跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昀叡
研究生(外文):LEE, YUN-RUI
論文名稱:紫外光-電混凝浮除程序處理高藻水之研究:光照通量對藻細胞及消毒副產物前質移除之影響
論文名稱(外文):Algal-rich water treatment by UV-electrocoagulation-floatation: Effect of light fluence on the removal of algal cells and disinfection by-product precursors
指導教授:林志麟林志麟引用關係
指導教授(外文):LIN, JR-LIN
口試委員:康世芳黃郁慈莊易學林志麟
口試委員(外文):HANG, SHYH-FANGHUANG, YU-TZUCHUANG, YI-HSUEHLIN JR-LIN
口試日期:2024-07-15
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:130
中文關鍵詞:藻類紫外光電混凝消毒副產物
外文關鍵詞:algaeultravioletelectrocoagulationdisinfection by-products
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
湖庫中藻華現象之發生,將影響傳統水處理廠之淨水程序運行,並增加氯化後受管制之消毒副產物(Disinfection by-products, DBPs)濃度。紫外光(Ultraviolet, UV)複合型(Hybrid)技術,如UV-混沉法、UV-浮除法等,均受證實具備強化除藻之能力。故本研究結合紫外光與電混凝浮除(Electro-coagulation-flotation, ECF)技術,透過分析藻細胞特性、藻類有機物特性、混凝特性、DBPs生成潛勢、能源效益等項目,以探討紫外光-電混凝浮除(UVC-ECF)程序處理含銅綠微囊藻(Microcystis aeruginosa, MA)及小球藻(Chlorella sp., CHL)高藻原水之藻細胞移除與消毒副產物前質削減能力。
本研究結果顯示,伴隨著UVC光通量增加,MA和CHL藻細胞之氧化物(Reactive oxygen species, ROS)濃度亦增加;於適度光通量照射下(60 mJ/cm2),總抗氧化能力(Total antioxidant capacity, TAC)物質濃度達最高,並刺激兩種藻細胞之胞外聚合物(Extracellular polymeric substance, EPS)分泌,其中MA以黏性之蛋白為主,CHL則為影響凝聚之多醣,進而助於藻細胞團聚之成效。於此條件下,UVC-ECF程序對MA和CHL之藻細胞移除率分別提升18 %和10 %,以及主要去除腐植質(Humic substances)物質(類腐植酸及類磺酸)與200-5000道爾頓(Da)之有機分子。此外,UVC-ECF可進一步增大MA之膠羽粒徑約68 %,以及溶解性有機碳(Dissolved organic carbon, DOC)濃度去除率約8 %,並且有效削減16 %之DBPs生成潛勢(Disinfection by-product formation potential, DBPFP)。另一方面,與單獨ECF程序相比,UVC-ECF程序對MA和CHL之單位細胞移除能源(kWh/cell)消耗均有效降低12-22 %。總而言之,UVC-ECF程序中,高藻水經紫外光照射後,促進藻細胞EPS之分泌,增加藻細胞間黏性與團聚能力,可進一步提升ECF程序移除藻細胞效率,同步降低能源消耗和DBPFP,其應用於高藻原水處理上具備技術可行性。
The occurrence of algal blooms in lakes and reservoirs can severely impact traditional water treatment plants (WTPs) and cause operational challenges in water production. This can significantly affect drinking water quality and increase the risk of forming forming regulated disinfection by-products (DBPs) during post-chlorination. Studies have shown that ultraviolet (UV)-based treatments like UV-coagulation and UV-flotation can enhance the removal of algal cells. However, the definition of UV fluence remains unclear. Therefore, this study aimed to assess the effectiveness of UVC combined with electro-coagulation flotation (ECF) methods in treating water contaminated with Microcystis aeruginosa (MA) and Chlorella sp. (CHL) in lakes and reservoirs. The study calculated the light flux based on the actual light intensity received by algal cells and tested various UV fluence levels (0-100 mJ/cm2) and current densities (0.5-1 mA/cm2). Initially, the study examined the impact of UVC on algal extracellular polymeric substances (EPS) viscosity and optical properties. Subsequently, it investigated the reduction of algal cells and DBPs through a combination of UVC-ECF processes. Additionally, the study considered energy consumption.
