跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王靜誼
研究生(外文):WANG,CHIN-YI
論文名稱:製備鈦酸鋇奈米線負載氧化銅奈米粒子應用於光壓電異相觸媒類芬頓程序移除有機染料
論文名稱(外文):Synthesis of Copper Oxide Nanoparticle @ Barium Titanate Nanowires in Photo-piezoelectric Heterogeneous Fenton-like Process for Organic Dye Removal
指導教授:林義峯
指導教授(外文):Lin,Yi-Feng
口試委員:陳郁劭葉瑞銘
口試委員(外文):CHEN,YU-SHAOYEH,JUI-MING
口試日期:2024-07-02
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:105
中文關鍵詞:類芬頓程序壓電觸媒材料水熱法鈦酸鋇氧化銅
外文關鍵詞:Fenton-like processPiezoelectric catalyst materialsHydrothermal methodBarium titanateCopper oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
芬頓程序 (Fenton Process) 被學者廣泛使用的廢水處理方法之一,雖然成本低且效率高,但是它存在二次汙染問題。因此,學者積極研發類芬頓程序 (Fenton-like Process) 以解決此問題。
本研究主要是光壓電異相觸媒材料開發,結合壓電特性、光觸媒、異相觸媒芬頓程序,利用複合材料的壓電特性產生壓電極化現象使其正負電荷分離,受熱擾動的自由電子與電洞產生分離的效果,進而在其表面產生氧化還原反應產生氫氧自由基,接續加入過氧化氫作為氧化劑降解有機染料廢水,生成具有高氧化還原電位的氫氧自由基,更加提升汙染物的降解效能,使其可以更快速降解完畢,並利用UV光照和不同超聲波震動頻率的條件進行測試。
在本研究中,透過水熱法成功製備出具有壓電效應的鈦酸鋇奈米線負載氧化銅奈米粒子,應用於光壓電異相觸媒芬頓程序中,在添加過氧化氫為氧化劑下進行降解實驗,由壓電效應使鈦酸鋇奈米線得到其機械應力產生彎曲現象,可以有效地避免光激發產生的電子電洞複合數目,而我們將負載不同濃度之銅元素於鈦酸鋇奈米線上,由於銅元素在類芬頓程序上與過氧化氫的反應速率有很高的光催化特性,使其降解效果大幅提升。藉由降解實驗顯示,我們將選擇7 wt%的硝酸銅三水合物溶液的濃度最為本研究實驗觸媒材料。
此外,本實驗將對系統環境、觸媒和氧化劑添加量、金屬含量等進行研究,最終確定最佳操作參數為染劑濃度10 ppm、觸媒濃度190 ppm、氧化劑添加量0.5 ml,主要催化自由基為氫氧自由基和單線態氧,在同時使用紫外光和超聲波震盪效果更佳。隨著超聲波震盪強度提升,降解效果也增加。在酸鹼值、穩定性和再生性實驗中,觸媒表現出優異的降解效能,並且具有廣泛的酸鹼值適用性、結構穩定性以及可重複使用的優勢。

The Fenton process, widely employed by researchers for wastewater treatment, is known for its low cost and high efficiency. However, it does suffer from secondary pollution issues. Consequently, scholars have actively explored Fenton-like processes to address these concerns.
In this study, we primarily focus on the development of photo-piezoelectric heterogeneous catalyst materials. By combining piezoelectric properties, photocatalysis, and heterogeneous Fenton processes, we utilize the piezoelectric polarization phenomenon in composite materials to separate positive and negative charges. The resulting separation of free electrons and holes due to thermal perturbations generates hydroxyl radicals on the material’s surface. Subsequently, we introduce hydrogen peroxide as an oxidant to degrade organic dye wastewater. This process produces hydroxyl radicals with high oxidation-reduction potential, significantly enhancing pollutant degradation efficiency and allowing for faster completion. We also conduct tests under UV light exposure and varying ultrasonic vibration frequencies.
