|
[1]https://flexbooks.ck12.org/cbook/ck-12-middle-school-earth-science-flexbook-2.0/section/8.1/primary/lesson/distribution-of-water-on-earth-ms-es/ [2]http://www.thjj.org/sf_F7B442C7DE7F47A4A0AD553B60FB6270_227_8C0B6735583.html [3]高濃度COD廢水氧化處理技術評析 [4]https://en.m.wikipedia.org/wiki/File:Water_withdrawals_per_capita,_OWID.svg [5]W. H. Perkin, LXXIV.—On Mauveine and Allied Colouring Matters. Journal of the Chemical Society, Transactions, vol. 35, pp. 717–732, 1879 [6]https://zh.wikipedia.org/zh-tw/%E7%BD%97%E4%B8%B9%E6%98%8EB [7]https://zh.wikipedia.org/wiki/%E7%94%B2%E5%9F%BA%E8%97%8D [8]https://zh.wikipedia.org/zh-tw/%E7%94%B2%E5%9F%BA%E6%A9%99 [9]https://www.cas.cn/ky/kyjz/201101/t20110113_3061804.shtml [10]https://www.ever-clear.com.tw/en/capability/detail-b2 [11]H.J.H. Fenton, Oxidation of tartaric acid in presence of iron, J. Chem. Soc., 1894, 65, 899-910 [12]E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chemical reviews, 2009, 109, 6570-6631. [13]C. Walling, Fenton's reagent revisited," Accounts of chemical research, 1975, 8, 125-131. [14]C. Walling, A. Goosen, Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, Journal of the American Chemical Society, 1973, 95, 2987-2991 [15]T. Rigg, W. Taylor, J. Weiss, The rate constant of the reaction between hydrogen peroxide and ferrous ions, The journal of chemical physics, 1954, 22, 575-577. [16]P. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 2012, 299, 1-15 [17]Zhang, M.-h., et al. (2019). "A review on Fenton process for organic wastewater treatment based on optimization perspective." Science of the Total Environment 670: 110-121. [18]W. Song, M. Cheng, J. Ma, W. Ma, C. Chen, J. Zhao, Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay, Environmental science & technology, 2006, 40, 4782-4787 [19]R. Liu, Y. Guo, Z. Wang, J. Liu, Iron species in layered clay: Efficient electron shuttles for simultaneous conversion of dyes and Cr (VI), Chemosphere, 2014, 95, 643-646. [20]Z. Wang, W. Ma, C. Chen, J. Zhao, Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2, Journal of hazardous materials, 2009, 168 , 1246-1252. [21]R. Liu, D. Xiao, Y. Guo, Z. Wang, J. Liu, A novel photosensitized Fenton reaction catalyzed by sandwiched iron in synthetic nontronite, RSC Advances, 2014, 4, 12958-12963. [22]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 1972, 238, 37-38. [23]M. Cheng, Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation, Applied catalysis B: environmental, 2018, 3, 355-363 [24]W.P. Ting, M. C. Lu and Y. H. Huang, "The reactor design and comparison of Fenton, electro-Fenton and photo electro-Fenton processes for mineralization of benzene sulfonic acid (BSA)", Journal of hazardous materials, vol. 156, no. 1-3, pp. 421-427, 2008. [25]E. Basturk and M. Karatas, "Advanced oxidation of reactive blue 181 solution: A comparison between fenton and sono-fenton process", Ultrasonics sonochemistry, vol. 21, no. 5, pp. 1881-1885, 2014 [26]Z. Eren, "Ultrasound as a basic and auxiliary process for dye remediation: a review", Journal of Environmental Management, vol. 104, pp. 127-141, 2012. [27]S. papoutsakis, S. M. Cuevas, N. Gondrexon, S. baup, S. malato, & C. Pulgarin, Coupling between High-Frequency Ultrasound and Solar Photo Fenton at Pilot Scale for the Treatment of Organic Contaminants: An Initial Approach. Ultrasonics Sonochemistry, Vol. 22, 527–534, 2015 [28]利用觸媒高級氧化技術處理工廠高濃度 COD 廢水案例介紹,林樹榮*、李怡萱*、司洪濤*,工業污染防治 第 120 期(Dec. 2011) 55 [29]D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre‐treatment, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2004, 79, 431-454 [30]T. Pham, S. Brar, R. Tyagi, R. Surampalli, Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge, Ultrasonics Sonochemistry, 2010, 17, 38-45 [31]File:Pourbaix Diagram of Iron.svg - 維基百科,自由的百科全書 (wikipedia.org) [32]利用觸媒高級氧化技術處理工廠高濃度COD 廢水案例介紹 [33]Dey, A., et al. (2023). "Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent." Ultrasonics