gland Inflammation, Dysfunction, and Cell Death in Sjögren’s Syndrome. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.721453
28.Mieliauskaite D, Dumalakiene I, Rugiene R, Mackiewicz Z. Expression of IL-17, IL-23 and their receptors in minor salivary glands of patients with primary Sjögren’s syndrome. Clin Dev Immunol. 2012;2012:187258. doi:10.1155/2012/187258
29.Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181(4):2898-2906. doi:10.4049/jimmunol.181.4.2898
30.Lee SY, Han SJ, Nam SM, et al. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non-Sjögren syndrome dry eye patients. Am J Ophthalmol. 2013;156(2):247-253.e1. doi:10.1016/j.ajo.2013.04.003
31.Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A Promising Strategy in the Treatment of Systemic Rheumatic Diseases. Int J Mol Sci. 2020;21(19):7100. doi:10.3390/ijms21197100
32.Ma HD, Deng YR, Tian Z, Lian ZX. Traditional Chinese medicine and immune regulation. Clin Rev Allergy Immunol. 2013;44(3):229-241. doi:10.1007/s12016-012-8332-0
33.Hou W, Xu G, Wang H. Treating Autoimmune Disease with Chinese Medicine. Churchill Livingstone; 2011. https://doi.org/10.1016/B978-0-443-06974-1.X0001-2
34.Zhang SY. The TCM etiology, pathogenesy and differential treatment for Sjogren’s syndrome. J Tradit Chin Med. 2011;31(1):73-78. doi:10.1016/s0254-6272(11)60017-4
35.Chang CM, Chu HT, Wei YH, et al. The Core Pattern Analysis on Chinese Herbal Medicine for Sjögren’s syndrome: A Nationwide Population-Based Study. Sci Rep. 2015;5:9541. doi:10.1038/srep09541
36.Yu MC, Lin SK, Lai JN, Wei JCC, Cheng CY. The traditional Chinese medicine prescription patterns of Sjögren׳s patients in Taiwan: A population-based study. Journal of Ethnopharmacology. 2014;155(1):435-442. doi:10.1016/j.jep.2014.05.049
37.Liu H, Wang X, Liu W, He G, Liang X, Bian Y. Effectiveness and Safety of Traditional Chinese Medicine in Treatment of Primary Sjögren’s Syndrome Patients: A Meta-analysis. Comb Chem High Throughput Screen. 2023;26(14):2554-2571. doi:10.2174/1386207326666230322092252
38.Liao HH, Livneh H, Lin MC, et al. Relationship between Chinese Herbal Medicine Use and Risk of Sjögren’s Syndrome in Patients with Rheumatoid Arthritis: A Retrospective, Population-Based, Nested Case-Control Study. Medicina (Kaunas). 2023;59(4):683. doi:10.3390/medicina59040683
39.Hou J qi, Xue L. Challenges in Treatment of Primary Sjögren’s Syndrome and Opportunities for Chinese Medicine. Chin J Integr Med. 2020;26(7):483-485. doi:10.1007/s11655-019-3226-0
40.Chen YH, Luo R, Lei SS, et al. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement Med Ther. 2020;20(1):265. doi:10.1186/s12906-020-03057-5
41.Inagaki Y, Kido JI, Nishikawa Y, et al. Gan-Lu-Yin (Kanroin), Traditional Chinese Herbal Extracts, Reduces Osteoclast Differentiation In Vitro and Prevents Alveolar Bone Resorption in Rat Experimental Periodontitis. J Clin Med. 2021;10(3):386. doi:10.3390/jcm10030386
42.Xiong T, Zheng X, Zhang K, et al. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. J Ethnopharmacol. 2022;289:115001. doi:10.1016/j.jep.2022.115001
43.Wang GD, Li Q, Han YT, Zhang T. A prospective study on clinical effect and immune regulation on cytokines secreted by Th cells of aerosolized traditional Chinese medicine on elderly patients with AECOPD. Phytomedicine Plus. 2022;2(3):100282. doi:10.1016/j.phyplu.2022.100282
44.Pan ZY. Screening of activity components with anti-inflammation in Sang Ju Yin and verification of monomer. Chinese Traditional and Herbal Drugs. Published online 2016:1289-1296.