In our research, we successfully prepared barium titanate nanowires with piezoelectric effects, loaded with copper oxide nanoparticles using a hydrothermal method. These materials were applied in the photo-piezoelectric heterogeneous Fenton process, where hydrogen peroxide served as the oxidant. The piezoelectric effect induced mechanical stress in the barium titanate nanowires, effectively reducing the number of electron-hole recombination events caused by photoexcitation. Additionally, we loaded different concentrations of copper elements onto the barium titanate nanowires. Copper exhibits high photocatalytic properties in Fenton-like processes, significantly enhancing degradation efficiency. Based on degradation experiments, we selected a 7 wt% copper nitrate trihydrate solution as the optimal experimental catalyst material.
Furthermore, we investigated system parameters such as environmental conditions, catalyst and oxidant concentrations, and metal content. Ultimately, we determined that the optimal operating parameters were a dye concentration of 10 ppm, a catalyst concentration of 190 ppm, and an oxidant addition of 0.5 ml. The primary catalytic free radicals were hydroxyl radicals and singlet oxygen. Combining UV light and simultaneous ultrasonic oscillation yielded even better results. As ultrasonic intensity increased, degradation efficiency improved. The catalyst demonstrated excellent performance in terms of pH stability, structural robustness, and reusability.

目錄
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第二章 文獻回顧 4
2.1 有機染料廢水處理技術 4
2.1.1 有機汙染物介紹 5
2.1.2 有機廢水處理介紹 7
2.2 芬頓程序 (Fenton Process) 11
2.3 異相觸媒材料應用於高級氧化程序 (Advanced Oxidation Process)介紹 14
2.3.1 高級氧化程序 (Advanced Oxidation Process)介紹 14
2.3.2 金屬化合物適用於類芬頓程序之介紹 17
2.4 光催化原理及光觸媒介紹 28
2.4.1 光催化反應介紹 29
2.4.2 光觸媒及其應用領域介紹 31
2.4.3 光沉積原理介紹 33
2.5 壓電材料介紹與觸媒催化反應 36
2.5.1 壓電材料 (Piezoelectric materials) 特性介紹 36
2.5.2 壓電觸媒 (Piezo-catalyst) 39
2.5.3 光壓電觸媒 (Piezo-photocatalyst) 40
2.6 異質結構光觸媒介紹 (Heterojunction photocatalyst) 42
第三章 研究構想 45
第四章 實驗材料與步驟 47
4.1 實驗材料與設備 47
4.1.1 實驗材料 47
