|
REFFERENCE
1.Mariette X, Criswell LA. Primary Sjögren’s Syndrome. New England Journal of Medicine. 2018;378(10):931-939. doi:10.1056/NEJMcp1702514 2.Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren’s syndrome: Review and update. Frontiers in Immunology. 2023;14. Accessed January 8, 2024. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1127417 3.Carsons SE, Patel BC. Sjogren Syndrome. In: StatPearls. StatPearls Publishing; 2024. Accessed April 6, 2024. http://www.ncbi.nlm.nih.gov/books/NBK431049/ 4.Qin B, Wang J, Yang Z, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(11):1983-1989. doi:10.1136/annrheumdis-2014-205375 5.Thurtle E, Grosjean A, Steenackers M, Strege K, Barcelos G, Goswami P. Epidemiology of Sjögren’s: A Systematic Literature Review. Rheumatol Ther. 2024;11(1):1-17. doi:10.1007/s40744-023-00611-8 6.Weng MY, Huang YT, Liu MF, Lu TH. Incidence and mortality of treated primary Sjogren’s syndrome in Taiwan: a population-based study. J Rheumatol. 2011;38(4):706-708. doi:10.3899/jrheum.100883 7.Jonsson R, Brokstad KA, Jonsson MV, Delaleu N, Skarstein K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur J Oral Sci. 2018;126 Suppl 1(Suppl Suppl 1):37-48. doi:10.1111/eos.12536 8.Witas R, Gupta S, Nguyen CQ. Contributions of Major Cell Populations to Sjögren’s Syndrome. Journal of Clinical Medicine. 2020;9(9):3057. doi:10.3390/jcm9093057 9.Blinova VG, Vasilyev VI, Rodionova EB, Zhdanov DD. The Role of Regulatory T Cells in the Onset and Progression of Primary Sjögren’s Syndrome. Cells. 2023;12(10):1359. doi:10.3390/cells12101359 10.Jin L, Dai M, Li C, Wang J, Wu B. Risk factors for primary Sjögren’s Syndrome: a systematic review and meta-analysis. Clin Rheumatol. 2023;42(2):327-338. doi:10.1007/s10067-022-06474-8 11.Brito-Zerón P, Flores-Chávez A, Horváth IF, et al. Mortality risk factors in primary Sjögren syndrome: a real-world, retrospective, cohort study. eClinicalMedicine. 2023;61. doi:10.1016/j.eclinm.2023.102062 12.Shiboski CH, Shiboski SC, Seror R, et al. 2016 ACR-EULAR Classification Criteria for primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017;69(1):35-45. doi:10.1002/art.39859 13.Huang YT, Lu TH, Chou PL, Weng MY. Diagnostic Delay in Patients with Primary Sjögren’s Syndrome: A Population-Based Cohort Study in Taiwan. Healthcare. 2021;9(3):363. doi:10.3390/healthcare9030363 14.Sisó-Almirall A, Meijer JM, Brito-Zerón P, et al. Practical guidelines for the early diagnosis of Sjögren’s syndrome in primary healthcare. Clin Exp Rheumatol. 2021;39 Suppl 133(6):197-205. doi:10.55563/clinexprheumatol/pal3z7 15.Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Rüdiger Burmester G, Dörner T. The Diagnosis and Treatment of Sjögren’s Syndrome. Dtsch Arztebl Int. 2017;114(20):354-361. doi:10.3238/arztebl.2017.0354 16.Chen X, Wu H, Wei W. Advances in the diagnosis and treatment of Sjogren’s syndrome. Clin Rheumatol. 2018;37(7):1743-1749. doi:10.1007/s10067-018-4153-8 17.Shih KC, Lun CN, Jhanji V, Thong BYH, Tong L. Systematic review of randomized controlled trials in the treatment of dry eye disease in Sjogren syndrome. J Inflamm. 2017;14(1):26. doi:10.1186/s12950-017-0174-3 18.Saraux A, Pers JO, Devauchelle-Pensec V. Treatment of primary Sjögren syndrome. Nat Rev Rheumatol. 2016;12(8):456-471. doi:10.1038/nrrheum.2016.100 19.Thalayasingam N, Baldwin K, Judd C, Ng WF. New developments in Sjogren’s syndrome. Rheumatology. 2021;60(Supplement_6):vi53-vi61. doi:10.1093/rheumatology/keab466 20.Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjögren syndrome. Nat Rev Rheumatol. 2018;14(3):133-145. doi:10.1038/nrrheum.2018.1 21.Verstappen GM, Kroese FGM, Bootsma H. T cells in primary Sjögren’s syndrome: targets for early intervention. Rheumatology (Oxford). 