The results showed that MA and CHL suspensions exhibit the highest levels of TAC substance concentration and EPS viscosity at 60 mJ/cm2. Additionally, CHL cells display greater resistance to UVC exposure due to its abundance of HA substances and multi-layered cell wall structure characteristics. In the UVC-ECF hybrid technology, when MA and CHL suspensions are exposed to UVC irradiation at 60 mJ/cm2, the algae cell removal rate increases by 67.3% and 9.4%, respectively, and the removal efficiency improves by 18% and 10%, respectively. At such a condition, humic substances, including humic acid like (HAL) and fulvic acid like (FAL) substances as well as the organic molecules between 200 and 5000 Da are predominantly removed. Moreover, in the case of MA suspensions, UVC-ECF can enhance MA flocs diameter increased by 68%, and the removal of DOC can be enhanced by up to 8.1% along with the alleviation of DBPs by up to 16 %. However, CHL cells showed the least reduction for DOC and DBPs alleviated. UVC exposure contributes to releasing proteins and polysaccharides, enhancing the adhesion and bridging ability between algal cells in ECF processes. On the other hand, the energy consumption per cell during UVC-ECF at 60 mJ/cm2 for both MA and CHL suspensions can be effectively reduced by 12-22% compared to that without UVC pretreatment. It is concluded that UVC-ECF is an energy-efficient technique to remove algae cells and DBP precursors from algae-laden water with low energy input, making it a promising option for practical application in drinking water treatment.
目 錄
摘 要 I
Abstract II
目 錄 IV
圖目錄 VII
表目錄 IX
第一章 前 言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 高藻原水藻細胞移除技術之探討 4
2.2 藻細胞有機物成分差異與特性之影響 6
2.2.1 胞內與胞外有機物成分之差異 6
2.2.2 胞外聚合物成分之特性 9
2.2.3 藻類有機物成分與消毒副產物之特性 12
2.3 紫外光照射對藻細胞結構與內分泌之影響 14
2.3.1 紫外光波長差異對藻細胞之影響 14
2.3.2 紫外光照對藻細胞損傷及AOM降解之機制 15
2.3.3 紫外光照引起藻細胞氧化應激現象生成之機制 17
2.4 紫外光照降解藻類有機物之行為與機制 20
2.5 電混凝浮除藻細胞與消毒副產物前質之機制 22
2.5.1 電混凝浮除程序之應用及對藻細胞移除之影響 22
2.5.2 電混凝浮除程序去除消毒副產物前質之特性 25
第三章 研究架構及方法 27
3.1 研究架構 27
3.2 藻類培養及藻液配製 30
3.2.1 藻類培養環境配製 30
3.2.2 藻細胞數量定量 32
3.2.3 藻細胞尺寸及量測 33
3.2.4 有機物濃度定量 33
3.2.5 離子強度定量 34
3.2.6 酸鹼值測定 34
3.2.7 藻液配製 34
3.2.8 藻液吸光度測定 35
3.3 紫外光照射程序 36
3.3.1 紫外光照射反應器模組設計 36
3.3.2 紫外光通量測定 38
