|
[1]J. Y.Chen, P. H.Hung, andM. S.Huang, “Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding,” Int. J. Heat Mass Transf., vol. 180, p. 121788, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121788. [2]D.V.Rosato, “Injection Molding Higher Performance Reinforced Plastic Composites,” J. Vinyl Addit. Technol., vol. 2, no. 3, pp. 216–220, 1996, doi: 10.1002/vnl.10128. [3]J.Gim, H.Yang, andL. S.Turng, “Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts,” J. Manuf. Process., vol. 87, no. December 2022, pp. 11–24, 2023, doi: 10.1016/j.jmapro.2022.12.055. [4]N.Khoshooee andP. D.Coates, “Application of the Taguchi method for consistent polymer melt production in injection moulding,” J. Eng. Manuf., vol. 212, no. 8, p. 611, 1998, [Online]. Available: http://dx.doi.org/10.1016/j.jaci.2012.05.050 [5]X.Zhou, Y.Zhang, T.Mao, andH.Zhou, “Monitoring and dynamic control of quality stability for injection molding process,” J. Mater. Process. Tech., vol. 249, no. June, pp. 358–366, 2017, doi: 10.1016/j.jmatprotec.2017.05.038. [6]Y.Yang andF.Gao, “Injection molding product weight: Online prediction and control based on a nonlinear principal component regression model,” Polym. Eng. Sci., pp. 1–10, 2006, doi: https://doi.org/10.1002/PEN.20522. [7]K. K.Wang andJ.Zhou, “Concurrent-engineering approach toward the online adaptive control of injection molding process,” CIRP Ann. - Manuf. Technol., vol. 49, no. 1, pp. 379–382, 2000, doi: 10.1016/S0007-8506(07)62969-2. [8]P.Zhao et al., “Intelligent Injection Molding on Sensing, Optimization, and Control,” Adv. Polym. Technol., vol. 2020, pp. 1–22, Mar.2020, doi: 10.1155/2020/7023616. [9]J. Y.Chen, K. J.Yang, andM. S.Huang, “Online quality monitoring of molten resin in injection molding,” Int. J. Heat Mass Transf., vol. 122, pp. 681–693, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.019. [10]D.Lovrec, V.Tic, andT.Tasner, “Dynamic behaviour of different hydraulic drive concepts - comparison and limits,” Int. J. Simul. Model., vol. 16, no. 3, pp. 448–457, 2017, doi: 10.2507/IJSIMM16(3)7.389. [11]M.Paolucci, D.Anghinolfi, andF.Tonelli, “Facing energy-aware scheduling: a multi-objective extension of a scheduling support system for improving energy efficiency in a moulding industry,” Soft Comput., vol. 21, no. 13, pp. 3687–3698, 2017, doi: 10.1007/s00500-015-1987-8. [12]M. S.Meiabadi, A.Vafaeesefat, andF.Sharifi, “Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm,” J. Optim. Ind. Eng., vol. 13, no. September 2013, pp. 49–54, 2013. [13]D.Weichert, P.Link, A.Stoll, S.Rüping, S.Ihlenfeldt, andS.Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol., vol. 104, no. 5–8, pp. 1889–1902, 2019, doi: 10.1007/s00170-019-03988-5. [14]D. H.Kim et al., “Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 5, no. 4, pp. 555–568, 2018, doi: 10.1007/s40684-018-0057-y. [15]H.Jung, J.Jeon, D.Choi, andA. J. Y.Park, “Application of machine learning techniques in injection molding quality prediction: Implications on sustainable manufacturing industry,” Sustain., vol. 13, no. 8, 2021, doi: 10.3390/su13084120. [16]C.Shen, L.Wang, andQ.Li, “Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method,” J. Mater. Process. Technol., vol. 183, no. 2–3, pp. 412–418, 2007, doi: 10.1016/j.jmatprotec.2006.10.036. [17]F.Finkeldey, J.Volke, J. C.Zarges, H. P.Heim, andP.Wiederkehr, “Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data,” J. Manuf. Process., vol. 60, no. October, pp. 134–143, 2020, doi: 10.1016/j.jmapro.2020.10.028. [18]J.Liu, F.Guo, H.Gao, M.Li, Y.Zhang, andH.Zhou, “Defect detection of injection molding products on small datasets using transfer learning,” J. Manuf. Process., vol. 70, no. September, pp. 400–413, 2021, doi: 10.1016/j.jmapro.2021.08.034. [19]S. J.Pan andQ.Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010, doi: 10.1109/TKDE.2009.191. [20]A.Tellaeche andR.Arana, “Machine learning algorithms for quality control in plastic molding industry,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–4, 2013, doi: 10.1109/ETFA.2013.6648103. [21]M.Werner et al., “Development of a digital assistance system for continuous quality assurance in the plastic injection moulding process with a focus on self-learning algorithms,” Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 1, no. October, pp. 486–490, 2020. [22]D.Török andT.Ageyeva, “Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction,” 2022. [23]S.Kenig, A.Ben-David, M.Omer, andA.Sadeh, “Control of properties in injection molding by neural networks,” Eng. Appl. Artif. Intell., vol. 14, no. 6, pp. 819–823, 2001, doi: 10.1016/S0952-1976(02)00006-4. [24]M.ELGhadoui, A.Mouchtachi, andR.Majdoul, “A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm,” Sci. Rep., vol. 13, no. 1, pp. 1–15, 2023, doi: 10.1038/s41598-023-48679-0. [25]Y. M.Huang, W. R.Jong, andS. C.Chen, “Transfer learning applied to characteristic prediction of injection molded products,” Polymers (Basel)., vol. 13, no. 22, 2021, doi: 10.3390/polym13223874. [26]Y.Lockner, C.Hopmann, andW.Zhao, “Transfer learning with artificial neural networks between injection molding processes and different polymer materials,” J. Manuf. Process., vol. 73, no. November 2021, pp. 395–408, 2022, doi: 10.1016/j.jmapro.2021.11.014. [27]M. S.Huang andC. C.Chen, “Enhancing Machine Learning Capabilities in Injection Molded Part Quality Prediction Using Transfer Learning Models,” 26th Int. Conf. Mechatronics Technol. ICMT 2023, pp. 1–5, 2023, doi: 10.1109/ICMT59920.2023.10373654. [28]Z.-W.Zhou, H.-Y.Yang, B.-X.Xu, Y.-H.Ting, S.-C.Chen, andW.-R.Jong, “Prediction of Short-Shot Defects in Injection Molding by Transfer Learning,” Appl. Sci., vol. 13, no. 23, p. 12868, 2023, doi: 10.3390/app132312868. [29]M.-L.Wang, R.-Y.Chang, andC.-H. (David)Hsu, Molding Simulation: Theory and Practice. Carl Hanser Verlag, 2018. [30]M. H.Tsai et al., “Development of an Online Quality Control System for Injection Molding Process,” Polymers (Basel)., vol. 14, no. 8, 2022, doi: 10.3390/polym14081607. [31]Nagahanumaiah andB.Ravi, “Effects of injection molding parameters on shrinkage and weight of plastic part - Produced by DMLS mold,” Rapid Prototyp. J., vol. 15, no. 3, pp. 179–186, 2009, doi: 10.1108/13552540910960271. [32]Q.Wang, J.Wang, C.Yang, K.Du, W.Zhu, andX.Zhang, “Effect of process parameters on repeatability precision of weight for microinjection molding products,” Adv. Polym. Technol., vol. 2019, 2019, doi: 10.1155/2019/2604878. [33]S.Farahani et al., “Evaluation of in-mold sensors and machine data towards enhancing product quality and process monitoring via Industry 4.0,” Int. J. Adv. Manuf. Technol., vol. 105, no. 1–4, pp. 1371–1389, 2019, doi: 10.1007/s00170-019-04323-8. [34]Y.Lockner andC.Hopmann, “Induced network-based transfer learning in injection molding for process modelling and optimization with artificial neural networks,” Int. J. Adv. Manuf. Technol., vol. 112, no. 11–12, pp. 3501–3513, 2021, doi: 10.1007/s00170-020-06511-3. [35]P.Zhao et al., “Optimization of Injection-Molding Process Parameters for Weight Control: Converting Optimization Problem to Classification Problem,” Adv. Polym. Technol., vol. 2020, 2020, doi: 10.1155/2020/7654249. [36]J.Maderthaner, A.Kugi, andW.Kemmetmüller, “Part