2021;60(7):3088-3098. doi:10.1093/rheumatology/kez004 22.Deng F, Chen J, Zheng J, et al. Association of BAFF and IL-17A with subphenotypes of primary Sjögren’s syndrome. Int J Rheum Dis. 2016;19(7):715-720. doi:10.1111/1756-185X.12569 23.Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi:10.1038/s41577-022-00746-9 24.Guo H, Ju Y, Choi M, et al. Supra-lacrimal protein-based carriers for Cyclosporine A reduce Th17-mediated autoimmunity in murine model of Sjögren’s Syndrome. Biomaterials. 2022;283:121441. doi:10.1016/j.biomaterials.2022.121441 25.Zhang LW, Zhou PR, Wei P, Cong X, Wu LL, Hua H. Expression of interleukin-17 in primary Sjögren’s syndrome and the correlation with disease severity: A systematic review and meta-analysis. Scand J Immunol. 2018;87(4):e12649. doi:10.1111/sji.12649 26.Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity. Journal of Autoimmunity. 2018;87:16-25. doi:10.1016/j.jaut.2017.11.003 27.Hwang SH, Woo JS, Moon J, et al. IL-17 and CCR9+α4β7– Th17 Cells Promote Salivary Gland Inflammation, Dysfunction, and Cell Death in Sjögren’s Syndrome. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.721453 28.Mieliauskaite D, Dumalakiene I, Rugiene R, Mackiewicz Z. Expression of IL-17, IL-23 and their receptors in minor salivary glands of patients with primary Sjögren’s syndrome. Clin Dev Immunol. 2012;2012:187258. doi:10.1155/2012/187258 29.Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181(4):2898-2906. doi:10.4049/jimmunol.181.4.2898 30.Lee SY, Han SJ, Nam SM, et al. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non-Sjögren syndrome dry eye patients. Am J Ophthalmol. 2013;156(2):247-253.e1. doi:10.1016/j.ajo.2013.04.003 31.Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A Promising Strategy in the Treatment of Systemic Rheumatic Diseases. Int J Mol Sci. 2020;21(19):7100. doi:10.3390/ijms21197100 32.Ma HD, Deng YR, Tian Z, Lian ZX. Traditional Chinese medicine and immune regulation. Clin Rev Allergy Immunol. 2013;44(3):229-241. doi:10.1007/s12016-012-8332-0 33.Hou W, Xu G, Wang H. Treating Autoimmune Disease with Chinese Medicine. Churchill Livingstone; 2011. https://doi.org/10.1016/B978-0-443-06974-1.X0001-2 34.Zhang SY. The TCM etiology, pathogenesy and differential treatment for Sjogren’s syndrome. J Tradit Chin Med. 2011;31(1):73-78. doi:10.1016/s0254-6272(11)60017-4 35.Chang CM, Chu HT, Wei YH, et al. The Core Pattern Analysis on Chinese Herbal Medicine for Sjögren’s syndrome: A Nationwide Population-Based Study. Sci Rep. 2015;5:9541. doi:10.1038/srep09541 36.Yu MC, Lin SK, Lai JN, Wei JCC, Cheng CY. The traditional Chinese medicine prescription patterns of Sjögren׳s patients in Taiwan: A population-based study. Journal of Ethnopharmacology. 2014;155(1):435-442. doi:10.1016/j.jep.2014.05.049 37.Liu H, Wang X, Liu W, He G, Liang X, Bian Y. Effectiveness and Safety of Traditional Chinese Medicine in Treatment of Primary Sjögren’s Syndrome Patients: A Meta-analysis. Comb Chem High Throughput Screen. 2023;26(14):2554-2571. doi:10.2174/1386207326666230322092252 38.Liao HH, Livneh H, Lin MC, et al. Relationship between Chinese Herbal Medicine Use and Risk of Sjögren’s Syndrome in Patients with Rheumatoid Arthritis: A Retrospective, Population-Based, Nested Case-Control Study. Medicina (Kaunas). 2023;59(4):683. doi:10.3390/medicina59040683 39.Hou J qi, Xue L. Challenges in Treatment of Primary Sjögren’s Syndrome and Opportunities for Chinese Medicine. Chin J Integr Med. 2020;26(7):483-485. doi:10.1007/s11655-019-3226-0 40.Chen YH, Luo R, Lei SS, et al. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement Med Ther. 2020;20(1):265. doi:10.1186/s12906-020-03057-5 41.Inagaki Y, Kido JI, Nishikawa Y, et al. Gan-Lu-Yin (Kanroin), Traditional Chinese Herbal Extracts, Reduces Osteoclast Differentiation In Vitro and Prevents Alveolar Bone Resorption in Rat Experimental Periodontitis. J Clin Med. 2021;10(3):386. doi:10.3390/jcm10030386 42.Xiong T, Zheng X, Zhang K, et al. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. J Ethnopharmacol. 2022;289:115001. doi:10.1016/j.jep.2022.115001 43.Wang GD, Li Q, Han YT, Zhang T. A prospective study on clinical effect and immune regulation on cytokines secreted by Th cells of aerosolized traditional Chinese medicine on elderly patients with AECOPD. Phytomedicine Plus. 2022;2(3):100282. doi:10.1016/j.phyplu.2022.100282 44.Pan ZY. Screening of activity components with anti-inflammation in Sang Ju Yin and verification of monomer. Chinese Traditional and Herbal Drugs. Published online 2016:1289-1296. 45.Fang Z, Zhang M, Yi Z, Wen C, Qian M, Shi T. Replacements of Rare Herbs and Simplifications of Traditional Chinese Medicine Formulae Based on Attribute Similarities and Pathway Enrichment Analysis. Evid Based Complement Alternat Med. 2013;2013:136732. doi:10.1155/2013/136732 46.Xing Z, Xia Z, Peng W, et al. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep. 2016;6(1):20040. doi:10.1038/srep20040 47.Lee JJ, Hsu WH, Yen TL, et al. Traditional Chinese medicine, Xue-Fu-Zhu-Yu decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. Journal of Ethnopharmacology. 2011;134(3):824-830. doi:10.1016/j.jep.2011.01.033 48.Lee GA, Chang CM, Wu YC, et al. Chinese herbal medicine SS-1 inhibits T cell activation and abrogates TH responses in Sjögren’s syndrome. Journal of the Formosan Medical Association. 2021;120(1, Part 3):651-659. doi:10.1016/j.jfma.2020.07.024 49.Wu PC, Lin SC, Panny L, et al. Effect of the Chinese Herbal Medicine SS-1 on a Sjögren’s Syndrome-Like Disease in Mice. Life (Basel). 2021;11(6):530. doi:10.3390/life11060530 50.Chang CM, Wu PC, Lin JR, et al. Herbal Formula SS-1 Increases Tear Secretion for Sjögren’s Syndrome. Front Pharmacol. 2021;12:645437. doi:10.3389/fphar.2021.645437 51.Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi:10.1038/s41598-023-40160-2 52.Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-157. 53.Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biology. 2011;9(1):71. doi:10.1186/1741-7007-9-71 54.Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9-20. doi:10.1038/sj.bjp.0707305 55.Berry M, Fielding B, Gamieldien J. Chapter 27 - Practical Considerations in Virtual Screening and Molecular Docking. In: Tran QN, Arabnia H, eds. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology. Emerging Trends in Computer Science and Applied Computing. Morgan Kaufmann; 2015:487-502. doi:10.1016/B978-0-12-802508-6.00027-2 56.Zhou J, Xie G, Yan X. Encyclopedia of Traditional Chinese Medicines - Molecular Structures, Pharmacological Activities, Natural Sources and Applications. 1st ed. Springer; 2011. Accessed January 25, 2024. https://link.springer.com/book/9783642177330 57.Ely LK, Fischer S, Garcia KC. Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol. 2009;10(12):1245-1251. doi:10.1038/ni.1813 58.Liu S, Song X, Chrunyk BA, et al. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat Commun. 2013;4:1888. doi:10.1038/ncomms2880 59.Samarpita S, Rasool M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis. Cytokine. 2021;142:155502. doi:10.1016/j.cyto.2021.155502 60.Li XQ, Chen Y, Dai GC, Zhou BB, Yan XN, Tan RX. Abietic acid ameliorates psoriasis-like inflammation and modulates gut microbiota in mice. Journal of Ethnopharmacology. 2021;272:113934. doi:10.1016/j.jep.2021.113934 61.Johnson TO, Adegboyega AE, Iwaloye O, et al. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J Pharmacol Sci. 2021;147(1):62-71. doi:10.1016/j.jphs.2021.05.004 62.Release S. 2: QikProp. Schrödinger; 2018. https://www.schrodinger.com/maestro 63.Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi:10.1038/srep42717 64.Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-4072. doi:10.1021/acs.jmedchem.5b00104 65.Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Research. 2023;51(D1):D1373-D1380. doi:10.1093/nar/gkac956 66.Ramos-Casals M, Brito-Zerón P, Bombardieri S, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Annals of the Rheumatic Diseases. 2020;79(1):3-18. doi:10.1136/annrheumdis-2019-216114 67.Wei SJ, He QM, Zhang Q, et al. Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren’s syndrome: A review. J Integr Med. 2021;19(3):191-202. doi:10.1016/j.joim.2021.01.008 68.Xia X. Bioinformatics and Drug Discovery. Curr Top Med Chem. 2017;17(15):1709-1726. doi:10.2174/1568026617666161116143440 69.Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Biosci Rep. 2017;37(4):BSR20160180. doi:10.1042/BSR20160180 70.Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet. 2019;10. doi:10.3389/fgene.2019.00368 71.Onikanni AS, Lawal B, Oyinloye BE, et al. Therapeutic efficacy of Clompanus pubescens leaves fractions via downregulation of neuronal cholinesterases/Na+-K+ATPase/IL-1 β, and improving the neurocognitive and antioxidants status of streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy. 2022;148:112730. doi:10.1016/j.biopha.2022.112730 72.Onikanni SA, Lawal B, Munyembaraga V, et al. Profiling the Antidiabetic Potential of Compounds Identified from Fractionated Extracts of Entada africana toward Glucokinase Stimulation: Computational Insight. Molecules. 2023;28(15):5752. doi:10.3390/molecules28155752 73.Dao TNP, Onikanni SA, Fadaka AO, Sibuyi NRS, Le MH, Chang HH. Phytotherapeutic potential of compounds identified from fractionated extracts of Morus alba L., as an inhibitor of interleukin-6 in the treatment of rheumatoid arthritis: computational approach. J Biomol Struct Dyn. Published online March 25, 2024:1-14. doi:10.1080/07391102.2024.2330713 74.Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Sig Transduct Target Ther. 2023;8(1):1-22. doi:10.1038/s41392-023-01620-3 75.Bui TQ, Dat TTH, Quy PT, et al. Identification of potential anti-hyperglycemic compounds in Cordyceps militaris ethyl acetate extract: in vitro and in silico studies. J Biomol Struct Dyn. Published online November 24, 2023:1-17. doi:10.1080/07391102.2023.2283156 76.My TTA, Loan HTP, Hai NTT, et al. Evaluation of the Inhibitory Activities of COVID-19 of Melaleuca cajuputi Oil Using Docking Simulation. ChemistrySelect. 2020;5(21):6312-6320. doi:10.1002/slct.202000822 77.Kruk J, Aboul-Enein BH, Duchnik E, Marchlewicz M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. The Journal of Physiological Sciences. 2022;72(1):19. doi:10.1186/s12576-022-00845-1 78.Cosme P, Rodríguez AB, Espino J, Garrido M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants (Basel). 2020;9(12):1263. doi:10.3390/antiox9121263 79.Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Heredia JB. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Yildiz F, ed. Cogent Food & Agriculture. 2016;2(1):1131412. doi:10.1080/23311932.2015.1131412 80.Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties. 2023;26(1):359-388. doi:10.1080/10942912.2022.2157425 81.Riaz M, Khalid R, Afzal M, et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Science & Nutrition. 2023;11(6):2500-2529. doi:10.1002/fsn3.3308 82.Liu C, Zhu L, Fukuda K, et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci Signal. 2017;10(467):eaaf8823. doi:10.1126/scisignal.aaf8823 83.Park J, Kim JE, Jin YJ, et al. Anti-Atopic Dermatitis Effects of Abietic Acid Isolated from Rosin under Condition Optimized by Response Surface Methodology in DNCB-Spread BALB/c Mice. Pharmaceuticals. 2023;16(3):407. doi:10.3390/ph16030407 84.An Y, Luo Q, Han D, Guan L. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis. Int Immunopharmacol. 2023;118:110029. doi:10.1016/j.intimp.2023.110029 85.Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. doi:10.1517/17460441.2015.1032936 86.Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018;23(5):1038. doi:10.3390/molecules23051038 87.Lin R, Hao D, Dong Y, Wang Y. Catalpol ameliorates Sjögren’s Syndrome by modulating interplay of T and B cells. Biomed Pharmacother. 2020;123:109806. doi:10.1016/j.biopha.2019.109806 88.Shawkat H, Westwood MM, Mortimer A. Mannitol: a review of its clinical uses. Continuing Education in Anaesthesia Critical Care & Pain. 2012;12(2):82-85. doi:10.1093/bjaceaccp/mkr063 89.Sorani MD, Manley GT. Dose-response relationship of mannitol and intracranial pressure: a metaanalysis. J Neurosurg. 2008;108(1):80-87. doi:10.3171/JNS/2008/108/01/0080 90.Zizzo MG, Caldara G, Bellanca A, Nuzzo D, Di Carlo M, Serio R. Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacol. 2019;27(2):349-359. doi:10.1007/s10787-018-0506-9 91.Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulmonary Pharmacology & Therapeutics. 2021;69:102049. doi:10.1016/j.pupt.2021.102049 92.Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol. 2023;14:1218015. doi:10.3389/fphar.2023.1218015 93.Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. 2014;63(1):81-90. doi:10.1007/s00011-013-0674-4 94.Ritmejerytė E, Ryan RYM, Byatt BJ, et al. Anti-inflammatory properties of novel galloyl glucosides isolated from the Australian tropical plant Uromyrtus metrosideros. Chemico-Biological Interactions. 2022;368:110124. doi:10.1016/j.cbi.2022.110124 95.Yoshikawa M, Shimada H, Saka M, Yoshizumi S, Yamahara J, Matsuda H. Medicinal Foodstuffs. V. Moroheiya. (1) : Absolute Stereostructures of Corchoionosides A, B, and C, Histamine Release Inhibitors from the Leaves of Vietnamese Corchorus olitorius L. (Tiliaceae). Chemical & Pharmaceutical Bulletin. 1997;45(3):464-469. doi:10.1248/cpb.45.464 96.Yajima A, Oono Y, Nakagawa R, Nukada T, Yabuta G. A simple synthesis of four stereoisomers of roseoside and their inhibitory activity on leukotriene release from mice bone marrow-derived cultured mast cells. Bioorganic & Medicinal Chemistry. 2009;17(1):189-194. doi:10.1016/j.bmc.2008.11.002 97.Qin J, Chen J, Peng F, et al. Pharmacological activities and pharmacokinetics of liquiritin: A review. Journal of Ethnopharmacology. 2022;293:115257. doi:10.1016/j.jep.2022.115257 98.Zhou H, Yang T, Lu Z, et al. Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway. Chinese Medicine. 2023;18(1):35. doi:10.1186/s13020-023-00739-3 99.Zhai K feng, Duan H, Cui C yue, et al. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J Agric Food Chem. 2019;67(10):2856-2864. doi:10.1021/acs.jafc.9b00185 100.Ngo YL, Lau CH, Chua LS. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food and Chemical Toxicology. 2018;121:687-700. doi:10.1016/j.fct.2018.09.064 101.Rocha J, Eduardo-Figueira M, Barateiro A, et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol. 2015;116(5):398-413. doi:10.1111/bcpt.12335 102.Luo C, Zou L, Sun H, et al. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00153 103.Wu F, Zhou Y, Li L, et al. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem. 2020;8:726. doi:10.3389/fchem.2020.00726 104.Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-341. doi:10.1016/j.ddtec.2004.11.007 105.Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881-890. doi:10.1038/nrd2445 106.Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi:10.1016/s0169-409x(00)00129-0 107.Washburn WN. Chapter Twenty-Three - Case History: ForxigaTM (Dapagliflozin), a Potent Selective SGLT2 Inhibitor for Treatment of Diabetes. In: Desai MC, ed. Annual Reports in Medicinal Chemistry. Vol 49. Academic Press; 2014:363-382. doi:10.1016/B978-0-12-800167-7.00023-7 108.Rauf A, Rashid U, Shah ZA, et al. Anti-inflammatory and anti-diabetic properties of indanone derivative isolated from Fernandoa adenophylla in vitro and in silico studies. Sci Rep. 2024;14(1):9624. doi:10.1038/s41598-024-59703-2
|