跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡懷德
研究生(外文):TSAI,HUAI-TE
論文名稱:撒水系統對高樓層建築物火災維生情況及人員避難分析
論文名稱(外文):The analysis of tenable conditions and occupant evacuations with a sprinkler system in high-rise building fires
指導教授:吳貫遠吳貫遠引用關係
指導教授(外文):WU,GUAN-YUAN
口試委員:沈子勝陳崇岳
口試委員(外文):SHEN,ZI-SHENGCHEN,CHONG-YUE
口試日期:2024-06-26
學位類別:碩士
校院名稱:中央警察大學
系所名稱:消防科學研究所
學門:軍警國防安全學門
學類:警政學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:164
中文關鍵詞:高樓層建築物火災撒水系統FDS模擬避難計算
外文關鍵詞:High-rise building fireSprinkler systemFDS simulationEvacuation calculations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
因應人口增加,建築物型態逐漸改變為高樓層建築物。然而,高樓層建築物的火災型態卻比一般建築物更為複雜且多樣化。由於世界各地近年來發生許多造成嚴重傷亡的高樓層的住宅火災,使世人重新意識到高樓層住宅火災對人員的危險性。本研究目的為研究高樓層不同的火災情境,藉以增加國內建築物防火工程知識及能力,同時也期望能為相關研究,提供重要的引用依據。
本研究以高樓層建築物火災為研究建築物,透過撒水系統流量不同、放射顆數不同及防火門開啟狀態不同,分析並評估建築物的可維持性、火災對人命安全的危害分析及人員避難安全的可行性。首先蒐集臺灣、日本及美國近年來的火災統計資料,以及因高樓層火災發生且造成嚴重傷亡的國內外火災案例資料。透過統計及分析,歸納並得到6項致災因子,分別為防火區劃失效、人為縱火、消防安全設備失靈、堆積大量易燃物品、外牆延燒及住商混合,本研究主要以防火區劃失效及消防安全設備失靈進行研究及探討。之後,透過國內外高樓層建築物火災之實驗及模擬、國內建築與消防安全設備法規、火災人命安全因子及避難驗證計算之整理,建構可供人員避難之高樓層建築物,進行火災模擬及人員避難驗證。
本研究透過FDS軟體,以9層樓建築物的住宅火災,以及25層樓建築物的辦公室火災為火災場景進行模擬,火災情境分別以撒水系統流量、放射顆數及防火門開啟狀態不同做分類,共有37個模擬情境。在模擬建築物的走廊及樓梯間放置探測點,探測溫度、一氧化碳及能見度等不同的火場人命危害因子的數值。蒐集數據後,採用2008年用路人危害因子指標進行分析比對,比對過程以紅色、黃色、綠色等三種顏色判斷研究建築物內不同樓層的危險程度,之後透過偵測數據,繪製研究建築物的避難容許時間(ASET),利於人員辨識。在人員的避難所需時間(RSET)中,本研究採用三種不同的避難計算方式,分別為建築物防火避難安全性能驗證計算、NFPA避難計算及體積控制理論,計算9層樓建築物及25層樓建築物內人員的避難所需時間(RSET)。最後,研究結果會結合兩項不同的時間,對高樓層建築物的可維持性、人命安全及避難逃生進行剖析和評估。
研究結果顯示,撒水系統的有效啟動可以降低火場內溫度及一氧化碳濃度,使建築物內人員有更多避難容許時間,可以進行避難;然而,研究結果也顯示即使有撒水系統,也只是延遲能見度下降的時間,能見度還是會降至10公尺以下,影響建築物的可維生性及避難人員的安全性。最後,研究結果也說明落實防火門管理的重要性,即使只有開啟10公分的縫隙,濃煙還是有一定機會透過防火門蔓延至其他空間,增加建築物內人員避難的危險性。

As the population increases, the trend in building construction is shifting towards high-rise structures. However, the fire dynamics in high-rise buildings are more complex and diverse compared to typical buildings. Recent devastating residential high-rise fires worldwide have raised awareness about the significant risks posed by fires in such structures. This study aims to investigate various fire scenarios in high-rise buildings to enhance domestic knowledge and capabilities in fire engineering for buildings. Additionally, it aims to provide essential references for related research.