3.4 電混凝浮除程序 40
3.5 藻細胞特性分析 42
3.5.1 藻細胞結構觀察 42
3.5.2 活性氧物質測定 42
3.5.3 總抗氧化能力物質測定 43
3.6 藻細胞有機物成分特性分析 44
3.6.1 藻細胞胞外有機物分離 44
3.6.2 藻細胞EPS分離 44
3.6.3 溶解性有機碳分析 44
3.6.4 螢光有機物成分分析 45
3.6.5 有機物分子量分布分析 46
3.6.6 碳氮鍵成分分析及SUVA值 47
3.6.7 多醣濃度分析 47
3.6.8 蛋白質濃度分析 48
3.6.9 胞外聚合物黏性分析 48
3.7 混凝特性分析 49
3.7.1 膠羽粒徑分析 49
3.7.2 界達電位分析 49
3.8 能源效益評估 50
3.9 消毒副產物生成潛勢分析 50
3.9.1 三鹵甲烷、鹵化乙腈及鹵代酮萃取 51
3.9.2 鹵化乙酸萃取 51
第四章 結果與討論 53
4.1 紫外光光通量對藻細胞分泌物成分及結構之影響 53
4.1.1 活性氧與抗氧化能力物質之釋出 53
4.1.2 藻細胞外觀結構之變化 55
4.1.3 胞外螢光有機物之成分 62
4.1.4 胞外有機物特性及分子量分佈變化 68
4.1.5 胞外聚合物成分及黏性 74
4.2 紫外光-電混凝浮除程序操作條件對藻細胞移除之影響 79
4.2.1 藻細胞移除效能 79
4.2.2 螢光有機物去除效能 82
4.2.3 有機物特性及分子量分布 84
4.3 紫外光-電混凝浮除程序對藻細胞移除成效及能耗分析 88
4.4 紫外光-電混凝浮除程序對消毒副產物生成潛勢之削減 93
4.5 紫外光-電混凝浮除程序之機制 98
4.5.1 紫外光光通量刺激胞外聚合物分泌行為 98
4.5.2 紫外光-電混凝浮除程序移除藻細胞行為 99
第五章 結 論 101
參考文獻 102

圖目錄
圖 2.1藻細胞ROS之產生途徑 18
圖 2.2鋁極電混凝之膠羽及氣泡生成途徑 23
圖 3.1研究架構 29
圖 3.2 MA及CHL之螢光強度分布及圈選範疇 33
圖 3.3紫外光(UVC)照射反應器設計模擬圖 37
圖 3.4紫外光(UVC)照射反應器設備介紹 37
圖 3.5 UVC光通量示意圖 38
圖 3.6 UVC照射反應器之UV254光通量檢量線 40
圖 3.7 ECF程序設備介紹 41
圖 3.8螢光有機物成分與螢光光譜分布 46
圖 4.1不同UVC光通量下胞內ROS及TAC物質濃度增加率之變化 54
圖 4.2不同UVC光通量下MA藻細胞結構變化 60
圖 4.3不同UVC光通量下CHL藻細胞結構變化 61
圖 4.4不同UVC光通量下具EPS藻細胞之EOM螢光強度降解率變化 64
圖 4.5不同UVC光通量下具EPS藻細胞之bEOM螢光強度降解率變化 65
圖 4.6不同UVC光通量下EPS移除後藻細胞之EOM螢光強度降解率變化 66
圖 4 7不同UVC光通量下EPS移除後藻細胞之bEOM螢光強度降解率變化 67
圖 4.8不同UVC光通量下具EPS之MA分子量百分比變化 70
圖 4.9不同UVC光通量下具EPS之CHL分子量百分比變化 71
圖 4.10不同UVC光通量下MA EOM分子量分布之螢光有機物強度變化 72
圖 4.11不同UVC光通量下CHL EOM分子量分布之螢光有機物強度變化 73
圖 4.12不同UVC光通量下具EPS藻細胞之黏性變化 76
圖 4.13不同UVC光通量下UVC-EC階段膠羽粒徑增加率變化(0.75 mA/cm2) 81
圖 4.14不同UVC光通量下UVC-ECF之螢光強度去除率變化(0.75 mA/cm2) 83
圖 4.15不同電流密度下UVC-ECF之分子量百分比變化(60 mJ/cm2) 86
圖 4.16不同UVC光通量下UVC-ECF之分子量百分比變化(0.75 mA/cm2) 87
圖 4.17不同UVC光通量下ECF移除藻細胞之變化 90
圖 4.18不同UVC光通量下EC之藻細胞移除速率影響 91
圖 4.19不同UVC光通量下UVC-ECF之單位藻細胞移除能耗影響 92
圖 4.20不同UVC光通量下藻細胞EOM之DBPFP變化 96
圖 4.21不同UVC光通量下ECF程序削減DBPFP之變化 97
圖 4.22不同UVC光通量下MA和CHL藻細胞之EPS生成及UVC-ECF藻細胞之移除機制 100

表目錄
表 2-1高藻原水藻細胞移除之技術 5
表 2-2 AOM之成分、分子量、螢光成分及親疏水性比較 8
表 2-3不同物種EPS之成分及黏性差異 11
表 2-4消毒副產物分類及成分 13
表 2-5 UVC光通量變化對藻細胞結構及DOC濃度之影響 16
表 2-6藻細胞受UVC照射之ROS濃度與TAC物質變化 19
表 2-7 ROS對藻細胞之氧化損傷形式 19
表 2-8水中DOM之螢光有機物成分與加氯後DBPs生成之關聯 21
表 2-9 ECF程序之鋁製陽極對水中有機物去除影響 26
表 3-1培養液(BG-11)及儲備溶液成分 31
表 3-2藻類培養環境 31
表 3-3流式細胞儀雷射光可激發之螢光訊號範圍 32
表 3-4藻液配製之水質條件 35
表 3-5藻液配置之吸光度 35
表 3-6 DBPs之各類分析項目 51