mass estimation strategy for injection molding machines,” IFAC-PapersOnLine, vol. 53, pp. 10366–10371, 2020, doi: 10.1016/j.ifacol.2020.12.2775. [37]C.Nitnara, K.Tragangoon, andS.Muangpasee, “Optimization Of Energy Consumption, Density, And Shrinkage In Plastic Injection Molding Process,” J. Appl. Sci. Eng., vol. 27, no. 10, pp. 3251–3261, 2023, [Online]. Available: http://dx.doi.org/10.6180/jase.202410_27 [38]H.Mianehrow andA.Abbasian, “Energy monitoring of plastic injection molding process running with hydraulic injection molding machines,” J. Clean. Prod., vol. 148, pp. 804–810, 2017, doi: 10.1016/j.jclepro.2017.02.053. [39]S. M. S.Mukras, “Experimental-Based Optimization of Injection Molding Process Parameters for Short Product Cycle Time,” Adv. Polym. Technol., pp. 1–15, 2020. [40]S.Kitayama, M.Yokoyama, M.Takano, andS.Aiba, “Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time,” Int. J. Adv. Manuf. Technol., vol. 92, no. 9–12, pp. 3991–3999, 2017, doi: 10.1007/s00170-017-0456-1. [41]J. B.Tranter, P.Refalo, andA.Rochman, “Towards sustainable injection molding of ABS plastic products,” J. Manuf. Process., vol. 29, pp. 399–406, 2017, doi: 10.1016/j.jmapro.2017.08.015. [42]I.Meekers, P.Refalo, andA.Rochman, “Analysis of Process Parameters affecting Energy Consumption in Plastic Injection Moulding,” Procedia CIRP, vol. 69, no. May, pp. 342–347, 2018, doi: 10.1016/j.procir.2017.11.042. [43]C. C.Cheng andK. W.Liu, “Optimizing energy savings of the injection molding process by using a cloud energy management system,” Energy Effic., vol. 11, no. 2, pp. 415–426, 2018, doi: 10.1007/s12053-017-9574-8. [44]D.He, Y.Zhang, Z.Jian, Y.Fan, andG.Zhou, “Numerical Simulation for Optimization of Plastics Process Parameters of Injection Molding Machine Based on Energy Consumption,” DEStech Trans. Eng. Technol. Res., 2016, doi: 10.12783/DTETR/ICMITE20162016/4631. [45]H.Liu, X.Zhang, L.Quan, andH.Zhang, “Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units,” J. Clean. Prod., vol. 242, p. 118355, 2020, doi: 10.1016/j.jclepro.2019.118355. [46]G.Lucchetta, D.Masato, andM.Sorgato, “Optimization of mold thermal control for minimum energy consumption in injection molding of polypropylene parts,” J. Clean. Prod., vol. 182, pp. 217–226, 2018, doi: 10.1016/j.jclepro.2018.01.258. [47]P.Zhao et al., “In-situ ultrasonic measurement of molten polymers during injection molding,” J. Mater. Process. Technol., vol. 293, no. August 2020, p. 117081, 2021, doi: 10.1016/j.jmatprotec.2021.117081. [48]P. Q.Trung, “A Study on the Temperature Optimization of Mold and Melt Using Design of Experiments for Children’s Chair,” Key Eng. Mater., vol. 969, pp. 59–64, 2023, doi: 10.4028/p-LWW9yY. [49]J. S.Wen, C. H.Yin, S. C.Jiang, andG.Jin, “Study of Energy Consumption in the Injection Molding Process,” J. Macromol. Sci. Part B Phys., vol. 56, no. 8, pp. 553–567, 2017, doi: 10.1080/00222348.2017.1342967. [50]V. G.Gomes, W. I.Patterson, andM. R.Kamal, “An Injection Molding Study. Part II: Evaluation of Alternative Control Strategies for Melt Temperature,” Chem. Eng. Sci., vol. 44, no. 9, pp. 1751–1752, 1989, doi: 10.1016/0009-2509(89)85116-4. [51]İ.Karagöz, “An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials,” Polym. Bull., vol. 78, no. 5, pp. 2627–2644, 2021, doi: 10.1007/s00289-020-03231-2. [52]J.Iwko, R.Wroblewski, andR.Steller, “Experimental study on energy consumption in the plasticizing unit of the injection molding machine,” Polimery/Polymers, vol. 63, no. 5, pp. 362–371, 2018, doi: 10.14314/polimery.2018.5.5. [53]H.Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol., vol. 67, no. 1–4, pp. 675–686, 2013, doi: 10.1007/s00170-012-4514-4. [54]G. Y.Liou et al., “Optimize Injection-Molding Process Parameters and Build an Adaptive Process Control System Based on Nozzle Pressure Profile and Clamping Force,” Polymers (Basel)., vol. 15, no. 3, 2023, doi: 10.3390/polym15030610. [55]G.Yi-chon, “Analysis on Plasticizing and Injection Energy Consumption in Foaming Injection Process,” Plast., 2014. [56]Y. H.Chang, S. C.Chen, Y. H.Ting, C.TeFeng, andC. C.Hsu, “The Investigation of Novel Dynamic Packing Technology for Injection Molded Part Quality Control and Its Production Stability by Using Real-Time PVT Control Method,” Polymers (Basel)., vol. 14, no. 13, 2022, doi: 10.3390/polym14132720. [57]J.Hou, G.Zhao, andG.Wang, “Polypropylene/talc foams with high weight-reduction and improved surface quality fabricated by mold-opening microcellular injection molding,” J. Mater. Res. Technol., vol. 12, pp. 74–86, 2021, doi: 10.1016/j.jmrt.2021.02.077. [58]J. C.Fan-Jiang et al., “Study of an online monitoring adaptive system for an injection molding process based on a nozzle pressure curve,” Polymers (Basel)., vol. 13, no. 4, pp. 1–15, 2021, doi: 10.3390/polym13040555. [59]L.Qingchun, “Study on Energy Distribution of Plastic Injection Molding Process Based on LabVIEW,” China Plast., 2011. [60]B.Sanschagrin, “Process control of injection molding,” Polym. Eng. Sci., vol. 23, no. 8, pp. 431–438, 1983, doi: 10.1002/pen.760230804. [61]L.Qingchun, “The Processing Factors of Polypropylene Foam Injection based on Intermittent Supercritical N_2 Gas Injection System,” Plast., 2012. [62]W.Da-ming, “Influencing Factor of Plasticizing Capacity and Energy Consumption of the Screw in Injecting Molding Machine,” Plast., 2008. [63]C.Nylund andK.Meinander, “The influence of heat transfer coefficient on cooling time in injection molding,” Heat Mass Transf. und Stoffuebertragung, vol. 41, no. 5, pp. 428–431, 2005, doi: 10.1007/s00231-004-0556-y. [64]D.Singh andB.Singh, “Investigating the impact of data normalization on classification performance,” Appl. Soft Comput., vol. 97, p. 105524, 2020, doi: 10.1016/j.asoc.2019.105524. [65]J.Han, M.Kamber, andJ.Pei, Data Mining: Concepts and Techniques, 3rd ed. in Morgan Kaufmann Series in Data Management Systems.Amsterdam: Morgan Kaufmann, 2011. [Online]. Available: http://www.sciencedirect.com/science/book/9780123814791 [66]R. A.van denBerg, H. C. J.Hoefsloot, J. A.Westerhuis, A. K.Smilde, andM. J.van derWerf, “Centering, scaling, and transformations: Improving the biological information content of metabolomics data,” BMC Genomics, vol. 7, pp. 1–15, 2006, doi: 10.1186/1471-2164-7-142. [67]C.Janiesch, P.Zschech, andK.Heinrich, “Machine learning and deep learning,” Quantum Comput. Artif. Intell. Train. Mach. Deep Learn. Algorithms Quantum Comput., pp. 71–84, 2023, doi: 10.1515/9783110791402-004. [68]A.Garg andV.Mago, “Role of machine learning in medical research: A survey,” Comput. Sci. Rev., vol. 40, p. 100370, 2021, doi: 10.1016/j.cosrev.2021.100370. [69]C. L.Soh et al., “Present and future of machine learning in breast surgery: systematic review,” Br. J. Surg., vol. 109, no. 11, pp. 1053–1062, 2022, doi: 10.1093/bjs/znac224. [70]S.V.Mahadevkar et al., “A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions,” IEEE Access, vol. 10, no. October, pp. 107293–107329, 2022, doi: 10.1109/ACCESS.2022.3209825. [71]Z.Liu, D.Zhu, L.Raju, andW.Cai, “Tackling Photonic Inverse Design with Machine Learning,” Adv. Sci., vol. 8, no. 5, pp. 1–15, 2021, doi: 10.1002/advs.202002923. [72]M.Jooshaki, A.Nad, andS.Michaux, “A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry,” Minerals, vol. 