This study focuses on fire incidents in high-rise buildings and evaluates factors such as tenability, hazards to human life, and feasibility of evacuation under different conditions of a sprinkler system flow rate, radiation state, and status of fire doors. Initially, recent fire statistics from Taiwan, Japan, and the United States are collected, along with domestic and international fire incident case data resulting in severe casualties. Through statistical analysis, six causative factors are identified: failure of fire compartmentation, arson, malfunction of fire safety equipment, accumulation of combustible materials, external fire spread, and mixed-use occupancy. This study primarily focuses on fire compartmentation failure and malfunction of fire safety equipment. Subsequently, experimental and simulation studies of high-rise building fires both domestically and internationally, domestic regulations on building and fire safety equipment, factors affecting fire safety for human life, and evacuation verification calculations are compiled to establish high-rise buildings capable of evacuation and conduct fire simulation and evacuation verification.
This study utilizes FDS software to simulate residential fires in 9-story buildings and office fires in 25-story buildings, categorizing fire scenarios based on different sprinkler system flow rates, radiation states, and fire door opening statuses, resulting in 37 simulation scenarios. Temperature, carbon monoxide, visibility, and other human life hazard factors are measured at detection points placed in building corridors and stairwells. After data collection, analysis is conducted using the 2008 Dutch pedestrian hazard index for comparison, indicating different levels of danger on different floors using red, yellow, and green colors. Subsequently, Available Safety Egress Time (ASET) for the study building is calculated based on detection data to facilitate personnel recognition. For Required Safety Egress Time (RSET), three different evacuation calculation methods are employed: building fire evacuation safety performance verification calculation, NFPA evacuation calculation, and volume control theory, to calculate the required evacuation time for personnel in 9-story and 25-story buildings. Finally, the study combines the results of these two different times to analyze and evaluate the tenability, human safety, and evacuation of high-rise buildings.
The results indicate that the effective activation of the sprinkler system can reduce temperature and carbon monoxide concentration inside the fire area, providing more evacuation permissible time for building occupants. However, the research also shows that even with sprinkler systems, it only delays the reduction in visibility, as visibility will still decrease to below 10 meters, affecting the habitability of the building and the safety of evacuating personnel. Finally, the research emphasizes the importance of proper management of fire doors; even with a gap as small as 10 centimeters, smoke still has a chance to spread through fire doors to other spaces, increasing the risk to occupants evacuating within the building.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 4