4.1.2 實驗設備 51
4.2 實驗步驟 53
4.2.1 鈦酸鋇奈米線之製備 53
4.2.2 鈦酸鋇奈米線負載銅奈米粒子之製備 53
4.2.3 高級氧化程序染料降解測試 54
4.2.4 高級氧化程序之降解效能計算 54
4.3 材料特性分析方式與儀器 55
4.3.1 X光繞射分析儀 (X-ray Diffraction, XRD) 55
4.3.2 比表面積與孔徑分布測定儀 (Surface Area and Pore Analyzer) 55
4.3.3 紫外-可見光光譜儀 (UV-Vis Spectrophotometer) 56
4.3.4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 57
4.3.5 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope, HR-TEM) 57
4.3.6 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 58
4.3.7 電子自旋共振儀 (Electron Paramagnetic Resonance Spectrometer, EPR) 58
第五章 結果與討論 59
5.1 BaTiO3 NWs與CuO @ BaTiO3 NWs之觸媒合成 59
5.1.1 BaTiO3 NWs晶體檢測分析 60
5.1.2 CuO @ BaTiO3 NWs晶體檢測分析 63
5.2 BaTiO3 NWs與CuO @ BaTiO3 NWs對高級氧化程序之影響 68
5.2.1 BaTiO3 NWs與CuO @ BaTiO3 NWs對羅丹明B之吸附效能影響 68
5.2.2 BaTiO3 NWs降解效能之影響 70
5.2.3 CuO @ BaTiO3 NWs降解效能之影響 72
5.2.4 CuO @ BaTiO3 NWs在不同超聲波震盪強度下對降解效能之影響 75
5.2.5 CuO @ BaTiO3 NWs不同抑制劑種類對高級氧化程序之影響 77
5.3 高級氧化程序操作參數與系統環境之影響 80
5.3.1 氧化劑對降解效能之影響 80
5.3.2 觸媒添加量對降解效能之影響 81
5.3.3 系統環境對降解效能之影響 83
5.3.4 高級氧化程序之重複使用性與再生性測試 84
第六章 結論 87
參考文獻 88
表目錄
表1-1、有機汙染物處理技術[3] 3
表2.3-1、各類氧化劑之氧化還原電位[32] 17
表5.1-1 CuO @ BaTiO3 NWs元素比例 65
表5.1-2 CuO @ BaTiO3 NWs 晶體之XPS元素分析 67
表5.2-1 BaTiO3 NWs與CuO @ BaTiO3 NWs對RhB 之吸附效能 69
表5.2-2 BaTiO3 NWs在不同條件下對RhB降解效能之影響 71
表5.2-3 CuO @ BaTiO3 NWs在不同金屬濃度下對RhB降解效能之影響 73
表5.2-4 7wt% CuO @ BaTiO3 NWs在不同條件下對RhB降解效能之影響 74
表5.2-5 CuO @ BaTiO3 NWs在相同條件不同震盪強度下對RhB降解效能之影響 76
表5.2-6 CuO @ BaTiO3 NWs在不同抑制劑下對RhB降解效能之影響 78
表5.3-1 CuO @ BaTiO3 NWs在不同氧化劑添加量下對RhB降解效能之影響 81
表5.3-2 CuO @ BaTiO3 NWs在不同觸媒添加量下對RhB降解效能之影響 82
表5.3-3 CuO @ BaTiO3 NWs在不同酸鹼值下對RhB降解效能之影響 84
表5.3-4 CuO @ BaTiO3 NWs在重複性下對RhB降解效能之影響 85
表5.3-5 CuO @ BaTiO3 NWs在再生性下對RhB降解效能之影響 86
圖目錄
圖1-1 世界水資源分布圖[1] 1
圖1-2 全球水資源缺乏地圖[2] 2
圖2.1-1 2010年全球工業用水取水量[4] 4
圖2.2.1-1 羅丹明B結構式[6] 6
圖2.2.1-2 甲基藍結構式[7] 6
圖2.2.1-3 甲基橙結構式[8] 7
圖2.2.2-1 光催化反應示意圖[9] 9
圖2.2.2-2 芬頓程序原理[10] 10
圖2.2-1 芬頓程序機制圖[17] 11
圖2.3.1-1 觸媒高級氧化程序示意圖[28] 14
圖2.3.1-2 鐵離子之酸鹼值範圍[31] 16
圖2.3.2-1 鐵銅雙金屬材料及雙氧水反應[34] 18
圖2.3.2-2 (a) α-Fe2O3/H2O2/可見光系統於不同MB濃度氧化劑含量降解效率影響;(b) MB光降解速率長條圖;(c) MB光降解一級動力學模擬曲線;(d)光激發電子-空穴對分離和複合示意圖。 19
圖2.3.2-3 p型Cu2O與n型SiNWAs之間的電荷轉移示意圖[38] 21