45.Fang Z, Zhang M, Yi Z, Wen C, Qian M, Shi T. Replacements of Rare Herbs and Simplifications of Traditional Chinese Medicine Formulae Based on Attribute Similarities and Pathway Enrichment Analysis. Evid Based Complement Alternat Med. 2013;2013:136732. doi:10.1155/2013/136732
46.Xing Z, Xia Z, Peng W, et al. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep. 2016;6(1):20040. doi:10.1038/srep20040
47.Lee JJ, Hsu WH, Yen TL, et al. Traditional Chinese medicine, Xue-Fu-Zhu-Yu decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. Journal of Ethnopharmacology. 2011;134(3):824-830. doi:10.1016/j.jep.2011.01.033
48.Lee GA, Chang CM, Wu YC, et al. Chinese herbal medicine SS-1 inhibits T cell activation and abrogates TH responses in Sjögren’s syndrome. Journal of the Formosan Medical Association. 2021;120(1, Part 3):651-659. doi:10.1016/j.jfma.2020.07.024
49.Wu PC, Lin SC, Panny L, et al. Effect of the Chinese Herbal Medicine SS-1 on a Sjögren’s Syndrome-Like Disease in Mice. Life (Basel). 2021;11(6):530. doi:10.3390/life11060530
50.Chang CM, Wu PC, Lin JR, et al. Herbal Formula SS-1 Increases Tear Secretion for Sjögren’s Syndrome. Front Pharmacol. 2021;12:645437. doi:10.3389/fphar.2021.645437
51.Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi:10.1038/s41598-023-40160-2
52.Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-157.
53.Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biology. 2011;9(1):71. doi:10.1186/1741-7007-9-71
54.Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9-20. doi:10.1038/sj.bjp.0707305
55.Berry M, Fielding B, Gamieldien J. Chapter 27 - Practical Considerations in Virtual Screening and Molecular Docking. In: Tran QN, Arabnia H, eds. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology. Emerging Trends in Computer Science and Applied Computing. Morgan Kaufmann; 2015:487-502. doi:10.1016/B978-0-12-802508-6.00027-2
56.Zhou J, Xie G, Yan X. Encyclopedia of Traditional Chinese Medicines - Molecular Structures, Pharmacological Activities, Natural Sources and Applications. 1st ed. Springer; 2011. Accessed January 25, 2024. https://link.springer.com/book/9783642177330
57.Ely LK, Fischer S, Garcia KC. Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol. 2009;10(12):1245-1251. doi:10.1038/ni.1813
58.Liu S, Song X, Chrunyk BA, et al. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat Commun. 2013;4:1888. doi:10.1038/ncomms2880
59.Samarpita S, Rasool M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis. Cytokine. 2021;142:155502. doi:10.1016/j.cyto.2021.155502
60.Li XQ, Chen Y, Dai GC, Zhou BB, Yan XN, Tan RX. Abietic acid ameliorates psoriasis-like inflammation and modulates gut microbiota in mice. Journal of Ethnopharmacology. 2021;272:113934. doi:10.1016/j.jep.2021.113934
61.Johnson TO, Adegboyega AE, Iwaloye O, et al. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J Pharmacol Sci. 2021;147(1):62-71. doi:10.1016/j.jphs.2021.05.004
62.Release S. 2: QikProp. Schrödinger; 2018. https://www.schrodinger.com/maestro
63.Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi:10.1038/srep42717
64.Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-4072. doi:10.1021/acs.jmedchem.5b00104
65.Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Research. 2023;51(D1):D1373-D1380. doi:10.1093/nar/gkac956
66.Ramos-Casals M, Brito-Zerón P, Bombardieri S, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Annals of the Rheumatic Diseases. 2020;79(1):3-18. doi:10.1136/annrheumdis-2019-216114
67.Wei SJ, He QM, Zhang Q, et al. Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren’s syndrome: A review. J Integr Med. 2021;19(3):191-202. doi:10.1016/j.joim.2021.01.008