表 3-7 GC-ECD之DBPs各項分析方法偵測極限 52
表 4-1不同UVC光通量下MA之外觀影響 57
表 4-2不同UVC光通量下CHL之外觀影響 58
表 4-3高張溶液對藻細胞之質離反應影響 59
表 4-4不同UVC光通量下具EPS藻細胞之有機物特性影響 69
表 4-5不同電流密度下UVC-ECF之藻細胞移除率變化(60 mJ/cm2) 80
表 4-6不同UVC光通量下UVC-ECF之藻細胞移除率變化(0.75 mA/cm2) 80
表 4-7不同電流密度下UVC-ECF之有機物特性變化(60 mJ/cm2) 85
表 4-8不同UVC光通量下UVC-ECF之有機物特性變化(0.75 mA/cm2) 85
表 4-9不同UVC光通量下ECF快混中水樣界達電位之變化 89
表 4-10不同UVC光通量下ECF程序削減DBPFP之變化 95
表 4-11不同UVC光通量下ECF程序對螢光有機物及DOC之去除率變化 95
Baudelet, P.-H., Ricochon, G., Linder, M., and Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371.
Bhushan, S., Jayakrishnan, U., Johnson, N., Prajapati, S. K., Lakshan, K. A., Kaphle, K., Eshkabilow, S., and Simsek, H. (2024). UV-C pretreatment of wastewater-grown algal biomass for recover of biofuel precursors. Journal of Environmental Chemical Engineering, 112087.
Borderie, F., Alaoui-Sehmer, L., Bousta, F., Alaoui-Sossé, B., and Aleya, L. (2014). Cellular and molecular damage caused by high UV-C irradiation of the cave-harvested green alga Chlorella minutissima: implications for cave management. International Biodeterioration and Biodegradation, 93, 118-130.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Castenholz, R. W., and Garcia-Pichel, F. (2012). Cyanobacterial responses to UV radiation. In Ecology of Cyanobacteria II (pp. 481-499). Springer.
Chen, C.-S., Shiu, R.-F., Hsieh, Y.-Y., Xu, C., Vazquez, C. I., Cui, Y., Hsu, I. C., Quigg, A., Santschi, P. H., and Chin, W.-C. (2021). Stickiness of extracellular polymeric substances on different surfaces via magnetic tweezers. Science of The Total Environment, 757, 143766.
Chen, J.-J., Yeh, H.-H., and Tseng, I.-C. (2009). Effect of ozone and permanganate on algae coagulation removal–Pilot and bench scale tests. Chemosphere, 74(6), 840-846.
Chen, S., Deng, J., Li, L., and Gao, N. (2018). Evaluation of disinfection by-product formation during chlor (am) ination from algal organic matter after UV irradiation. Environmental Science and Pollution Research, 25, 5994-6002.
Cheng, S., Tan, D., Wang, H., Mubashar, M., Li, L., and Zhang, X. (2024). In-Situ Flotation Removal of Microcystis Using Positively Charged Bubbles: The Role of Low Concentration Protein-Containing Aom in the Formation of Network Structures. Available at SSRN 4657318.
