|
[1]P. N. Sharratt, “Chemicals manufacture by batch processes,” in Handbook of Batch Process Design, 1997, pp. 1–23. doi: 10.1007/978-94-009-1455-1_1. [2]M. A. Henson, “Biochemical reactor modeling and control,” IEEE Control Syst., vol. 26, no. 4, pp. 54–62, 2006, doi: 10.1109/mcs.2006.1657876. [3]Z. Ge, “Process data analytics via probabilistic latent variable models: A tutorial review,” Ind. Eng. Chem. Res., vol. 57, no. 38, pp. 12646–12661, 2018, doi: 10.1021/acs.iecr.8b02913. [4]T. Kourti, P. Nomikos, and J. F. MacGregor, “Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS,” J. Process Control, vol. 5, no. 4, pp. 277–284, 1995, doi: 10.1016/0959-1524(95)00019-M. [5]C. Undey and A. Cinar, “Statistical monitoring of multistage, multiphase batch processes,” IEEE Control Syst., vol. 22, no. 5, pp. 40–52, 2002, doi: 10.1109/MCS.2002.1035216. [6]G. Tomasi, F. Van Den Berg, and C. Andersson, “Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data,” J. Chemom., vol. 18, no. 5, pp. 231–241, 2004, doi: 10.1002/cem.859. [7]M. Jia, F. Chu, F. Wang, and W. Wang, “On-line batch process monitoring using batch dynamic kernel principal component analysis,” Chemom. Intell. Lab. Syst., vol. 101, no. 2, pp. 110–122, 2010, doi: 10.1016/j.chemolab.2010.02.004. [8]J. M. Lee, C. K. Yoo, and I. B. Lee, “Fault detection of batch processes using multiway kernel principal component analysis,” Comput. Chem. Eng., vol. 28, no. 9, pp. 1837–1847, 2004, doi: 10.1016/j.compchemeng.2004.02.036. [9]X. Xiao, G.Q. Liu, B.F. Hu, X. Zheng, L.N. Wang, S.J. Chen, A. Ullah, “A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel,” Comput. Mater. Sci., vol. 62, pp. 227–234, 2012, doi: 10.1016/j.commatsci.2012.05.053. [10]X.Y. Huang, H. Wang, W.H. Xue, A. Ullah, S. Xiang, H.L. Huang, L. Meng e, G. Ma, G.Z. Zhang, “A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels,” J. Alloys Compd., vol. 823, p. 153694, 2020, doi: 10.1016/j.jallcom.2020.153694. [11]J. Wang, A. S. Mohammed, E. Macioszek, M. Ali, D. V. Ulrikh, and Q. Fang, “A novel combination of PCA and machine learning techniques to select the most important factors for predicting tunnel construction performance,” Buildings, vol. 12, no. 7, 2022, doi: 10.3390/buildings12070919. [12]M. Ali and S. Hin Lai, “Artificial intelligent techniques for prediction of rock strength and deformation properties – A review,” Structures, vol. 55, no. January, pp. 1542–1555, 2023, doi: 10.1016/j.istruc.2023.06.131. [13]K. Wang, Z. Guo, Y. Wang, X. Yuan, and C. Yang, “Common and specific deep feature representation for multimode process monitoring using a novel variable-wise weighted parallel network,” Eng. Appl. Artif. Intell., vol. 104, no. 104381, pp. 1–10, 2021, doi: 10.1016/j.engappai.2021.104381. [14]S. R. Vijaya Raghavan, T. K. Radhakrishnan, and K. Srinivasan, “Soft sensor based composition estimation and controller design for an ideal reactive distillation column,” ISA Trans., vol. 50, no. 1, pp. 61–70, 2011, doi: 10.1016/j.isatra.2010.09.001. [15]Y. Tang, Y. Wang, C. Liu, X. Yuan, K. Wang, and C. Yang, “Semi-supervised LSTM with historical feature fusion attention for temporal sequence dynamic modeling in industrial processes,” Eng. Appl. Artif. Intell., vol. 117, no. 105547, pp. 1–11, 2023, doi: 10.1016/j.engappai.2022.105547. [16]X. Yuan, L. Li, and Y. Wang, “Nonlinear dynamic soft sensor modeling with supervised long short-term memory network,” IEEE Trans. Ind. Informatics, vol. 16, no. 5, pp. 3168–3176, 