68.Xia X. Bioinformatics and Drug Discovery. Curr Top Med Chem. 2017;17(15):1709-1726. doi:10.2174/1568026617666161116143440
69.Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Biosci Rep. 2017;37(4):BSR20160180. doi:10.1042/BSR20160180
70.Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet. 2019;10. doi:10.3389/fgene.2019.00368
71.Onikanni AS, Lawal B, Oyinloye BE, et al. Therapeutic efficacy of Clompanus pubescens leaves fractions via downregulation of neuronal cholinesterases/Na+-K+ATPase/IL-1 β, and improving the neurocognitive and antioxidants status of streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy. 2022;148:112730. doi:10.1016/j.biopha.2022.112730
72.Onikanni SA, Lawal B, Munyembaraga V, et al. Profiling the Antidiabetic Potential of Compounds Identified from Fractionated Extracts of Entada africana toward Glucokinase Stimulation: Computational Insight. Molecules. 2023;28(15):5752. doi:10.3390/molecules28155752
73.Dao TNP, Onikanni SA, Fadaka AO, Sibuyi NRS, Le MH, Chang HH. Phytotherapeutic potential of compounds identified from fractionated extracts of Morus alba L., as an inhibitor of interleukin-6 in the treatment of rheumatoid arthritis: computational approach. J Biomol Struct Dyn. Published online March 25, 2024:1-14. doi:10.1080/07391102.2024.2330713
74.Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Sig Transduct Target Ther. 2023;8(1):1-22. doi:10.1038/s41392-023-01620-3
75.Bui TQ, Dat TTH, Quy PT, et al. Identification of potential anti-hyperglycemic compounds in Cordyceps militaris ethyl acetate extract: in vitro and in silico studies. J Biomol Struct Dyn. Published online November 24, 2023:1-17. doi:10.1080/07391102.2023.2283156
76.My TTA, Loan HTP, Hai NTT, et al. Evaluation of the Inhibitory Activities of COVID-19 of Melaleuca cajuputi Oil Using Docking Simulation. ChemistrySelect. 2020;5(21):6312-6320. doi:10.1002/slct.202000822
77.Kruk J, Aboul-Enein BH, Duchnik E, Marchlewicz M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. The Journal of Physiological Sciences. 2022;72(1):19. doi:10.1186/s12576-022-00845-1
78.Cosme P, Rodríguez AB, Espino J, Garrido M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants (Basel). 2020;9(12):1263. doi:10.3390/antiox9121263
79.Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Heredia JB. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Yildiz F, ed. Cogent Food & Agriculture. 2016;2(1):1131412. doi:10.1080/23311932.2015.1131412
80.Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties. 2023;26(1):359-388. doi:10.1080/10942912.2022.2157425
81.Riaz M, Khalid R, Afzal M, et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Science & Nutrition. 2023;11(6):2500-2529. doi:10.1002/fsn3.3308
82.Liu C, Zhu L, Fukuda K, et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci Signal. 2017;10(467):eaaf8823. doi:10.1126/scisignal.aaf8823
83.Park J, Kim JE, Jin YJ, et al. Anti-Atopic Dermatitis Effects of Abietic Acid Isolated from Rosin under Condition Optimized by Response Surface Methodology in DNCB-Spread BALB/c Mice. Pharmaceuticals. 2023;16(3):407. doi:10.3390/ph16030407
84.An Y, Luo Q, Han D, Guan L. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis. Int Immunopharmacol. 2023;118:110029. doi:10.1016/j.intimp.2023.110029
85.Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. doi:10.1517/17460441.2015.1032936
86.Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018;23(5):1038. doi:10.3390/molecules23051038
87.Lin R, Hao D, Dong Y, Wang Y. Catalpol ameliorates Sjögren’s Syndrome by modulating interplay of T and B cells. Biomed Pharmacother. 2020;123:109806. doi:10.1016/j.biopha.2019.109806
