|
(1) Katsnelson, M. I. https://www.britannica.com/science/graphene. 2024, April 26. (accessed 2024 April). (2) Mbayachi, V. B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E. R.; khan, A. u. Graphene synthesis, characterization and its applications: A review. Results in Chemistry 2021, 3, 100163. DOI: https://doi.org/10.1016/j.rechem.2021.100163. (3) Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P. H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3 (4), 2260-2345. (4) Information, N. C. f. B. PubChem Compound Summary for CID 146000141, Graphene quantum dot. 2024. https://pubchem.ncbi.nlm.nih.gov/compound/Graphene-quantum-dot (accessed 2024 Retrieved May 7). (5) Ansari, S. A. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials 2022, 12 (21), 3814. (6) Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10-14. DOI: https://doi.org/10.1016/j.nantod.2016.12.006. (7) Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and applications of graphene quantum dots: a review. Nanotechnology Reviews 2018, 7 (2), 157-185. DOI: doi:10.1515/ntrev-2017-0199 (acccessed 2024-05-08). (8) Mori, T. Synergetic Photon Upconversion Realized by a Controlled Toroidal Interaction in Hexaarylbenzene Derivatives. In Photosynergetic Responses in Molecules and Molecular Aggregates, Miyasaka, H., Matsuda, K., Abe, J., Kawai, T. Eds.; Springer Singapore, 2020; pp 287-300. (9) Tan, J.; Li, D.; Zhu, J.; Han, N.; Gong, Y.; Zhang, Y. Self-trapped excitons in soft semiconductors. Nanoscale 2022, 14 (44), 16394-16414, 10.1039/D2NR03935D. DOI: 10.1039/D2NR03935D. (10) Panda, D. P.; Swain, D.; Chaudhary, M.; Mishra, S.; Bhutani, G.; De, A. K.; Waghmare, U. V.; Sundaresan, A. Electron–Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium)6Mn3X12 (X = Cl and Br). Inorganic Chemistry 2022, 61 (43), 17026-17036. DOI: 10.1021/acs.inorgchem.2c01581. (11) Feng, S.-W. https://ap.nuk.edu.tw/p/412-1020-130.php?Lang=en. 2020. (accessed 2024 April). (12) Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Advanced Materials 2018, 30 (1), 1704740-n/a. DOI: 10.1002/adma.201704740. (13) Lei, Z.-d.; Wang, J.-j.; Wang, L.; Yang, X.-y.; Xu, G.; Tang, L. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. Journal of Hazardous Materials 2016, 312, 298-306. DOI: https://doi.org/10.1016/j.jhazmat.2016.03.044. (14) Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Physical Review B 1992, 45 (16), 8989-8994. DOI: 10.1103/PhysRevB.45.8989. (15) Williams, R. T.; Song, K. S. The self-trapped exciton. Journal of Physics and Chemistry of Solids 1990, 51 (7), 679-716. DOI: https://doi.org/10.1016/0022-3697(90)90144-5. (16) Tao, W.; Zhang, C.; Zhou, Q.; Zhao, Y.; Zhu, H. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nature Communications 2021, 12 (1), 1400. DOI: 10.1038/s41467-021-21721-3.
|