跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉復期
研究生(外文):YEH, FU-CHI
論文名稱:景深延長設計軟式隱形眼鏡 調節反應之表現
論文名稱(外文):The accommodative response of extended depth of vision soft contact lenses
指導教授:孫涵瑛孫涵瑛引用關係
指導教授(外文):SUN, HAN-YIN
口試委員:郭蕙瑛陳雅郁
口試委員(外文):GUO, HUEI-YINGCHEN, YA-YU
口試日期:2024-06-20
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:視光學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:景深延長周邊屈光調節反應
外文關鍵詞:RPREextended depth of visionEDOV®accommodative response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:成年人配戴景深延長設計軟式隱形眼鏡之調節反應,並分析相對周邊離焦狀態。
方法:25位年齡介於20至35歲台灣中部地區非老花的年輕成年人,16位女性,9位男性共25人。研究流程採單盲隨機分配,交叉配戴EDOV®多焦點以及單焦點軟式隱形眼鏡一週,測量遠方與近方40公分最佳矯正視力、鼻側與顳側分別10º、20º、30º的周邊屈光度、50公分及40公分調節反應、調節幅度、調節靈敏度、立體視覺、對比敏感度,並填寫視覺品質滿意度問卷調查Likert量表。分析比較配戴兩種不同設計鏡片的對調節反應和周邊屈光狀態的差異。
結果:多焦點與單焦點鏡片之間的屈光不正、遠方最佳矯正視力、對比敏感度等方面未達統計學上的顯著差異。調節遲滯量方面,多焦點鏡片呈現略低於單焦點鏡片,但未達統計上的顯著差異。此外,多焦點鏡片對受試者的調節靈敏度稍低於單焦點鏡片,兩者之間達到統計學上的顯著差異(p=0.02)。然而,在視覺品質滿意度調查中,兩種鏡片在近距離視力的清晰度方面未達統計學上的顯著差異,但在遠距離清晰度上顯著不同。
結論:本研究中使用的擴展焦深舒多焦軟式隱形眼鏡與單焦點鏡片進行比較後,並未顯示出在各項調節反應與配戴者的視覺感受上存在統計學上顯著的差異。以及確認年輕近視族群配戴擴展焦深鏡片在各項視覺表現上與單焦點鏡片相比並無明顯差異。

Purpose:
To compare the accommodative functional, relative peripheral refractive error (RPRE) and subjective satisfaction in participants wearing extended depth of vision (EDOV®) or single vision contact lens (SVCL).
Methods:
This was a prospective, randomized, cross-over, single-masked (participant) clinical trial in which 25 young adults wore both EDOV® and SVCL, for one week, respectively measurements consisted of binocular high-contrast visual acuity (HCVA: at 6 m, 40 cm), contrast sensitivity (Pelli-Robson), monocular-accommodative response at near distance (40 am) and intermediate distance (50 cm), monocular-accommodative amplitude (40 cm), monocular-accommodative facility (40 cm), relative peripheral refractive error (RPRE). Subjective response was assessed using Likert scale including vision clarity (distance/intermediate/near) and adaptability and distortion in the lateral gaze.
Results:
The participants showed a better performance in accommodative facility(AF) when wearing single vision soft contact lenses than EDOV® lenses (P=0.02*). There were no statistically significant differences between EDOV® multifocal lenses and single vision lenses in terms of refractive error, best-corrected distance visual acuity, and contrast sensitivity. In the visual quality satisfaction survey, there was no significant difference in clarity of near vision between EDOV® and single vision lenses, but there was a significant difference was in clarity of distance vision (P = 0.04*).
Conclusions:
Extended depth-of-vision CLs would not disruption to the accommodative and binocular system compared with SV CLs. EDOV® lenses in young myopic individuals does not significantly differ in various visual performances compared to single vision lenses.

目錄
謝誌 I
中文摘要 II
Abstract III
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 數位眼疲勞簡介 1
第二節 數位眼疲勞的症狀 3
第三節 數位眼疲勞光學舒緩方式 5
第四節 擴增焦深對視力、屈光度(中心和周邊屈光)的影響 9
第五節 研究目的 12
第二章 研究方法 13
第一節 研究設計 13
第二節 研究受試者與研究用鏡片 16
第三節 檢查項目、儀器與方法 19
第四節 統計方法 29
第三章 結果 31
第一節 受試者的篩選、前測、初始數據分析 31
第二節 調節反應、調節靈敏度、視覺品質滿意度 34
第三節 周邊屈光 39
第四章 討論 49
第一節 擴展焦深鏡片對視力的影響 49
第二節 擴增焦深鏡片對調節的影響 52
第三節 擴展焦深鏡片對主觀視覺品質的影響 54
第四節 擴增焦深鏡片對周邊離焦的影響 56
第五節 研究限制 58
第五章 結論 59
參考文獻 60
1.Zhao, Z.C., et al., Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol, 2018. 11(12): p. 1999-2003.