88.Shawkat H, Westwood MM, Mortimer A. Mannitol: a review of its clinical uses. Continuing Education in Anaesthesia Critical Care & Pain. 2012;12(2):82-85. doi:10.1093/bjaceaccp/mkr063
89.Sorani MD, Manley GT. Dose-response relationship of mannitol and intracranial pressure: a metaanalysis. J Neurosurg. 2008;108(1):80-87. doi:10.3171/JNS/2008/108/01/0080
90.Zizzo MG, Caldara G, Bellanca A, Nuzzo D, Di Carlo M, Serio R. Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacol. 2019;27(2):349-359. doi:10.1007/s10787-018-0506-9
91.Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulmonary Pharmacology & Therapeutics. 2021;69:102049. doi:10.1016/j.pupt.2021.102049
92.Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol. 2023;14:1218015. doi:10.3389/fphar.2023.1218015
93.Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. 2014;63(1):81-90. doi:10.1007/s00011-013-0674-4
94.Ritmejerytė E, Ryan RYM, Byatt BJ, et al. Anti-inflammatory properties of novel galloyl glucosides isolated from the Australian tropical plant Uromyrtus metrosideros. Chemico-Biological Interactions. 2022;368:110124. doi:10.1016/j.cbi.2022.110124
95.Yoshikawa M, Shimada H, Saka M, Yoshizumi S, Yamahara J, Matsuda H. Medicinal Foodstuffs. V. Moroheiya. (1) : Absolute Stereostructures of Corchoionosides A, B, and C, Histamine Release Inhibitors from the Leaves of Vietnamese Corchorus olitorius L. (Tiliaceae). Chemical & Pharmaceutical Bulletin. 1997;45(3):464-469. doi:10.1248/cpb.45.464
96.Yajima A, Oono Y, Nakagawa R, Nukada T, Yabuta G. A simple synthesis of four stereoisomers of roseoside and their inhibitory activity on leukotriene release from mice bone marrow-derived cultured mast cells. Bioorganic & Medicinal Chemistry. 2009;17(1):189-194. doi:10.1016/j.bmc.2008.11.002
97.Qin J, Chen J, Peng F, et al. Pharmacological activities and pharmacokinetics of liquiritin: A review. Journal of Ethnopharmacology. 2022;293:115257. doi:10.1016/j.jep.2022.115257
98.Zhou H, Yang T, Lu Z, et al. Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway. Chinese Medicine. 2023;18(1):35. doi:10.1186/s13020-023-00739-3
99.Zhai K feng, Duan H, Cui C yue, et al. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J Agric Food Chem. 2019;67(10):2856-2864. doi:10.1021/acs.jafc.9b00185
100.Ngo YL, Lau CH, Chua LS. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food and Chemical Toxicology. 2018;121:687-700. doi:10.1016/j.fct.2018.09.064
101.Rocha J, Eduardo-Figueira M, Barateiro A, et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol. 2015;116(5):398-413. doi:10.1111/bcpt.12335
102.Luo C, Zou L, Sun H, et al. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00153
103.Wu F, Zhou Y, Li L, et al. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem. 2020;8:726. doi:10.3389/fchem.2020.00726
104.Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-341. doi:10.1016/j.ddtec.2004.11.007
105.Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881-890. doi:10.1038/nrd2445
106.Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi:10.1016/s0169-409x(00)00129-0
107.Washburn WN. Chapter Twenty-Three - Case History: ForxigaTM (Dapagliflozin), a Potent Selective SGLT2 Inhibitor for Treatment of Diabetes. In: Desai MC, ed. Annual Reports in Medicinal Chemistry. Vol 49. Academic Press; 2014:363-382. doi:10.1016/B978-0-12-800167-7.00023-7
108.Rauf A, Rashid U, Shah ZA, et al. Anti-inflammatory and anti-diabetic properties of indanone derivative isolated from Fernandoa adenophylla in vitro and in silico studies. Sci Rep. 2024;14(1):9624. doi:10.1038/s41598-024-59703-2


電子全文 電子全文(網際網路公開日期:20290723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top