Sonochemistry 96: 106426. [34]Bosio, G. N., et al. (2023). "Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts." Catalysts 13(1): 159. [35]L. Jiwei, P. Changsheng, S.Xiangli , Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review, Environmental Pollution, 2022, 293(15), 118565-118585 [36]Dey, A., et al. (2023). "Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent." Ultrasonics Sonochemistry 96: 106426. [37]Wang, L., et al. (2022). "A review on advanced oxidation processes homogeneously initiated by copper (II)." Chemical engineering journal 427: 131721. [38]Yang, C., et al. (2014). "Enhanced photocatalytic degradation of rhodamine B by Cu2O coated silicon nanowire arrays in presence of H2O2." Journal of Materials Science & Technology 30(11): 1124-1129. [39]Mao, S., et al. (2021). "Cu2O nanoparticles anchored on 3D bifunctional CNTs/copper foam cathode for electrocatalytic degradation of sulfamethoxazole over a broad pH range." Science of the Total Environment 793: 148492. [40]Cahino, A. M., et al. (2019). "Characterization and evaluation of ZnO/CuO catalyst in the degradation of methylene blue using solar radiation." Ceramics International 45(11): 13628-13636. [41]Babu, S. G., et al. (2019). "Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO." Ultrasonics Sonochemistry 50: 218-223. [42]王蒙, 马建泰, 吕功煊. 光催化全分解水制氢中助催化剂表面氢氧复合反应的抑制. 分子催化, 2019, 33(5): 461-485. [43]Zheng, Z., et al. (2018). "Plasmon‐enhanced solar water splitting on metal‐semiconductor photocatalysts." Chemistry–A European Journal 24(69): 18322-18333. [44]Hoffmann, M. R., et al. (1995). "Environmental applications of semiconductor photocatalysis." Chemical reviews 95(1): 69-96. [45]Ni, J., et al. (2022). "The ultrahigh adsorption capacity and excellent photocatalytic degradation activity of mesoporous CuO with novel architecture." Nanomaterials 13(1): 142. [46]Mohammadzadeh, A., et al. (2020). "Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation." Journal of Alloys and Compounds 845: 156333. [47]Lee, Y., et al. (2018). "Photodeposited metal-semiconductor nanocomposites and their applications." Journal of Materiomics 4(2): 83-94. [48]https://muchong.com/html/201401/6895223.html [49]Bhardwaj, S., et al. (2020). "Influence of photodeposition time and loading amount of Ag co-catalyst on growth, distribution and photocatalytic properties of Ag@ TiO2 nanocatalysts." Optical Materials 106: 109975. [50]Liang, L., et al. (2016). "One‐dimensional ferroelectric nanostructures: synthesis, properties, and applications." Advanced Science 3(7): 1500358. [51]https://pages.boreas.ca/blog/piezo-haptics/5-primary-applications-of-the-piezoelectric-effect?lang=tw&logged_in_customer_id= [52]https://yrgnthu.medium.com/%E5%8D%8A%E5%B0%8E%E9%AB%94%E9%A0%98%E5%9F%9F%E4%B8%AD%E7%9A%84%E9%90%B5%E9%9B%BB%E6%9D%90%E6%96%99-%E4%BB%A5hfo2%E7%82%BA%E4%BE%8B-a78952bcc1c6 [53]Li, Z., et al. (2023). "Pyroelectric effects in CdS phase junctions for dual-enhanced photocatalytic hydrogen production." Catalysis Science & Technology 13(8): 2559-2565. [54]Wu, J., et al. (2018). "Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3." ACS applied materials & interfaces 10(21): 17842-17849. [55]Liu, X., et al. (2020). "Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye." Journal of Materiomics 6(2): 256-262. [56]Low, J., et al. (2017). "Heterojunction photocatalysts." Advanced materials 29(20): 1601694. [57]Xu, Y., et al. (2024). "Photocatalysis Meets Piezoelectricity in a Type-I Oxygen Vacancy-Rich BaTiO3/BiOBr Heterojunction: Mechanism Insights from Characterizations to DFT Calculations." Inorganic Chemistry 63(14): 6500-6513. [58]高旭, et al. (2019). "F-对弱吸附间苯二酚光催化降解效率的提升: 游离· OH 的作用." 环境科学学报 39(8): 2535-2542. [59]Chen, Z., et al. (2020). "Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification." Science of the Total Environment 711: 134715.
|