圖2.3.2-4 (a) SiNWAs和(b) SiNWAs/Cu2O 異質結構之XRD圖譜[38] 21
圖2.3.2-5 (a) 不同觸媒對RhB的光催化降解和 (b) 不同條件下RhB光催化降解的一級反應動力學:(1) SiNWAs (2) SiNWAs/Cu2O (3)僅H2O2 (4) SiNWAs + H2O2 (5) SiNWAs/Cu2O + H2O2。[38] 22
圖2.3.2-6不同雙氧水之添加量對RhB光催化降解的影響 23
(a) 0 mL (b) 0.1 mL (c) 0.3 mL (d) 0.5 mL (e) 1 mL (f) 1.5 mL。[38] 23
圖2.3.2-7 Cu2O @ CNTs/CF 作為催化劑之反應機制圖[39] 23
圖2.3.2-8 CNTs/CF和Cu2O @ CNTs/CF XRD圖譜[39] 24
圖2.3.2-9 不同pH值下Cu2O @ CNTs/CF 的降解效率[39] 25
圖2.3.2-10通過SEM獲得的ZnO/CuO奈米粒子於 (a) 500°C、(b)600°C、(c) 700°C下鍛燒後的形貌[40] 26
圖2.3.2-11 不同條件下CuO-TiO2/rGO觸媒之降解效率[41] 27
圖2.3.2-12 CuO-TiO2/rGO的重複使用性[41] 27
圖2.4.1-1 光催化反應分解水過程[42] 28
圖2.4.1-2 Honda-Fujishima Effect實驗裝置圖[43] 29
圖2.4.1-3 光催化反應機制圖[44] 30
圖2.4.2-1 介孔CuO的 FE-SEM圖像分析[45] 31
圖2.4.2-2 多孔CuO粉末於光照射下降解MO的催化性能[45] 32
圖2.4.2-3 氧化鋅奈米結構對於是否添加雙氧水的光催化反應機制[46] 32
圖2.4.2-3 (a)無添加H2O2和(b)添加H2O2的情況下,由片狀Zn合成的ZnO奈米結構降解MB染料的半衰期曲線[46] 33
圖2.4.3-1 光沉積金屬半導體奈米複合材料反應機制圖[47] 34
圖2.4.3-2 常見催化劑之傳導帶及價帶電位示意圖[48] 34
圖2.4.3-3不同照光時間製備Ag (1 wt%)沉積在TiO2上的EDS和MAPPING圖[49] 35
圖2.4.3-4 在光沉積5wt% Ag @ TiO2 35
(a) 30、(b) 60 和(c) 90 分鐘後銀奈米粒子生長TEM 圖像[49] 35
圖2.5.1-1 壓電、焦電和鐵電比較圖[50] 37
圖2.5.1-2 壓電性 (Piezoelectric)[51] 37
圖2.5.1-3鐵電性 (Ferroelectric) [52] 38
圖2.5.1-4焦電性 (Pyroelectric)[53] 38
圖2.5.2-1 BaTiO3受機械應力後進行染料廢水降解示意圖[54] 39
圖2.5.2-2 (a) 在有無震盪下,BaTiO3壓電材料降解染料廢水效能圖 40
(b) BaTiO3壓電材料於重複使用8次之降解染料廢水效能圖[54] 40
圖2.5.3-1 BaTiO3 光壓電反應機制圖[55] 41
圖2.5.3-2 (a) 不同條件下MO溶液的降解能力 (b) MO降解動力學曲線 42
(c,d) BT NWs催化劑降解MO的4次重複性實驗[55] 42
圖2.6-1 傳統光催化異質結光催化劑中電子-電洞對的三種不同類型分離的示意圖(a) I 型、(b) II 型和 (c) III 型異質接面。 43
圖2.6-2 (a)在機械攪拌和模擬陽光照射的聯合作用下BiOBr、BTO和BTBB異質接面上的 RhB 降解;(b)相應的一級動力學擬合;(c)壓電催化、光催化和BTBB-10 上的壓電光催化下的 RhB 降解;(d)對應的一級動力學擬合。 44
圖4.1-1 超聲波震盪器裝置 52
圖4.1-2 超聲波震盪器裝置 52
圖5.1.1-1 BaTiO3 NWs 之XRD圖譜 60
圖5.1.1-2 (a)~(c) BaTiO3 NWs 之HR-TEM圖譜 61
圖5.1.1-3 BaTiO3 NWs 之氮氣吸脫附曲線圖 62
圖5.1.1-4 (a)、(b) BaTiO3 NWs 之掃描式電子顯微鏡影像 62
圖5.1.2-1 CuO @ BaTiO3 NWs 之氮氣吸脫附曲線圖 63
圖5.1.2-2 CuO @ BaTiO3 NWs 之 (a)掃描式電子顯微鏡影像,(b) Cu、(c) Ba、 64
(d) Ti、(e) O元素之元素分析影像 (EDS Mapping) 64
圖5.1.2-3 (a)、(b) CuO @ BaTiO3 NWs 之高解析穿透式電子顯微鏡影像 64
圖5.1.2-4 (a)~(e) CuO @ BaTiO3 NWs 之HR-TEM 元素分析圖 65