Chuang, Y.-H., Parker, K. M., and Mitch, W. A. (2016). Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process. Environmental science and technology, 50(20), 11209-11217.
Cisternas-Novoa, C., Lee, C., and Engel, A. (2015). Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): Differences between their origin and vertical distributions in the ocean. Marine Chemistry, 175, 56-71.
Coohill, T. P., and Sagripanti, J. L. (2008). Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochemistry and Photobiology, 84(5), 1084-1090.
Dai, R., Xiong, Y., Ma, Y., and Tang, T. (2020). Algae removal performance of UV-radiation-enhanced coagulation for two representative algal species. Science of The Total Environment, 745, 141013.
Dong, F., Lin, Q., Deng, J., Zhang, T., Li, C., and Zai, X. (2019). Impact of UV irradiation on Chlorella sp. damage and disinfection byproducts formation during subsequent chlorination of algal organic matter. Science of The Total Environment, 671, 519-527.
Dong, F., Lin, Q., Li, C., He, G., and Deng, Y. (2021). Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor (am) ination: A review. Science of The Total Environment, 754, 141955.
Drees, K. P., Abbaszadegan, M., and Maier, R. M. (2003). Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research, 37(10), 2291-2300.
Du, J., Wang, C., Zhao, Z., Liu, J., Deng, X., and Cui, F. (2022). Mineralization, characteristics variation, and removal mechanism of algal extracellular organic matter during vacuum ultraviolet/ozone process. Science of The Total Environment, 820, 153298.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Fan, Z., Gong, S., Xu, X., Zhang, X., Zhang, Y., and Yu, X. (2014). Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters. International journal of hygiene and environmental health, 217(2-3), 300-306.
Fayad, N., Yehya, T., Audonnet, F., and Vial, C. (2017). Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode. Algal Research, 25, 1-11.
Fernández-Pascual, E., Droz, B., O’Dwyer, J., O’Driscoll, C., Goslan, E. H., Harrison, S., and Weatherill, J. (2023). Fluorescent Dissolved Organic Matter Components as Surrogates for Disinfection Byproduct Formation in Drinking Water: A Critical Review. ACS ES&T Water.
Gauthier, M., Senhorinho, G., and Scott, J. (2020). Microalgae under environmental stress as a source of antioxidants. Algal Research, 52, 102104.
Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930.
Henderson, R. K., Baker, A., Parsons, S. A., and Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435-3445.
Holzinger, A., and Lütz, C. (2006). Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron, 37(3), 190-207.
Hu, C., Wang, S., Sun, J., Liu, H., and Qu, J. (2016). An effective method for improving electrocoagulation process: optimization of Al13 polymer formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 234-240.
Hua, L.-C., Chao, S.-J., and Huang, C. (2019). Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM). Water Research, 148, 231-238.
Hua, L.-C., Chao, S.-J., Huang, K., and Huang, C. (2020). Characteristics of low and high SUVA precursors: relationships among molecular weight, fluorescence, and chemical composition with DBP formation. Science of The Total Environment, 727, 138638.
Hua, L.-C., Lin, J.-L., Chen, P.-C., and Huang, C. (2017). Chemical structures of extra-and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts. Chemical Engineering Journal, 328, 1022-1030.
Hua, L.-C., Lin, J.-L., Syue, M.-Y., Huang, C., and Chen, P.-C. (2018). Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation. Science of The Total Environment, 621, 1467-1474.
Krishnamoorthy, N., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Arunachalam, T., and Paramasivan, B. (2021). Recent advances and future prospects of electrochemical processes for microalgae harvesting. Journal of Environmental Chemical Engineering, 9(5), 105875.
Landels, A., Beacham, T. A., Evans, C. T., Carnovale, G., Raikova, S., Cole, I. S., Goddard, P., Chuck, C., and Allen, M. J. (2019). Improving electrocoagulation floatation for harvesting microalgae. Algal Research, 39, 101446.