2.Sweetser, P., et al., Active versus passive screen time for young children. Australasian Journal of Early Childhood, 2012. 37(4): p. 94-98.
3.Palaiologou, I., Children under five and digital technologies: implications for early years pedagogy. European Early Childhood Education Research Journal, 2016. 24(1): p. 5-24.
4.Regmi, A., J. Suresh, and R. Asokan, Changes in work patterns during COVID-19 lockdown and its impact on the eyes and body. Clinical and Experimental Optometry, 2023. 106(3): p. 331-337.
5.Peter, R.G., et al., Computer Vision Syndrome (CVS): the assessment of prevalence and associated risk factors among the students of the American University of Armenia. Journal of Public Health, 2023: p. 1-10.
6.Downie, L.E., et al., TFOS Lifestyle-Evidence quality report: Advancing the evaluation and synthesis of research evidence. The Ocular Surface, 2023.
7.Portello, J.K., et al., Computer‐related visual symptoms in office workers. Ophthalmic and Physiological Optics, 2012. 32(5): p. 375-382.
8.Sheppard, A.L. and J.S. Wolffsohn, Digital eye strain: prevalence, measurement and amelioration. BMJ open ophthalmology, 2018. 3(1): p. e000146.
9.Sheedy, J.E., et al., Is all asthenopia the same? Optometry and vision science, 2003. 80(11): p. 732-739.
10.Fjærvoll, K., et al., Review on the possible pathophysiological mechanisms underlying visual display terminal‐associated dry eye disease. Acta ophthalmologica, 2022. 100(8): p. 861-877.
11.Salinas-Toro, D., et al., High frequency of digital eye strain and dry eye disease in teleworkers during the coronavirus disease (2019) pandemic. International Journal of Occupational Safety and Ergonomics, 2022. 28(3): p. 1787-1792.
12.Mohan, A., et al., Binocular accommodation and vergence dysfunction in children attending online classes during the COVID-19 pandemic: digital eye strain in kids (DESK) study-2. Journal of Pediatric Ophthalmology & Strabismus, 2021. 58(4): p. 224-231.
13.Choi, J.H., et al., The influences of smartphone use on the status of the tear film and ocular surface. PloS one, 2018. 13(10): p. e0206541.
14.Saxena, R., et al., Lifestyle modification in school-going children before and after COVID-19 lockdown. Indian Journal of Ophthalmology, 2021. 69(12): p. 3623-3629.
15.Henning, R.A., et al., Frequent short rest breaks from computer work: effects on productivity and well-being at two field sites. Ergonomics, 1997. 40(1): p. 78-91.
16.Blehm, C., et al., Computer vision syndrome: a review. Survey of ophthalmology, 2005. 50(3): p. 253-262.
17.Patel, S., et al., Effect of visual display unit use on blink rate and tear stability. Optom Vis Sci, 1991. 68(11): p. 888-892.
18.Portello, J.K., M. Rosenfield, and C.A. Chu, Blink rate, incomplete blinks and computer vision syndrome. Optometry and vision science, 2013. 90(5): p. 482-487.
19.Harrison, W.W., et al., Menisci and fullness of the blink in dry eye. Optometry and Vision Science, 2008. 85(8): p. 706-714.
20.Alim-Marvasti, A., et al., Transient smartphone “blindness”. New England Journal of Medicine, 2016. 374(25): p. 2502-2504.
21.Westheimer, G., Visual acuity. Annual Review of Psychology, 1965. 16(1): p. 359-380.
22.Yeow, P. and S. Taylor, Effects of long-term visual display terminal usage on visual functions. Optometry and Vision Science, 1991. 68(12): p. 930-941.
23.Sheedy, J.E. and P.G. Shaw-McMinn, Diagnosing and treating computer-related vision problems. 2002: Elsevier Health Sciences.
24.Kaltenegger, K., et al., Effects of home reading training on reading and quality of life in AMD—a randomized and controlled study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019. 257: p. 1499-1512.
25.Gleni, A., et al., Assessing variability in reading performance with the New Greek standardized reading speed texts (IReST). Optometry and Vision Science, 2019. 96(10): p. 761-767.
26.Glimne, S., R. Brautaset, and G.Ö. Seimyr, The effect of glare on eye movements when reading. Work, 2015. 50(2): p. 213-220.
27.Cardona, G., et al., Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Current eye research, 2011. 36(3): p. 190-197.