圖5.1.2-5 CuO @ BaTiO3 NWs 之XPS全譜圖 66
圖5.1.2-6 (a) 鋇元素圖譜 (b) 鈦元素圖譜 (c) 氧元素圖譜 (d) 銅元素圖譜 67
圖5.2.1-1 BaTiO3 NWs與CuO @ BaTiO3 NWs 對RhB之吸附效能之影響 69
圖5.2.2-1 BaTiO3 NWs在不同條件下對RhB降解效能之影響 71
( H2O2 Conc. 3.5 wt % / 1mL;RhB Conc. 10 ppm / 10 mL ) 71
圖5.2.3-1 CuO @ BaTiO3 NWs在不同金屬濃度對RhB降解效能之影響 72
( H2O2 Conc. 3.5 wt % / 1 mL;RhB Conc. 10 ppm / 10 mL ) 72
圖5.2.3-2 7wt% CuO @ BaTiO3 NWs在不同條件下對RhB降解效能之影響 74
( H2O2 Conc. 3.5 wt % / 1 mL;RhB Conc. 10 ppm / 10 mL ) 74
圖5.2.4-1 CuO @ BaTiO3 NWs在相同條件不同震盪強度下對RhB降解效能之影響 76
( H2O2 Conc. 3.5 wt % / 1 mL;RhB Conc. 10 ppm / 10 mL ) 76
圖5.2.5-1 CuO @ BaTiO3 NWs在不同抑制劑種類對RhB降解效能之影響 78
( H2O2 Conc. 3.5 wt % / 1 mL;RhB Conc. 10 ppm / 10 mL ) 78
圖5.2.5-2系統內添加 TEMP、DMPO 之 EPR 檢測分析 79
圖5.3.1-1氧化劑對降解效能實驗圖 80
圖5.3.1-2氧化劑添加量對高級氧化程序之影響 81
( Catalyst Conc. 380 ppm;RhB Conc. 10 ppm / 10 mL ) 81
圖5.3.2-1觸媒添加量對高級氧化程序之影響 82
( H2O2 Conc. 3.5wt% /1mL;RhB Conc. 10ppm / 10mL ) 82
圖5.3.3-1 環境酸鹼值對高級氧化程序之影響 83
圖5.3.4-1 CuO @ BaTiO3 NWs觸媒之重複性測試 85
( H2O2 Conc. 3.5 wt% / 1 mL;RhB Conc. 10 ppm / 10 mL ) 85
圖5.3.4-2 CuO @ BaTiO3 NWs觸媒之再生性測試 86
( H2O2 Conc. 3.5 wt% / 1 mL;RhB Conc. 10 ppm / 10 mL ) 86




[1]https://flexbooks.ck12.org/cbook/ck-12-middle-school-earth-science-flexbook-2.0/section/8.1/primary/lesson/distribution-of-water-on-earth-ms-es/
[2]http://www.thjj.org/sf_F7B442C7DE7F47A4A0AD553B60FB6270_227_8C0B6735583.html
[3]高濃度COD廢水氧化處理技術評析
[4]https://en.m.wikipedia.org/wiki/File:Water_withdrawals_per_capita,_OWID.svg
[5]W. H. Perkin, LXXIV.—On Mauveine and Allied Colouring Matters. Journal of the
Chemical Society, Transactions, vol. 35, pp. 717–732, 1879
[6]https://zh.wikipedia.org/zh-tw/%E7%BD%97%E4%B8%B9%E6%98%8EB
[7]https://zh.wikipedia.org/wiki/%E7%94%B2%E5%9F%BA%E8%97%8D
[8]https://zh.wikipedia.org/zh-tw/%E7%94%B2%E5%9F%BA%E6%A9%99
[9]https://www.cas.cn/ky/kyjz/201101/t20110113_3061804.shtml
[10]https://www.ever-clear.com.tw/en/capability/detail-b2
[11]H.J.H. Fenton, Oxidation of tartaric acid in presence of iron, J. Chem. Soc., 1894, 65, 899-910
[12]E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chemical reviews, 2009, 109, 6570-6631.