Li, L., Gao, N., Deng, Y., Yao, J., and Zhang, K. (2012). Characterization of intracellular and extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor and taste compounds. Water Research, 46(4), 1233-1240.
Lin, J.-L., Huang, C., and Wang, W. (2015). Effect of cell integrity on algal destabilization by oxidation-assisted coagulation. Separation and Purification Technology, 151, 262-268.
Lin, J.-L., Sidik, F., and Kang, S.-F. (2022). Minimization of halogenated disinfection by-product precursors by Al-based electrocoagulation–flotation (ECF) toward cyanobacteria-laden water. AQUA—Water Infrastructure, Ecosystems and Society, 71(9), 1054-1067.
Lin, J.-L., Sidik, F., and Kang, S.-F. (2023). Harvesting of microcells from cyanobacteria-laden water by energy-efficient electro-flocculation-flotation with aluminum hydrates. Journal of Water Process Engineering, 52, 103585.  
Lu, Z., Zhang, K., Liu, X., and Shi, Y. (2019). High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO2). Environmental Science and Pollution Research, 26(8), 7785-7792.
Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., Agrawal, G. K., Srivastava, A., and Sarkar, A. (2022). Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in Plants–maintenance of structural individuality and functional blend. Advances in Redox Research, 100039.
Marhaba, T. F., and Van, D. (2000). The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. Journal of Hazardous materials, 74(3), 133-147.
Meetiyagoda, T. A. O. K., and Fujino, T. (2020). Comparison of different anode materials to remove Microcystis aeruginosa cells using electro-coagulation–flotation process at low current inputs. Water, 12(12), 3528.
Meetiyagoda, T. A. O. K., and Fujino, T. (2022). Optimization of electrocoagulation–flotation treatment with an aluminum anode to enhance Microcystis aeruginosa cell removal efficiency. Journal of Water Process Engineering, 48, 102871.
Moriya, Y., and Otaki, M. (2016). Inhibition of algal growth in water purification process by UV irradiation and observation of damage level on algal cell. Journal of Japan Society on Water Environment, 39(4), 91-96.
Nikolaou, A. D., Lekkas, T. D., Kostopoulou, M. N., and Golfinopoulos, S. K. (2001). Investigation of the behaviour of haloketones in water samples. Chemosphere, 44(5), 907-912.
Ou, H., Gao, N., Deng, Y., Wang, H., and Zhang, H. (2011). Inactivation and degradation of Microcystis aeruginosa by UV-C irradiation. Chemosphere, 85(7), 1192-1198.
Piezer, K., Li, L., Jeon, Y., Kadudula, A., and Seo, Y. (2021). The application of potassium permanganate to treat cyanobacteria-laden water: a review. Process Safety and Environmental Protection, 148, 400-414.
Prieto, P., Pineda, M., and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., and Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46(9), 2881-2890.
Rafiee, P., Ebrahimi, S., Hosseini, M., and Tong, Y. W. (2020). Characterization of Soluble Algal Products (SAPs) after electrocoagulation of a mixed algal culture. Biotechnology reports, 25, e00433.  
Rahn, R. (1993). Use of potassium iodide as a chemical actinometer. Photochemistry and Photobiology, 58(6), 874-880.
Ratpukdi, T., Siripattanakul, S., and Khan, E. (2010). Mineralization and biodegradability enhancement of natural organic matter by ozone–VUV in comparison with ozone, VUV, ozone–UV, and UV: Effects of pH and ozone dose. Water Research, 44(11), 3531-3543.
Rezayian, M., Niknam, V., and Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology reports, 6, 1309-1313.
Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., and DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research/Reviews in Mutation Research, 636(1-3), 178-242.
Santschi, P. H., Xu, C., Schwehr, K. A., Lin, P., Sun, L., Chin, W.-C., Kamalanathan, M., Bacosa, H. P., and Quigg, A. (2020). Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Marine Chemistry, 218, 103734.
Sasaki, M., Takagi, A., Sasaki, D., Nakamura, A., and Asayama, M. (2021). Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella. Carbohydrate Polymers, 254, 117252.
Sharma, K., Li, Y., and Schenk, P. M. (2014). UV-C-mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chemistry, 16(7), 3539-3548.