2020, doi: 10.1109/TII.2019.2902129. [17]K. Wang, X. Yuan, J. Chen, and Y. Wang, “Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring,” Neural Networks, vol. 136, pp. 54–62, 2021, doi: 10.1016/j.neunet.2020.11.006. [18]X. Zhang and Z. Ge, “Latent adversarial regularized autoencoder for high-dimensional probabilistic time series prediction,” Neural Networks, vol. 155, pp. 383–397, 2022, doi: 10.1016/j.neunet.2022.08.025. [19]S. Lin, R. Clark, R. Birke, and S. Sch, “Anomaly detection for time series using VAE-LSTM hybrid model,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), Barcelona, 2020, pp. 4322–4326. [20]Y. S. Lee, S. K. Ooi, D. Tanny, and J. Chen, “Developing soft-sensor models using latent dynamic variational autoencoders,” 2021. [21]Y. S. Lee and J. Chen, “Automatic Deep Extraction of Robust Dynamic Features for Industrial Big Data Modeling and Soft Sensor Application,” Neural Networks, vol. 154, pp. 455–468, 2022, doi: 10.1016/j.neunet.2022.06.010. [22]K. Sohn, X. Yan, and H. Lee, “Learning structured output representation using deep conditional generative models,” Adv. Neural Inf. Process. Syst., vol. 2015-Janua, pp. 3483–3491, 2015. [23]D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, SanDiego, 2015, pp. 1–15. [24]X. Zhang and Z. Ge, “Automatic Deep Extraction of Robust Dynamic Features for Industrial Big Data Modeling and Soft Sensor Application,” IEEE Trans. Ind. Informatics, vol. 16, no. 7, pp. 4456–4467, 2020, doi: 10.1109/TII.2019.2945411. [25]P. Xie, M. Gao, H. Zhang, Y. Niu, and X. Wang, “Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network,” Energy, vol. 190, p. 116482, 2020, doi: 10.1016/j.energy.2019.116482. [26]L. Feng, C. Zhao, and Y. Sun, “Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–12, 2020, doi: 10.1109/tnnls.2020.3015929. [27]X. Yuan, L. Li, Y. A. W. Shardt, Y. Wang, and C. Yang, “Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 4404–4414, 2021, doi: 10.1109/TIE.2020.2984443. [28]Z. Ge, B. Huang, and Z. Song, “Nonlinear semisupervised principal component regression for soft sensor modeling and its mixture form,” J. Chemom., vol. 28, no. 11, pp. 793–804, 2014, doi: 10.1002/cem.2638. [29]Z. Ge and Z. Song, “Semisupervised bayesian method for soft sensor modeling with unlabeled data samples,” AIChE J., vol. 57, no. 8, pp. 2109–2119, 2010, doi: https://doi.org/10.1002/aic.12422. [30]Y. Tang, Y. Wang, C. Liu, X. Yuan, K. Wang, and C. Yang, “Semi-supervised LSTM with historical feature fusion attention for temporal sequence dynamic modeling in industrial processes,” Eng. Appl. Artif. Intell., vol. 117, no. September 2022, p. 105547, 2023, doi: 10.1016/j.engappai.2022.105547. [31]G. D. Zhang, X. He, and X. Yang, “A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations,” J. Comput. Phys., vol. 448, no. 110752, pp. 1–19, 2022, doi: 10.1016/j.jcp.2021.110752. [32]A. Daw, A. Karpatne, W. D. Watkins, J. S. Read, and V. Kumar, “Physics-guided neural networks (PGNN): An application in lake temperature modeling,” 2021. doi: 10.48550/arXiv.1710.11431. [33]S. Hwang and S. K. Choi, “Deep learning-based surrogate modeling via physics-informed artificial image (PiAI) for strongly coupled multidisciplinary engineering systems,” Knowledge-Based Syst., vol. 232, p. 107446, 2021, doi: 10.1016/j.knosys.2021.107446. [34]Y.L. Zhuang, Y.X. Liu, A. Ahmed, Z.G. Zhong, E.A. del Rio Chanona, C. P. Hale, M. Mercang¨oz., “A hybrid data-driven and mechanistic model soft sensor for