[13]C. Walling, Fenton's reagent revisited," Accounts of chemical research, 1975, 8, 125-131.
[14]C. Walling, A. Goosen, Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, Journal of the American Chemical Society, 1973, 95, 2987-2991
[15]T. Rigg, W. Taylor, J. Weiss, The rate constant of the reaction between hydrogen peroxide and ferrous ions, The journal of chemical physics, 1954, 22, 575-577.
[16]P. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 2012, 299, 1-15
[17]Zhang, M.-h., et al. (2019). "A review on Fenton process for organic wastewater treatment based on optimization perspective." Science of the Total Environment 670: 110-121.
[18]W. Song, M. Cheng, J. Ma, W. Ma, C. Chen, J. Zhao, Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay, Environmental science & technology, 2006, 40, 4782-4787
[19]R. Liu, Y. Guo, Z. Wang, J. Liu, Iron species in layered clay: Efficient electron shuttles for simultaneous conversion of dyes and Cr (VI), Chemosphere, 2014, 95, 643-646.
[20]Z. Wang, W. Ma, C. Chen, J. Zhao, Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2, Journal of hazardous materials, 2009, 168 , 1246-1252.
[21]R. Liu, D. Xiao, Y. Guo, Z. Wang, J. Liu, A novel photosensitized Fenton reaction catalyzed by sandwiched iron in synthetic nontronite, RSC Advances, 2014, 4, 12958-12963.
[22]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 1972, 238, 37-38.
[23]M. Cheng, Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation, Applied catalysis B: environmental, 2018, 3, 355-363
[24]W.P. Ting, M. C. Lu and Y. H. Huang, "The reactor design and comparison of Fenton, electro-Fenton and photo electro-Fenton processes for mineralization of benzene sulfonic acid (BSA)", Journal of hazardous materials, vol. 156, no. 1-3, pp. 421-427, 2008.
[25]E. Basturk and M. Karatas, "Advanced oxidation of reactive blue 181 solution: A comparison between fenton and sono-fenton process", Ultrasonics sonochemistry, vol. 21, no. 5, pp. 1881-1885, 2014
[26]Z. Eren, "Ultrasound as a basic and auxiliary process for dye remediation: a review", Journal of Environmental Management, vol. 104, pp. 127-141, 2012.
[27]S. papoutsakis, S. M. Cuevas, N. Gondrexon, S. baup, S. malato, & C. Pulgarin, Coupling between High-Frequency Ultrasound and Solar Photo Fenton at Pilot Scale for the Treatment of Organic Contaminants: An Initial Approach. Ultrasonics Sonochemistry, Vol. 22, 527–534, 2015
[28]利用觸媒高級氧化技術處理工廠高濃度 COD 廢水案例介紹,林樹榮*、李怡萱*、司洪濤*,工業污染防治 第 120 期(Dec. 2011) 55
[29]D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre‐treatment, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2004, 79, 431-454
[30]T. Pham, S. Brar, R. Tyagi, R. Surampalli, Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge, Ultrasonics Sonochemistry, 2010, 17, 38-45
[31]File:Pourbaix Diagram of Iron.svg - 維基百科,自由的百科全書 (wikipedia.org)
[32]利用觸媒高級氧化技術處理工廠高濃度COD 廢水案例介紹
[33]Dey, A., et al. (2023). "Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent." Ultrasonics Sonochemistry 96: 106426.
[34]Bosio, G. N., et al. (2023). "Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts." Catalysts 13(1): 159.
[35]L. Jiwei, P. Changsheng, S.Xiangli , Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review, Environmental Pollution, 2022, 293(15), 118565-118585
[36]Dey, A., et al. (2023). "Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent." Ultrasonics Sonochemistry 96: 106426.