第三節 研究範圍與限制 5
第四節 研究方法與流程 8
第二章 文獻探討與回顧 11
第一節 高樓層建築物火災案例分析 11
第二節 FDS運用於建築物火災文獻探討 15
第三節 高樓層建築物法規探討 32
第四節 人命安全評估文獻 39
第五節 避難文獻探討 51
第三章 高樓層建築物火災模擬 63
第一節 火災模擬軟體介紹 63
第二節 高樓層建築物建置 66
第三節 火源設置 70
第四節 格點設置 74
第五節 撒水系統 76
第六節 火災情境設置 79
第七節 火災人命安全因子分析及模擬基準 85
第八節 避難驗證計算 90
第九節 小節 97
第四章 結果與分析 99
第一節 火災情境模擬結果 99
第二節 火災人命安全因子分析 119
第三節 避難容許時間(ASET)分析 129
第四節 避難所需時間(RSET)計算 136
第五節 研究討論 149
第五章 結論與建議 151
第一節 結論 151
第二節 建議 155
參考文獻 157
[1]內政部消防署火災統計資料,資料來源:https://reurl.cc/Wv6z9O (2023.10)。
[2]國際消防和救援服務協會,資料來源:https://ctif.org/(2024.03)
[3]日本總務省消防廳,資料來源:https://reurl.cc/oR5KaD(2024.03)
[4]維基百科,2014。蘆洲大囍市社區火災,資料來源:https://reurl.cc/karvnx (2023.10)
[5]維基百科,2014。上海「11•15」特別重大火災,資料來源:https://reurl.cc/RyWDW6 (2023.10)
[6]自由時報,2018。曼谷高樓住宅惡火至少3死60傷,資料來源:https://reurl.cc/l7mnRv (2023.11)
[7]關鍵評論,2017。格倫費爾大樓大火致命缺陷「死亡鐵三角」早已存在,資料來源:https://reurl.cc/8N070j (2023.11)
[8]頭條匯,2023。一個菸頭引發的災難?義大利米蘭20層高樓大火有了初步結論,資料來源:https://reurl.cc/7M7l7d (2023.11)
[9]Yahoo新聞, 2020。樓高113公尺、全市卻只有50公尺高的雲梯車...南韓蔚山高樓火災,33層建築燒成火柱,資料來源: https://reurl.cc/2Ez3zv (2023.11)
[10]維基百科,2020年捷克公寓火災,資料來源:https://reurl.cc/NQyNW9 (2023.11)
[11]民視新聞網,2021。大阪鬧區火警奪走24命 目擊者:男在出入口放紙袋引燃火勢,資料來源:https://reurl.cc/OjGDM7 (2023.11)
[12]華視新聞,2021。喬友大火4死商旅負責人、2員工遭起訴,資料來源:https://reurl.cc/1GQzLX (2023.11)
[13]維基百科,2021。高雄城中城大樓火災,資料來源: https://reurl.cc/Y0lQrX (2023.11)
[14]維基百科,2022。2022年布朗克斯公寓火災,資料來源:https://reurl.cc/EjYmy1 (2023.11)
[15]Yahoo新聞,2022。鋰電池起火!紐約曼哈頓37層大樓火災 43人傷,資料來源:https://reurl.cc/p5l8Ml (2023.12)
[16]Yahoo新聞,2022。台中興中街大火「偷情飯店」改建出租套房市府證實係既成違建,資料來源:https://reurl.cc/K36Dn9 (2023.10)
[17]中央社,2023。河內迷你公寓大火56死監管疏漏多越南全國大清查,資料來源:https://reurl.cc/Ke6Oen (2024.04)
[18]華視新聞,2024。日本不平靜!東京新宿12層大樓驚傳火警 已造成7人受傷,資料來源:https://reurl.cc/orWeQ3(2024.02)
[19]經濟日報,2024。西班牙住宅大樓傳大火!至少4死13傷、還有多人受困,資料來源:https://reurl.cc/OG9p49(2024.03)
[20]星島網,2024。南京住宅大樓起火致15死44傷禍因疑又是電動單車充電起火,資料來源:https://reurl.cc/RWxjOz(2024.04)
[21]Yahoo新聞,2024。快訊/台中悲慘2死火警!8樓住戶困火場母子獲救父女廁所亡,資料來源:https://reurl.cc/jWv9Eq(2024.05)
[22]黃軍義,2002。縱火犯罪行為成因及防制對策之研究。法務部。
[23]張維敦,2006。縱火劑殘跡鑑識。中央警察大學鑑識學系。
[24]Chow C.L., Chow W.K.,Heat release rate of accidental fire in a supertall building residential flat.Building and Environment,2010; 45(7):1632-1640.
[25]Chen C. J., Hsieh W. D., Hu W. C., Lai C. M., Lin T. H., Experimental investigation and numerical simulation of a furnished office fire. Building and Environment, 2010; 45(12): 2735-2742.
[26]Seo D.,Kim D.,Kim B.,Kwon Y.,An experimental study on the combustibles investigation and fire growth rate for predicting initial fire behavior in building. Procedia Engineering, 2013;62: 671-679.
[27]Yuen A.C.Y., Yeoh G.H., Alexander B., Cook M., Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Build Simul,2014;7: 477-487.
[28]Hayajneh S. M., Naser J., Fire Spread in Multi-Storey Timber Building, a CFD Study. Fluids, 2023; 8(5): 140.
[29]Dundar U.,Selamet S., Fire load and fire growth characteristics in modern high-rise buildings. Fire Safety Journal,2023;135:103710.