estimating CO2 concentrations for a carbon capture pilot plant,” Comput. Ind., vol. 143, no. March, 2022, doi: 10.1016/j.compind.2022.103747. [35]T. N. K. Nguyen, T. Dairay, R. Meunier, and M. Mougeot, “Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: An application to rubber calendering process,” Eng. Appl. Artif. Intell., vol. 114, no. February, p. 105176, 2022, doi: 10.1016/j.engappai.2022.105176. [36]C. Zhang and A. Shafieezadeh, “Nested physics-informed neural network for analysis of transient flows in natural gas pipelines,” Eng. Appl. Artif. Intell., vol. 122, no. March, p. 106073, 2023, doi: 10.1016/j.engappai.2023.106073. [37]T. A. Ihunde and O. Olorode, “Application of physics informed neural networks to compositional modeling,” J. Pet. Sci. Eng., vol. 211, no. 110175, pp. 1–10, 2022, doi: 10.1016/j.petrol.2022.110175. [38]L. F. Nazari, E. Camponogara, L. S. Imsland, and L. O. Seman, “Neural networks informed by physics for modeling mass flow rate in a production wellbore,” Eng. Appl. Artif. Intell., vol. 128, no. November 2023, p. 107528, 2024, doi: 10.1016/j.engappai.2023.107528. [39]K. S. Gyamfi, J. Brusey, and E. Gaura, “Differential radial basis function network for sequence modelling[Formula presented],” Expert Syst. Appl., vol. 189, no. September 2021, p. 115982, 2022, doi: 10.1016/j.eswa.2021.115982. [40]J. Fernández, M. Corbetta, C. S. Kulkarni, J. Chiachío, and M. Chiachío, “Training of physics-informed Bayesian neural networks with ABC-SS for prognostic of Li-ion batteries,” Comput. Ind., vol. 155, no. November 2023, p. 104058, 2024, doi: 10.1016/j.compind.2023.104058. [41]H. P. H. Luu, H. M. Le, and H. A. Le Thi, “Markov chain stochastic DCA and applications in deep learning with PDEs regularization,” Neural Networks, vol. 170, pp. 149–166, 2024, doi: 10.1016/j.neunet.2023.11.032. [42]D. Chen, Y. Li, J. Guo, and Y. Li, “Estimation of hypersonic vehicle weight using Physics-Informed neural network supported by knowledge based engineering,” Expert Syst. Appl., vol. 195, no. December 2021, 2022, doi: 10.1016/j.eswa.2022.116609. [43]M. S. F. Bangi, K. Kao, and J. S. Il Kwon, “Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for β-carotene production using Saccharomyces cerevisiae,” Chem. Eng. Res. Des., vol. 179, pp. 415–423, 2022, doi: 10.1016/j.cherd.2022.01.041. [44]X. Sheng and W. Xiong, “Soft sensor design based on phase partition ensemble of LSSVR models for nonlinear batch processes,” Math. Biosci. Eng., vol. 17, no. 2, pp. 1901–1921, 2020, doi: 10.3934/mbe.2020100. [45]X. Shi and W. Xiong, “Adaptive ensemble learning strategy for semi-supervised soft sensing,” J. Franklin Inst., vol. 357, no. 6, pp. 3753–3770, 2020, doi: 10.1016/j.jfranklin.2019.07.008. [46]F. Shen, J. Zheng, L. Ye, and X. Ma, “LSTM Soft Sensor Development of Batch Processes with Multivariate Trajectory-Based Ensemble Just-in-Time Learning,” IEEE Access, vol. 8, pp. 73855–73864, 2020, doi: 10.1109/ACCESS.2020.2988668. [47]A. S. Struchtrup, D. Kvaktun, and R. Schiffers, “Adaptive quality prediction in injection molding based on ensemble learning,” Procedia CIRP, vol. 99, no. March, pp. 301–306, 2021, doi: 10.1016/j.procir.2021.03.045. [48]Q. Sun and Z. Ge, “Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data,” IEEE Trans. Ind. Informatics, vol. 17, no. 1, pp. 260–269, 2021, doi: 10.1109/TII.2020.2969709. [49]J. M. Moreira de Lima and F. M. Ugulino de Araujo, “Ensemble deep relevant learning framework for semi-supervised