[37]Wang, L., et al. (2022). "A review on advanced oxidation processes homogeneously initiated by copper (II)." Chemical engineering journal 427: 131721.
[38]Yang, C., et al. (2014). "Enhanced photocatalytic degradation of rhodamine B by Cu2O coated silicon nanowire arrays in presence of H2O2." Journal of Materials Science & Technology 30(11): 1124-1129.
[39]Mao, S., et al. (2021). "Cu2O nanoparticles anchored on 3D bifunctional CNTs/copper foam cathode for electrocatalytic degradation of sulfamethoxazole over a broad pH range." Science of the Total Environment 793: 148492.
[40]Cahino, A. M., et al. (2019). "Characterization and evaluation of ZnO/CuO catalyst in the degradation of methylene blue using solar radiation." Ceramics International 45(11): 13628-13636.
[41]Babu, S. G., et al. (2019). "Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO." Ultrasonics Sonochemistry 50: 218-223.
[42]王蒙, 马建泰, 吕功煊. 光催化全分解水制氢中助催化剂表面氢氧复合反应的抑制. 分子催化, 2019, 33(5): 461-485.
[43]Zheng, Z., et al. (2018). "Plasmon‐enhanced solar water splitting on metal‐semiconductor photocatalysts." Chemistry–A European Journal 24(69): 18322-18333.
[44]Hoffmann, M. R., et al. (1995). "Environmental applications of semiconductor photocatalysis." Chemical reviews 95(1): 69-96.
[45]Ni, J., et al. (2022). "The ultrahigh adsorption capacity and excellent photocatalytic degradation activity of mesoporous CuO with novel architecture." Nanomaterials 13(1): 142.
[46]Mohammadzadeh, A., et al. (2020). "Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation." Journal of Alloys and Compounds 845: 156333.
[47]Lee, Y., et al. (2018). "Photodeposited metal-semiconductor nanocomposites and their applications." Journal of Materiomics 4(2): 83-94.
[48]https://muchong.com/html/201401/6895223.html
[49]Bhardwaj, S., et al. (2020). "Influence of photodeposition time and loading amount of Ag co-catalyst on growth, distribution and photocatalytic properties of Ag@ TiO2 nanocatalysts." Optical Materials 106: 109975.
[50]Liang, L., et al. (2016). "One‐dimensional ferroelectric nanostructures: synthesis, properties, and applications." Advanced Science 3(7): 1500358.
[51]https://pages.boreas.ca/blog/piezo-haptics/5-primary-applications-of-the-piezoelectric-effect?lang=tw&logged_in_customer_id=
[52]https://yrgnthu.medium.com/%E5%8D%8A%E5%B0%8E%E9%AB%94%E9%A0%98%E5%9F%9F%E4%B8%AD%E7%9A%84%E9%90%B5%E9%9B%BB%E6%9D%90%E6%96%99-%E4%BB%A5hfo2%E7%82%BA%E4%BE%8B-a78952bcc1c6
[53]Li, Z., et al. (2023). "Pyroelectric effects in CdS phase junctions for dual-enhanced photocatalytic hydrogen production." Catalysis Science & Technology 13(8): 2559-2565.
[54]Wu, J., et al. (2018). "Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3." ACS applied materials & interfaces 10(21): 17842-17849.
[55]Liu, X., et al. (2020). "Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye." Journal of Materiomics 6(2): 256-262.
[56]Low, J., et al. (2017). "Heterojunction photocatalysts." Advanced materials 29(20): 1601694.
[57]Xu, Y., et al. (2024). "Photocatalysis Meets Piezoelectricity in a Type-I Oxygen Vacancy-Rich BaTiO3/BiOBr Heterojunction: Mechanism Insights from Characterizations to DFT Calculations." Inorganic Chemistry 63(14): 6500-6513.
[58]高旭, et al. (2019). "F-对弱吸附间苯二酚光催化降解效率的提升: 游离· OH 的作用." 环境科学学报 39(8): 2535-2542.
[59]Chen, Z., et al. (2020). "Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification." Science of the Total Environment 711: 134715.

電子全文 電子全文(網際網路公開日期:20290713)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