[30]Sun X. Q., Hu L. H., Li Y. Z., Huo R., Chow W. K., Fong N.K., Lui G. C. H., Li K. Y., Studies on smoke movement in stairwell induced by an adjacent compartment fire.Applied Thermal Engineering,2009;29(13): 2757-2765.
[31]Li L. J., Ji J., Fan C. G., Sun J. H., Yuan X. Y., Shi W. X., Experimental investigation on the characteristics of buoyant plume movement in a stairwell with multiple openings. Energy and Buildings, 2014; 68: 108-120.
[32]Lin C.S., Chen M.Y., Pan L.S., Field Model Simulation and Analysis for a Residential Building Fire.Applied Mechanics and Materials, 2016; 851: 810-815.
[33]Yi X., Lei C., Deng J., Ma L., Fan J., Liu Y., Bai L., Shu C. M., Numerical simulation of fire smoke spread in a super high-rise building for different fire scenarios. Advances in Civil Engineering, 2019; 1: 1-11.
[34]Ahn C.S., Kim D.Y., Park C., Kim M W., Kim T., Bang B.H.,Experimental and numerical study of smoke behavior in high-rise stairwells with open and closed windows. International Journal of Thermal Sciences, 2020;157:106500.
[35]HeJ., HuangX., Ning X., Zhou T., Wang J.,Yuen R.K.K., Modelling fire smoke dynamics in a stairwell of high-rise building: Effect of ambient pressure. Case Studies in Thermal Engineering,2022;32: 101907.
[36]Hu G., Research on the Fire of High-rise Residential Building Based on Pyrosim Numerical Simulation. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing,2020:012059.
[37]Zhang Z., Kong H. S., A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System. International Journal of Advanced Culture Technology, 2021; 9(4): 424-430.
[38]McKeen P., Liao Z., Numerical analysis on the hazards of open stairwell doors in high-rise residential buildings. Journal of Building Engineering, 2022; 54: 104561.
[39]Wu Y., Hua B., Chen S., Yang J., FDS-Based Study of the Fire Performance of Huizhou Fire Seal Walls in Traditional Residential Buildings in Southern China.Fire, 2023; 6(10): 388.
[40]Kim S.C.,A numerical study of the effect of sprinkler spray on the flow characteristics induced by fire.Fire Science and Engineering, 2012;26(5):105-110.
[41]Qi X.X., Li Y.Z., Li C.L., MuN.,Sun H., Chow W.K.,Numerical simulation study on characteristics of overflowing smoke under sprinkler spray. Procedia Engineering,2014;71:182-187.
[42]Takeuchi Y.,Yamamoto K.,Nishiki S.,Effect of Sprinkler on Evacuation Dynamics in Compartment Fire. Bulletin of Japan Association for Fire Science and Engineering, 2014;64(3): 21-28.
[43]Khoat H.T.,Kim J.T.,Quoc T.D.,Kwark J.H.,Ryou H.S., A Numerical Analysis of the Fire Characteristics after Sprinkler Activation in the Compartment Fire.Energies, 2020;13(12):3099.
[44]Gui J., Wang D., Jiang Y., Liu J., Yang L., Study on the protection effect of sprinklers on glass by fire scale in building fires. Fire, 2022; 5(4): 100.
[45]Xu L., Zheng W., Xu F., Case research on kitchen fire under water spray effect via numerical simulation. Case Studies in Thermal Engineering,2022; 31: 101772.
[46]National Fire Protection Association. NFPA 550:Guide to the Fire Safety Concepts Tree, 2017.
[47]Hurley M. J.,et al.SFPE handbook of fire protection engineering. Springer, 2019.
[48]Marchant E.W., Fire safety in health care buildings. Proceedings of a conference held at Coventry. Fire Safety Journal,1980; 4(3): 213–214.
[49]Babrauskas V., Fleming J.M.,Russell B.D.,RSET/ASET, a flawed concept for fire safety assessment.Fire and Materials,2010;34(7): 341-355.