28.Golebiowski, B., et al., Smartphone use and effects on tear film, blinking and binocular vision. Current Eye Research, 2020. 45(4): p. 428-434.
29.Yeow, P. and S. Taylor, Effects of short-term VDT usage on visual functions. Optometry and Vision science, 1989. 66(7): p. 459-466.
30.Sawaya, R.I.T., et al., Asthenopia among university students: the eye of the digital generation. Journal of family medicine and primary care, 2020. 9(8): p. 3921-3932.
31.Mohan, A., et al., Prevalence and risk factor assessment of digital eye strain among children using online e-learning during the COVID-19 pandemic: Digital eye strain among kids (DESK study-1). Indian journal of ophthalmology, 2021. 69(1): p. 140-144.
32.McCrann, S., et al., Smartphone use as a possible risk factor for myopia. Clinical and Experimental Optometry, 2021. 104(1): p. 35-41.
33.Foreman, J., et al., Association between digital smart device use and myopia: a systematic review and meta-analysis. The Lancet Digital Health, 2021. 3(12): p. e806-e818.
34.Hysing, M., et al., Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ open, 2015. 5(1): p. e006748.
35.Saito, S., et al., ORIGINAL ARTICLES physiological indices of visual fatigue due to VDT operation: Pupillary reflexes and accommodative responses. Industrial health, 1994. 32(2): p. 57-66.
36.Wiggins, N., K. Daum, and C. Snyder, Effects of residual astigmatism in contact lens wear on visual discomfort in VDT use. Journal of the American Optometric Association, 1992. 63(3): p. 177-181.
37.Yammouni, R. and B.J. Evans, An investigation of low power convex lenses (adds) for eyestrain in the digital age (CLEDA). Journal of Optometry, 2020. 13(3): p. 198-209.
38.Berntsen, D.A., et al., A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Investigative ophthalmology & visual science, 2012. 53(2): p. 640-649.
39.Sha, J., et al., Short-term visual performance of soft multifocal contact lenses for presbyopia. Arquivos brasileiros de oftalmologia, 2016. 79: p. 73-77.
40.Sankaridurg, P., et al., IMI 2023 digest. Investigative Ophthalmology & Visual Science, 2023. 64(6): p. 7-7.
41.Koh, S., et al., Quantification of accommodative response and visual performance in non-presbyopes wearing low-add contact lenses. Contact Lens and Anterior Eye, 2020. 43(3): p. 226-231.
42.Daum, K.M., et al., Productivity associated with visual status of computer users. Optometry-Journal of the American Optometric Association, 2004. 75(1): p. 33-47.
43.Wiggins, N.P., Diagnosing and Treating Computer-Related Vision Problems. 2003, LWW.
44.Monge Roffarello, A. and L. De Russis. The race towards digital wellbeing: Issues and opportunities. in Proceedings of the 2019 CHI conference on human factors in computing systems. 2019.
45.Kollbaum, P.S., et al., Vision performance with a contact lens designed to slow myopia progression. Optometry and Vision Science, 2013. 90(3): p. 205-214.
46.Sha, J., et al., Comparison of extended depth-of-focus prototype contact lenses with the 1-day acuvue moist multifocal after one week of wear. Eye & Contact Lens, 2018. 44: p. S157-S163.
47.Bakaraju, R.C., et al., Extended depth of focus contact lenses vs. two commercial multifocals: Part 2. Visual performance after 1 week of lens wear. Journal of optometry, 2018. 11(1): p. 21-32.
48.Wahl, S., et al., Disability glare in soft multifocal contact lenses. Contact Lens and Anterior Eye, 2018. 41(2): p. 175-179.
49.Kollbaum, P.S., et al., Quantification of ghosting produced with presbyopic contact lens correction. Eye & contact lens, 2012. 38(4): p. 252-259.
50.Madrid-Costa, D., et al., Optical power distribution of refractive and aspheric multifocal contact lenses: effect of pupil size. Contact Lens and Anterior Eye, 2015. 38(5): p. 317-321.
51.Efron, N., Contact Lens Practice-E-Book. 2023: Elsevier Health Sciences.
52.Bakaraju, R.C., K. Ehrmann, and A. Ho, Extended depth of focus contact lenses vs. two commercial multifocals: Part 1. Optical performance evaluation via computed through-focus retinal image quality metrics. Journal of optometry, 2018. 11(1): p. 10-20.
53.Rueff, E.M., et al., A survey of presbyopic contact lens wearers in a university setting. Optometry and Vision Science, 2016. 93(8): p. 848-854.
54.Lam, C.S.Y., et al., Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. British Journal of Ophthalmology, 2020. 104(3): p. 363-368.