11, no. 8, 2021, doi: 10.3390/min11080816. [73]M.Bertolini, D.Mezzogori, M.Neroni, andF.Zammori, “Machine Learning for industrial applications: A comprehensive literature review,” Expert Syst. Appl., vol. 175, no. February, p. 114820, 2021, doi: 10.1016/j.eswa.2021.114820. [74]Z. H.Zhou, “A brief introduction to weakly supervised learning,” Natl. Sci. Rev., vol. 5, no. 1, pp. 44–53, 2018, doi: 10.1093/nsr/nwx106. [75]X.Liu et al., “Self-Supervised Learning: Generative or Contrastive,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 857–876, 2023, doi: 10.1109/TKDE.2021.3090866. [76]Y. F.Li, L. Z.Guo, andZ. H.Zhou, “Towards Safe Weakly Supervised Learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 334–346, 2021, doi: 10.1109/TPAMI.2019.2922396. [77]E. I.Knudsen, “Supervised learning in the brain,” J. Neurosci., vol. 14, no. 7, pp. 3985–3997, 1994, doi: 10.1523/jneurosci.14-07-03985.1994. [78]J. L.Raymond andJ. F.Medina, “Computational principles of supervised learning in the cerebellum,” Annu. Rev. Neurosci., vol. 41, pp. 233–253, 2018, doi: 10.1146/annurev-neuro-080317-061948. [79]Y.Li, “Safe semi-supervised learning : a brief introduction,” vol. 13, no. 4, pp. 669–676, 2019. [80]X.Yang, Z.Song, I.King, andZ.Xu, “A Survey on Deep Semi-Supervised Learning,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 8934–8954, 2023, doi: 10.1109/TKDE.2022.3220219. [81]Z.-H.Zhou andM.Li, “Semi-Supervised Learning by Disagreement,” Knowl. Inf. Syst., 2009, [Online]. Available: https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/kais10.pdf [82]S.Bucci, A.D’Innocente, Y.Liao, F. M.Carlucci, B.Caputo, andT.Tommasi, “Self-Supervised Learning Across Domains,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5516–5528, 2022, doi: 10.1109/TPAMI.2021.3070791. [83]Y.Xie, Z.Xu, J.Zhang, Z.Wang, andS.Ji, “Self-Supervised Learning of Graph Neural Networks: A Unified Review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 2412–2429, 2023, doi: 10.1109/TPAMI.2022.3170559. [84]L.Wang, “Discovering phase transitions with unsupervised learning,” Phys. Rev. B, vol. 94, no. 19, pp. 2–6, 2016, doi: 10.1103/PhysRevB.94.195105. [85]A.Glielmo, B. E.Husic, A.Rodriguez, C.Clementi, F.Noé, andA.Laio, “Unsupervised Learning Methods for Molecular Simulation Data,” Chem. Rev., vol. 121, no. 16, pp. 9722–9758, 2021, doi: 10.1021/acs.chemrev.0c01195. [86]F.Piccialli, G.Casolla, S.Cuomo, F.Giampaolo, andV. S.DiCola, “Decision Making in IoT Environment through Unsupervised Learning,” IEEE Intell. Syst., vol. 35, no. 1, pp. 27–35, 2020, doi: 10.1109/MIS.2019.2944783. [87]M. A. T.Figueiredo andA. K.Jain, “Unsupervised learning of finite mixture models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381–396, 2002, doi: 10.1109/34.990138. [88]N.Li, M.Shepperd, andY.Guo, “A systematic review of unsupervised learning techniques for software defect prediction,” Inf. Softw. Technol., vol. 122, no. February, p. 106287, 2020, doi: 10.1016/j.infsof.2020.106287. [89]Z.Solan, D.Horn, E.Ruppin, andS.Edelman, “Unsupervised learning of natural languages,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 33, pp. 11629–11634, 2005, doi: 10.1073/pnas.0409746102. [90]F.Carcillo, Y. A.LeBorgne, O.Caelen, Y.Kessaci, F.Oblé, andG.Bontempi, “Combining unsupervised and supervised learning in credit card fraud detection,” Inf. Sci. (Ny)., vol. 557, pp. 317–331, 2021, doi: 10.1016/j.ins.2019.05.042. [91]Bradley C. Love, “Comparing supervised and unsupervised category learning,” Psychon. Bull. Rev., vol. 9, no. 4, pp. 829–835, 2022. [92]Y.Song, L.Goncalves, andP.Perona, “Unsupervised learning of human motion models,” Adv. Neural Inf. Process. Syst., vol. 25, no. 7, pp. 814–827, 2002. [93]M.Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648. [94]S. L.Brunton andJ. N.Kutz, Data-Driven Science and Engineering. [95]R.Aniza, W. H.Chen, F. C.Yang, A.Pugazhendh, andY.Singh, “Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis,” Bioresour. Technol., vol. 343, no. October 2021, p. 126140, 2022, doi: 10.1016/j.biortech.2021.126140. [96]S.Wang et al., “State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation,” Pharmaceutics, vol. 14, no. 1, 2022, doi: 10.3390/pharmaceutics14010183. [97]B.Nagy, D. L.Galata, A.Farkas, andZ. K.Nagy, “Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing—a Review,” AAPS J., vol. 24, no. 4, 2022, doi: 10.1208/s12248-022-00706-0. [98]W.Sitek andJ.Trzaska, “Practical aspects of the design and use of the artificial neural networks in materials engineering,” Metals (Basel)., vol. 11, no. 11, 2021, doi: 10.3390/met11111832. [99]N.V.Muravyev, G.Luciano, H. L.Ornaghi, R.Svoboda, andS.Vyazovkin, “Artificial neural networks for pyrolysis, thermal analysis, and thermokinetic studies: The status quo,” Molecules, vol. 26, no. 12, pp. 1–25, 2021, doi: 10.3390/molecules26123727. [100]F.Feng, W.Na, J.Jin, J.Zhang, W.Zhang, andQ. J.Zhang, “Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art,” IEEE Trans. Microw. Theory Tech., vol. 70, no. 11, pp. 4597–4619, 2022, doi: 10.1109/TMTT.2022.3197751. [101]W.He et al., “Using of Artificial Neural Networks (ANNs) to predict the thermal conductivity of Zinc Oxide–Silver (50%–50%)/Water hybrid Newtonian nanofluid,” Int. Commun. Heat Mass Transf., vol. 116, no. May, p. 104645, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104645. [102]M. A.Alamir, “An artificial neural network model for predicting the performance of thermoacoustic refrigerators,” Int. J. Heat Mass Transf., vol. 164, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120551. [103]N. N. S.Torres, V. S. D.Diaz, O. H. A.Junior, andJ. J.Ledesma, “Analysis of the Technical Feasibility of Using Artificial Intelligence for Smoothing Active Power in a Photovoltaic System Connected to the Power System.,” Brazilian Arch. Biol. Technol., 2021, doi: 10.1590/1678-4324-75years-2021210196. [104]M. A.Rahman, R. C.Muniyandi, D.Albashish, M. M.Rahman, andO. L.Usman, “Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer,” PeerJ Comput. Sci., vol. 7, 2021, doi: 10.7717/peerj-cs.344. [105]A. B.Çolak, “A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: An experimental study on the thermal conductivity of ZrO2 nanofluid,” Int. J. Energy Res., vol. 45, no. 13, pp. 18944–18956, 2021, doi: 10.1002/er.6989. [106]M.Adil, R.Ullah, S.Noor, andN.Gohar, “Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design,” Neural Comput. Appl., vol. 34, no. 11, pp. 8355–8363, 2022, doi: 10.1007/s00521-020-05305-8. [107]M.Ibnu Choldun R., J.Santoso, andK.Surendro, Determining the number of hidden layers in neural network by using principal component analysis, vol. 1038. Springer International Publishing, 2020. doi: 10.1007/978-3-030-29513-4_36. [108]A.Alibakshi, “Strategies to develop robust neural network models: Prediction of flash point as a case study,” Anal. Chim. Acta, vol. 1026, pp. 69–76, 2018, doi: 10.1016/j.aca.2018.05.015. [109]N. K.Manaswi, “Understanding and Working with Keras,” in Deep Learning with Applications Using Python : Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras, Berkeley, CA: Apress, 2018, pp. 31–43. doi: 10.1007/978-1-4842-3516-4_2. [110]S.Saha andR.L, “Building