Sivaramakrishnan, R., and Incharoensakdi, A. (2023). UV mutagenesis followed by hydrogen peroxide treatment ameliorates lipid production and omega-3 fatty acids levels in Chlorella sp. Algal Research, 74, 103195.
Särkkä, H., Vepsäläinen, M., and Sillanpää, M. (2015). Natural organic matter (NOM) removal by electrochemical methods—A review. Journal of electroanalytical chemistry, 755, 100-108.
Sun, F., Zhang, H., Qian, A., Yu, H., Xu, C., Pan, R., and Shi, Y. (2020). The influence of extracellular polymeric substances on the coagulation process of cyanobacteria. Science of The Total Environment, 720, 137573.
Tao, Y., Mao, X., Hu, J., Mok, H., Wang, L., Au, D., Zhu, J., and Zhang, X. (2013). Mechanisms of photosynthetic inactivation on growth suppression of Microcystis aeruginosa under UV-C stress. Chemosphere, 93(4), 637-644.
Ulu, F., Gengec, E., and Kobya, M. (2019). Removal of natural organic matter from Lake Terkos by EC process: studying on removal mechanism by floc size and zeta potential measurement and characterization by HPSEC method. Journal of Water Process Engineering, 31, 100831.  
Van Le, V., Srivastava, A., Ko, S.-R., Ahn, C.-Y., and Oh, H.-M. (2022). Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application. Bioresource technology, 127610.
Visigalli, S., Barberis, M. G., Turolla, A., Canziani, R., Zrimec, M. B., Reinhardt, R., and Ficara, E. (2021). Electrocoagulation–flotation (ECF) for microalgae harvesting–A review. Separation and Purification Technology, 271, 118684.
Wang, B., Wang, X., Hu, Y., Chang, M., Bi, Y., and Hu, Z. (2015). The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium. Chemosphere, 141, 34-43.
Wang, B., Ye, T., Li, C., Li, X., Chen, L., and Wang, G. (2022). Cell damage repair mechanism in a desert green algae Chlorella sp. against UV-B radiation. Ecotoxicology and Environmental Safety, 242, 113916.
Wang, M., Kuo-Dahab, W. C., Dolan, S., and Park, C. (2014). Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresource technology, 154, 131-137.
Watson, K., Farré, M. J., Leusch, F. D., and Knight, N. (2018). Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters. Science of The Total Environment, 640, 31-40.
Xiao, R., and Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, 34(7), 1225-1244.
Xu, H., Cai, H., Yu, G., and Jiang, H. (2013). Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 47(6), 2005-2014.
Xu, H., Jiang, H., Yu, G., and Yang, L. (2014). Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation. Chemosphere, 117, 815-822.
Yang, X., Guo, W., and Shen, Q. (2011). Formation of disinfection byproducts from chlor (am) ination of algal organic matter. Journal of Hazardous materials, 197, 378-388.
Yang, X., Shang, C., Lee, W., Westerhoff, P., and Fan, C. (2008). Correlations between organic matter properties and DBP formation during chloramination. Water Research, 42(8-9), 2329-2339.
Yu, B., Yan, W., Meng, Y., Liu, Z., Ding, J., and Zhang, H. (2023). A noteworthy response process of Microcystis aeruginosa induced by exogenous reactive oxygen species in algae-laden water treatment. Chemical Engineering Journal, 476, 146471.  
Zeng, G., Zhang, R., Liang, D., Wang, F., Han, Y., Luo, Y., Gao, P., Wang, Q., Wang, Q., and Yu, C. (2023). Comparison of the advantages and disadvantages of algae removal technology and its development status. Water, 15(6), 1104.
Zhang, X., Chen, Z., Shen, J., Zhao, S., Kang, J., Chu, W., Zhou, Y., and Wang, B. (2020). Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere, 242, 125227.
Zhao, Z., Sun, W., Ray, A. K., Mao, T., and Ray, M. B. (2020). Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria. Chemosphere, 245, 125669.
電子全文 電子全文(網際網路公開日期:20290729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