soft sensor modeling of industrial processes,” Neurocomputing, vol. 462, pp. 154–168, 2021, doi: 10.1016/j.neucom.2021.07.086. [50]X. Liu, L. Li, F. Zhang, and N. Li, “Research on soft sensor modeling method for complex chemical processes based on local semi-supervised selective ensemble learning,” Meas. Sci. Technol., vol. 35, no. 7, 2024, doi: 10.1088/1361-6501/ad3fd5. [51]A. Gosavi, “A Tutorial for Reinforcement Learning,” Sci. Technol., no. 716, pp. 1–12, 2009, [Online]. Available: http://web.mst.edu/~gosavia/tutorial.pdf [52]I. Bifulco, S. Cirillo, C. Esposito, R. Guadagni, and G. Polese, “An intelligent system for focused crawling from Big Data sources,” Expert Syst. Appl., vol. 184, no. June, p. 115560, 2021, doi: 10.1016/j.eswa.2021.115560. [53]R. Xiong, J. Cao, and Q. Yu, “Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle,” Appl. Energy, vol. 211, no. 5, pp. 538–548, 2018, doi: 10.1016/j.apenergy.2017.11.072. [54]X. C. Zhang, J. G. Gong, and F. Z. Xuan, “A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures,” Eng. Fract. Mech., vol. 258, no. 108130, pp. 1–13, 2021, doi: 10.1016/j.engfracmech.2021.108130. [55]L. F. M. Zorzetto and J. A. Wilson, “Monitoring bioprocesses using hybrid models and an extended kalman filter,” Comput. Chem. Eng., vol. 20, no. SUPPL.1, pp. 689–694, 1996, doi: 10.1016/0098-1354(96)00124-x. [56]D. P. Searson, S. C. Burnham, M. J. Willis, and A. R. Wright, “Identification of chemical reaction mechanism from batch process data,” in Proceedings of the 17th IASTED International conference on modelling and simulation, 2006, pp. 511–516. doi: 10.5555/1167113.1167204. [57]J. Dai, N. Chen, X. Yuan, W. Gui, and L. Luo, “Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model,” ISA Trans., vol. 98, pp. 403–417, 2020, doi: 10.1016/j.isatra.2019.08.023. [58]C. D. Paternina-arboleda, J. R. Montoya-Torres, and A. Fábregas-Ariza, “Simulation-optimization using a reinforcement learning approach,” in Proceedings of the 2008 Winter Simulation Conference, Miami, 2008, pp. 1376–1383. doi: 10.1109/WSC.2008.4736213. [59]F. Guo, X. Zhou, J. Liu, Y. Zhang, D. Li, and H. Zhou, “A reinforcement learning decision model for online process parameters optimization from offline data in injection molding,” Appl. Soft Comput. J., vol. 85, p. 105828, 2019, doi: 10.1016/j.asoc.2019.105828. [60]S. Nikita, A. Tiwari, D. Sonawat, H. Kodamana, and A. S. Rathore, “Reinforcement learning based optimization of process chromatography for continuous processing of biopharmaceuticals,” Chem. Eng. Sci., vol. 230, p. 116171, 2021, doi: 10.1016/j.ces.2020.116171. [61]M.I. Radaideh, I. Wolverton, J. Joseph, J.J. Tusar, U. Otgonbaatar, N. Roy, B. Forget, K. Shirvan, “Physics-informed reinforcement learning optimization of nuclear assembly design,” Nucl. Eng. Des., vol. 372, no. August 2020, p. 110966, 2021, doi: 10.1016/j.nucengdes.2020.110966. [62]H. Liu, C. Yu, H. Wu, Z. Duan, and G. Yan, “A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting,” Energy, vol. 202, no. 117794, pp. 1–18, 2020, doi: 10.1016/j.energy.2020.117794. [63]L. Bramlage and A. Cortese, “Generalized attention-weighted reinforcement learning,” Neural Networks, vol. 145, pp. 10–21, 2022, doi: 10.1016/j.neunet.2021.09.023. [64]D. Dey, L. Ghosh, D. Bhattacharya, and A. Konar, “A 2-phase prediction of a non-stationary time-series by Taylor series and reinforcement learning,” Appl. Soft Comput., vol. 145, p. 110565, 2023, doi: 10.1016/j.asoc.2023.110565.
|