[50]Poon S.L.,A Dynamic Approach to ASET/RSET Assessment in Performance Based Design. Procedia Engineering,2014;71:173-181.
[51]Cooper L.Y.,A mathematical model for estimating available safe egress time in fires.Fire and Materials,1982;6(3‐4):135-144.
[52]Gann R.G.,Averill J.D.,Johnsson E.L.,Nyden M.R.,Peacock R.D.,Fire effluent component yields from room-scale fire tests. Fire and Material,2010;34:285-314.
[53]Tosolini E.,Grimaz S., Pecile L.C., Salzano E.,People evacuation: simplified evaluation of Available Safe Egress Time (ASET) in enclosures.Chemical Engineering,2012;26.
[54]Xie Q.,Lu S.,Kong D.,Wang J.,The effect of uncertain parameters on evacuation time in commercial buildings.Journal of Fire Sciences,2011;30(1):55-67.
[55]Sanjay V., Das A.K.,Numerical assessment of hazard in compartmental fire having steady heat release rate from the source.In: Building Simulation. Springer Berlin Heidelberg, 2018: 613-624.
[56]National Fire Protection Association. NFPA 101:Life Safety Code , 2018.
[57]Guanquan C., Jinhua S.,The effect of pre-movement time and occupant density on evacuation time.Journal of fire sciences, 2006; 24(3): 237-259.
[58]Peng H., Zhou J., Liu W.L., Zhang X.Y., Li Y.Q.,Study on the determination of safety factor in calculating building Fire evacuation time.Procedia Engineering, 2011; 11: 343-348.
[59]Yan Z., Han X., Li M., Accurate assessment of RSET for building fire based on engineering calculation and numerical simulation. In: MATEC Web of Conferences. EDP Sciences,2016;61:04024.
[60]Tinaburri A., Principles for Monte Carlo agent-based evacuation simulations including occupants who need assistance. From RSET to RiSET. Fire Safety Journal, 2022; 127:103510.
[61]National Fire Protection Association. NFPA 5000:Building Construction and Safety Code, 2021.
[62]National Fire Protection Association. NFPA 92:Standard for Smoke Control Systems, 2018.
[63]National Fire Protection Association. NFPA 130:Standard for Fixed Guideway Transit and Passenger Rail Systems, 2023.
[64]National Fire Protection Association. NFPA 502:Standard for Road Tunnels, Bridges, and Other Limited Access Highways, 2023.
[65]Spearpoint M., Fire engineering design guide. Centre for Advanced Engineering, University of Canterbury,2008.
[66]Lemaire A.D.,Meeussen V.J.A.,Effects of water mist on real large tunnel fires: Experimental determination of BLEVE-risk and tenability during growth and suppression.Efectis Nederland BV, 2008; 443.
[67]AiRAH W.P.M.,Tenability criteria for design of smoke hazard management systems. Ecolibrium Journal, 2011;32-37.
[68]Han H.S., Hwang C.H., Study on the Available Safe Egress Time (ASET) Considering the Iuput Parameters and Model Uncertainties in Fire Simulation.Fire Science and Engineering, 2019;33(3): 112-120.
[69]交通部公路總局,2013。台9線蘇花公路山區路段改善計畫緊急應變計畫專題研究期末報告。
[70]Wu G. Y., Huang H. C., Modeling the emergency evacuation of the high rise building based on the control volume model. Safety science, 2015; 73: 62-72.
[71]Muramatsu M., Irie T., Nagatani T., Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and its Applications, 1999; 267(3-4): 487-498.
[72]Isobe M., Helbing D., Nagatani T., Experiment, theory, and simulation of the evacuation of a room without visibility. Physical Review E,2004; 69(6): 066132.
[73]Guo R.Y., Huang H. J., A mobile lattice gas model for simulating pedestrian evacuation. Physica A: Statistical Mechanics and its Applications,2008; 387(2-3): 580-586.
[74]Helbing D., Models for pedestrian behavior. arXiv preprint cond-mat,1998: 9805089.