55.García García, M., et al., A global approach to describe retinal defocus patterns. PLoS One, 2019. 14(4): p. e0213574.
56.Signes-Soler, I., et al., Visual Performance of Two Designs of Myopia Management Soft Contact Lenses Compared with a Monofocal One in Young Adults. Journal of Ophthalmic & Vision Research, 2023. 18(4): p. 359.
57.Erdinest, N., et al., Peripheral defocus and myopia management: a mini-review. Korean Journal of Ophthalmology: KJO, 2023. 37(1): p. 70.
58.Redondo, B., et al., Changes in accommodation and behavioural performance with a contact lens for myopia management: A comparison between a dual‐focus and a single‐vision soft contact lens. Ophthalmic and Physiological Optics, 2022. 42(4): p. 753-761.
59.Thibos, L.N., W. Wheeler, and D. Horner, Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optometry and vision science, 1997. 74(6): p. 367-375.
60.Schulle, K.L., et al., Visual acuity and over-refraction in myopic children fitted with soft multifocal contact lenses. Optometry and Vision Science, 2018. 95(4): p. 292-298.
61.Diec, J., et al., Predicting short-term subjective vision performance of contact lenses used in myopia control. Eye & contact lens, 2018. 44(5): p. 308-315.
62.Sankaridurg, P., et al., Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic and Physiological Optics, 2019. 39(4): p. 294-307.
63.Hair, L.A., E.M. Steffensen, and D.A. Berntsen, The effects of center-near and center-distance multifocal contact lenses on peripheral defocus and visual acuity. Optometry and Vision Science, 2021. 98(8): p. 983-994.
64.Ohlendorf, A. and F. Schaeffel, Contrast adaptation induced by defocus–A possible error signal for emmetropization? Vision Research, 2009. 49(2): p. 249-256.
65.Vera, J., et al., Dynamics of the accommodative response and facility with dual-focus soft contact lenses for myopia control. Contact Lens and Anterior Eye, 2023. 46(1): p. 101526.
66.Tilia, D., et al., Vision performance and accommodative/binocular function in children wearing prototype extended depth-of-focus contact lenses. Eye & Contact Lens, 2019. 45(4): p. 260-270.
67.Dhallu, S.K., et al., Factors influencing pseudo-accommodation—the difference between subjectively reported range of clear focus and objectively measured accommodation range. Vision, 2019. 3(3): p. 34.
68.Sayah, D.N., et al., Myopes show greater visually induced postural responses than emmetropes. Investigative Ophthalmology & Visual Science, 2016. 57(2): p. 551-556.
69.Radhakrishnan, H., et al., Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes. Optometry and Vision Science, 2004. 81(1): p. 14-17.
70.Hartwig, A., W.N. Charman, and H. Radhakrishnan, Accommodative response to peripheral stimuli in myopes and emmetropes. Ophthalmic and Physiological Optics, 2011. 31(1): p. 91-99.
71.Pauné, J., et al., Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes. Eye & contact lens, 2016. 42(6): p. 380-387.
72.Fedtke, C., et al., Visual performance of single vision and multifocal contact lenses in non-presbyopic myopic eyes. Contact Lens and Anterior Eye, 2016. 39(1): p. 38-46.
73.Díaz-Gómez, S., et al., Two-Year Myopia Management Efficacy of Extended Depth of Focus Soft Contact Lenses (MYLO) in Caucasian Children. American Journal of Ophthalmology, 2024. 260: p. 122-131.
74.Kang, P., C. McAlinden, and C.F. Wildsoet, Effects of multifocal soft contact lenses used to slow myopia progression on quality of vision in young adults. Acta ophthalmologica, 2017. 95(1): p. e43-e53.
75.Tilia, D., et al., Short-term visual performance of novel extended depth-of-focus contact lenses. Optometry and Vision Science, 2016. 93(4): p. 435-444.
76.Lopes-Ferreira, D., et al., Peripheral refraction with dominant design multifocal contact lenses in young myopes. Journal of Optometry, 2013. 6(2): p. 85-94.
77.Faria-Ribeiro, M., et al., Peripheral refraction and retinal contour in stable and progressive myopia. Optometry and Vision Science, 2013. 90(1): p. 9-15.
78.Domínguez-Vicent, A., et al., Measurement of angle Kappa with Orbscan II and Galilei G4: effect of accommodation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014. 252: p. 249-255.
79.Wolffsohn, J.S., O.A. Hunt, and A.K. Basra, Simplified recording of soft contact lens fit. Contact Lens and Anterior Eye, 2009. 32(1): p. 37-42.
電子全文 電子全文(網際網路公開日期:20250720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top