and Improving Artificial Neural Network Classifier,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 2742–2747, 2019, doi: 10.35940/ijitee.i8311.078919. [111]H.Tang andL.Notash, “Neural Network-Based Transfer Learning of Manipulator Inverse Displacement Analysis,” J. Mech. Robot., vol. 13, no. 3, p. 35004, 2021, doi: 10.1115/1.4050622. [112]S.Leroux, B.Vankeirsbilck, T.Verbelen, P.Simoens, andB.Dhoedt, “Training binary neural networks with knowledge transfer,” Neurocomputing, vol. 396, pp. 534–541, 2020, doi: 10.1016/j.neucom.2018.09.103. [113]Q.Zhan, G.Liu, X.Xie, G.Sun, andH.Tang, “Effective Transfer Learning Algorithm in Spiking Neural Networks,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13323–13335, 2022, doi: 10.1109/TCYB.2021.3079097. [114]J.Wang, B.Zou, M.Liu, Y.Li, H.Ding, andK.Xue, “Milling force prediction model based on transfer learning and neural network,” J. Intell. Manuf., vol. 32, no. 4, pp. 947–956, 2021, doi: 10.1007/s10845-020-01595-w. [115]T.Han, C.Liu, W.Yang, andD.Jiang, “Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions,” ISA Trans., vol. 93, pp. 341–353, 2019, doi: 10.1016/j.isatra.2019.03.017. [116]X.Han, Z.Huang, B.An, andJ.Bai, “Adaptive Transfer Learning on Graph Neural Networks,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 565–574, 2021, doi: 10.1145/3447548.3467450. [117]A. P.Utomo, R. D.Bintara, andSuprayitno, “Optimization Injection Molding Parameters of Polypropylene Materials to Minimize Product Not Complete Defects Using the Taguchi Method,” Proceeding Int. Conf. Relig. Sci. Educ., pp. 605–611, 2022, [Online]. Available: http://sunankalijaga.org/prosiding/index.php/icrse/article/view/843/805 [118]G. V.Research, “Plastic Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, PS), By Application (Injection molding, blow molding, roto molding, compression molding), By End-use, By Region, And Segment Forecasts, 2024 - 2030,” Grand View Research. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/global-plastics-market# [119]J.Wang, Q.Mao, N.Jiang, andJ.Chen, “Effects of injection molding parameters on properties of insert-injection molded polypropylene single-polymer composites,” Polymers (Basel)., vol. 14, no. 1, 2022, doi: 10.3390/polym14010023. [120]Y. E.Midilli andS.Parsutins, “Optimization of Deep Learning Hyperparameters with Experimental Design in Exchange Rate Prediction,” 2020 61st Int. Sci. Conf. Inf. Technol. Manag. Sci. Riga Tech. Univ. ITMS 2020 - Proc., no. January 2019, pp. 8–11, 2020, doi: 10.1109/ITMS51158.2020.9259300. [121]F. T.ALGorain andA. S.Alnaeem, “Deep Learning Optimisation of Static Malware Detection with Grid Search and Covering Arrays,” Telecom, vol. 4, no. 2, pp. 249–264, 2023, doi: 10.3390/telecom4020015. [122]C.Xu, P.Coen-Pirani, andX.Jiang, “Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis,” Cancers (Basel)., vol. 15, no. 7, pp. 1–14, 2023, doi: 10.3390/cancers15071969. [123]J.Wu, X. Y.Chen, H.Zhang, L. D.Xiong, H.Lei, andS. H.Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” J. Electron. Sci. Technol., vol. 17, no. 1, pp. 26–40, 2019, doi: 10.11989/JEST.1674-862X.80904120. [124]A. B.Çolak, “An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural,” Int. J. Energy Res., vol. 45, pp. 478–500, 2021, doi: DOI: 10.1002/er.5680. [125]V. L.Tran, D. K.Thai, andS. E.Kim, “Application of ANN in predicting ACC of SCFST column,” Compos. Struct., vol. 228, no. June, p. 111332, 2019, doi: 10.1016/j.compstruct.2019.111332. [126]A.Amir, “Artificial Neural Network Model For Surface Roughness Prediction In CNC Milling Machining,” Institut Teknologi Bandung, 2020.
|