[75]Pelechano N., Malkawi A., Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches. Automation in construction, 2008;17(4): 377-385
[76]Vass H., Szabo Z. K., Application of queuing model to patient flow in emergency department. Case study. Procedia Economics and Finance, 2015;32: 479-487.
[77]Lyu X., Xiao F., Fan X., Application of Queuing Model in Library Service. Procedia Computer Science,2021; 188: 69-77
[78]Hughes R.L., A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological,2002; 36(6): 507-535.
[79]Huang L., Wong S. C., Zhang M., Shu C. W., Lam W. H., Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological,2009; 43(1): 127-141.
[80]Xia Y., Wong S. C., Shu C. W., Dynamic continuum pedestrian flow model with memory effect.Physical Review E, 2009; 79(6): 066113.
[81]Liang H., Du J., Wong S. C., A Continuum model for pedestrian flow with explicit consideration of crowd force and panic effects. Transportation research part B: methodological,2021; 149: 100-117.
[82]Helbing D., Molnar P., Social force model for pedestrian dynamics. Physical review E, 1995;51(5):4282.
[83]Helbing D., Farkas I., Vicsek T., Simulating dynamical features of escape panic. Nature, 2000;407(6803):487-490.
[84]Benseghir H., Ibrahim A. B., Siddique M. N. I., Kabir M. N., Alginahi, Y. M., Modelling emergency evacuation from an industrial building under spreading fire using a social force model with fire dynamics.Materials Today: Proceedings, 2021;41: 38-42.
[85]Reynolds C. W., Steering behaviors for autonomous characters. In:Game developers conference,1999:763-782.
[86]Lee E. B., Shin S. H., You Y. J., Chi S. D., Kim J. I., The Rule-based Agent Modeling and Simulation considering the Evacuation Behavior Characteristics on the Passenger Ship Fire. Journal of the Korea Society for Simulation, 2011;20(3): 111-117.
[87]Anvari B., Bell M. G., Sivakumar A., Ochieng W. Y., Modelling shared space users via rule-based social force model. Transportation Research Part C: Emerging Technologies, 2015;51: 83-103.
[88]Blue V. J., Adler J. L., Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological, 2001;35(3), 293-312.
[89]Kirchner A., Nishinari K., Schadschneider, A., Friction effects and clogging in a cellular automaton model for pedestrian dynamics.Physical review E,2003;67(5):056122.
[90]Song W.G., Yu Y.F., Wang B.H., Fang W.C,. Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model. Physica A: Statistical Mechanics and its Applications, 2006;371(2):658-666.
[91]Yuan W., Tan K. H., An evacuation model using cellular automata.Physica A: Statistical Mechanics and its Applications,2007;384(2), 549-566.
[92]Hoogendoorn S., HL Bovy P., Simulation of pedestrian flows by optimal control and differential games.Optimal control applications and methods, 2003;24(3), 153-172.
[93]Lo S. M., Huang H. C., Wang P., Yuen K. K., A game theory based exit selection model for evacuation. Fire Safety Journal,2006;41(5): 364-369.
[94]Mesmer B. L., Bloebaum C. L., Incorporation of decision, game, and Bayesian game theory in an emergency evacuation exit decision model. Fire Safety Journal, 2014;67:121-134.
[95]Guan J., Wang K., Chen F., A cellular automaton model for evacuation flow using game theory. Physica A: Statistical Mechanics and its Applications, 2016;461:655-661.
[96]邱勇標、賴淑貞、蕭炎泉,2014。使用Unity軟體進行建築物火災疏散模擬之研究,2014中華民國營建工程學會第十二屆營產業永續發展研討會。
[97]Spearpoint M.,The effect of pre-evacuation on evacuation times in the Simulex model. Journal of Fire Protection Engineering,2004;14(1):33-53.
[98]Chiu C. W., Li Y. H., Shu Y. L., Shu C. M., Analysis of Evacuation Efficiency with Congestion Points in Large Sport Facilities. Journal of Civil Engineering and Architecture, 2015; 9: 1229-1243.
[99]Jang Y. J., Lee C. H., Park W. H., Jung W. S., The passenger evacuation simulation using FLUENT and EXODUS. Journal of the Korean Society for Railway,2008;11(1):95-100.
[100]Lee H. Y., Lee S. H., Hong W. H., A Study on the Escalator Evacuation Model Using the buildingEXODUS. Journal of the Architectural Institute of Korea Planning & Design, 2014; 30(4): 191-198.
[101]Zhao D. L., Zhang Q., Liu P. C., Sun M. J., Wang X. Q., Zhang X. L., Wang X., Simulation on occupant evacuation at a public site based on SMARTFIRE and building EXODUS. Stud Eng Technol,2018;5(1):15.
[102]邱晨瑋、紀惟仁、陳俊勳,2022。地下捷運場站人員逃生避難緊急應變之研究,警專學報。
[103]Long X., Zhang X., Lou, B., Numerical simulation of dormitory building fire and personnel escape based on Pyrosim and Pathfinder. Journal of the Chinese Institute of Engineers,2017; 40(3): 257-266.
[104]Qin J., Liu C., Huang, Q., Simulation on fire emergency evacuation in special subway station based on Pathfinder. Case Studies in Thermal Engineering, 2020; 21:100677.
[105]Han F., Liu L., Zhang Y., Pathfinder-based simulation and optimisation of personnel evacuation modelling of a shopping mall. In: Journal of Physics: Conference Series. IOP Publishing, 2021; 1757(1): 012112.
[106]建築物防火避難安全性能驗證技術手冊,內政部建築研究所。
[107]Fahy R. F., Calculation methods for egress prediction. The fire protection handbook,2008.
[108]Wu G. Y., Chien S. W., Huang Y. T., Modeling the occupant evacuation of the mass rapid transit station using the control volume model. Building and Environment,2010; 45(10): 2280-2288.
[109]Wu G. Y., Mizuno M., The numerical analysis of mass evacuation in Taipei 101 with control volume model. Simulation Modelling Practice and Theory,2019; 96: 101937.
[110]Wu G. Y., Mizuno M., Park S. K.,Numerical analysis and validation onthe phased evacuation time inhigh-rise buildings.Indoor and Built Environment, 2023; 1420326X231204512.
[111]NIST Special Publication 1019, FDS (Version 6.8.0) – Fire Dynamics Simulation User’s Guide, National Institute of Standards and Technology, Nov 2017.
[112]Thunderhead Engineering, 2023. Pyrosim. https://www.thunderheadeng.com/pyrosim.
[113]蘇意惟,2023。複合用途建築物之住宅火災人命安全及避難逃生分析,中央警察大學消防科學研究所。
[114]Hopkin C., Spearpoint M., Hopkin D., A review of design values adopted for heat release rate per unit area. Fire Technology, 2019; 55(5): 1599-1618.
[115]Zhao G., Beji T., Zeinali D., Merci B., Numerical study on the influence of in-depth radiation in the pyrolysis of medium density fibreboard. In 15th International Conference Fire and Materials,Interscience communications, 2017:863-877.
[116]Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S., Fundamentals of heat and mass transfer. New York: Wiley, 1996.
[117]McGrattan K., Verification and validation of selected fire models for nuclear power plant applications, volume 7: Fire Dynamics Simulator (FDS). Final Report, NUREG-1824, EPRI,2007:1011999.
[118]大昇昱企業,2024。資料來源:https://reurl.cc/GjgnOG
[119]Wade C., Spearpoint M., Bittern A., Tsai K., Assessing the sprinkler activation predictive capability of the BRANZFIRE fire model. Fire technology, 2007;43:175-193.
[120]Hopkin C., Spearpoint M., Bittern A., Using experimental sprinkler actuation times to assess the performance of Fire Dynamics Simulator. Journal of fire sciences,2018;36(4):342-361.
[121]維基百科,2024。一氧化碳中毒,資料來源:https://reurl.cc/4jZjED
[122]Yahoo新聞,2024。晴空匯調查鑑定出爐:管道間配線短路引發火災排除充電樁肇禍。資料來源:https://reurl.cc/r9WQvO (2024.06)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top