跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐德唯
研究生(外文):DEVIC OKTORA
論文名稱:基於轉移學習之射出產品重量與能耗預測
論文名稱(外文):Prediction of injection product weight and energy consumption based on transfer learning
指導教授:鍾文仁鍾文仁引用關係丁郁宏
指導教授(外文):JONG, WEN-RENTING, YU-HUNG
口試委員:陳夏宗(No Chinese Name)(No Chinese Name)
口試委員(外文):CHEN, SHIA-CHUNG SHELLEYBERMAWI PRIYATNA ISKANDARSUKOYO
口試日期:2024-07-10
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:98
中文關鍵詞:射出成型預測人工神經網絡遷移學習
外文關鍵詞:Injection MoldingPredictiveANNTransfer Learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
注塑成型 (IM) 是一種複雜的製造過程,其特點是具有非線性行為。與簡單回歸等經典線性建模技術不同,許多機器學習模型能夠適應輸入和輸出參數之間的非線性行為和相互作用。人工神經網路 (ANN) 尤其在涉及非線性建模的問題上表現出色。在注塑成型中實施 ANN 進行預測建模,由於所需的訓練數據量相當大,遇到了顯著的障礙。遷移學習 (TL) 通過利用一個數據集的知識來提高另一個數據集上模型的性能,提供了一個可行的解決方案。本研究的目的是利用遷移學習,通過使用 ANN 預測注塑成型中的能耗和產品重量。要獲取能耗數據,需要直接進行實驗。因此,本研究將採用完全因子設計 (DoE) 獲取一個既穩健又適合於訓練、驗證和測試的數據集。在估算不同材料的重量和能耗方面,研究表明使用遷移學習方法能大大加快學習過程。經驗證據表明,採用遷移學習技術顯著提高了 ANN 模型的決定係數 (R²),在預測產品重量方面達到 98.51%,在能耗方面達到 98.87%。層的有意凍結似乎在提高模型效率和準確性方面起著更關鍵的作用。
Injection molding (IM) is one such complex manufacturing process characterized by nonlinear behavior. Unlike classic linear modeling techniques like simple regression, many machine learning models have the ability to adjust to the nonlinear behaviors and interactions between input and output parameters. Artificial Neural Networks (ANN), specifically, have demonstrated exceptional performance in problems involving nonlinear modeling. Implementing ANN for predictive modeling in injection molding encounters notable obstacles due to the considerable volume of training data needed. Transfer learning (TL) provides a viable answer by utilizing knowledge from one dataset to improve the performance of a model on another dataset. The objective of this study is to utilize TL in order to forecast the energy consumption and product weight in injection molding by employing ANN. To acquire energy consumption statistics, it is necessary to conduct experiments directly. Thus, this work will employ complete factorial Design of Experiments (DoE) to acquire a dataset that is both resilient and suitable for training, validation, and testing purposes. When it comes to estimating weight and energy consumption for various materials, studies have shown that the use of transfer learning approach greatly speeds up the learning process. Empirical evidence has demonstrated that employing transfer learning technique significantly improves the coefficient of determination (R²) of the ANN model, reaching values of 98.51% in predicting product weight and 98.87% in energy consumption. The deliberate freezing of layers seems to have a more crucial role in enhancing the efficiency and accuracy of the model.
Table of Contents

摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter I Background and Motivation 1
1.1 Background and Motivation 1
1.2 Problem Statement 2
1.3 Research Aim and Objective 3
1.4 Research Boundary 3
1.5 Research Position and Contribution 4
1.6 Outline of Thesis 5
Chapter II Literature Review 10
2.1 Injection Molding Machine 10
2.1.1 Product Weight 12
2.1.2 Energy Consumption 13
2.1.3 Melt Temperature 14
2.1.4 Mold Temperature 15
2.1.5 Injection Speed 16
2.1.6 Packing Pressure 17
2.1.7 Screw Speed 18
2.1.8 Packing Time and Cooling Time 19
2.1.9 Materials 20
2.2 Data Processing 23
2.2.1 Normalization 23
2.3 Machine Learning 24
2.3.1 Supervised Learning 25
2.3.2 Unsupervised Learning 27
2.4 Artificial Neural Networks 28
2.4.1 Layer and Neurons 30
2.5 Keras and TensorFlow 31
2.5.1 Transfer Learning 32
Chapter III Research Methodology 34
3.1 Problem Observation and Literature Review 35
3.2 Model Formulation 35
3.3 Data Collection 36
3.3.1 Experimental Equipment 36
3.3.2 Experimental Setup 40
3.4 Result and Analysis 40
3.5 Conclusion 41
Chapter IV Model Development 42
4.1 Experimental Design 43
4.2 Data Processing 46
4.3 Building ANN Model 51
4.3.1 ANN Base Model 54
4.3.2 ANN Transfer Learning Model 58
Chapter V Result and Analysis 59
5.1 Experiment Result 59
5.2 Base ANN Model 62
5.2.1 Result of 5 Input Base Model 62
5.2.2 Result of 7 Input Base Model 64
5.3 Transfer Learning ANN Model 67
5.3.1 Result of 5 Input Transfer Learning Model 67
5.3.2 Result of 7 Input Transfer Learning Model 73
5.4 Effect of Transfer Learning 76
5.5 Implications 79
Chapter VI Conclusion 81
6.1 Conclusion 81
6.2 Future Research 81
Bibliography 83


List of Figures
Figure 1 ANN learning flow diagram with Transfer Learning Method 3
Figure 2 Injection Molding Machine 10
Figure 3 Injection Molding Stage 11
Figure 4 Energy Consumption of Injection Molding Machine 13
Figure 5 Recommended Temperature Setting 15
Figure 6 Setting of Screw RPM 18
Figure 7 Relation Between Packing Time and Part Weight 19
Figure 8 Mechanical Properties Comparison PP 7533 and PA 756 20
Figure 9 Specific Heat Capacity Comparison PP 7533 and PA 756 21
Figure 10 Viscosity vs Shear Rate 22
Figure 11 Processing Temperature Comparison PP 7533 and PA 756 22
Figure 12 Transfer Learning Illustration 32
Figure 13 Research Flow Chart 34
Figure 14 Injection Molding Machine FCS HT-150SV 36
Figure 15 Mold Temperature Controller Device JSW-4018E 37
Figure 16 Analytical Balance HZK-FA210 38
Figure 17 Arduino Based – Power Meter Prototype (a) Arduino Mega and 3 16 bit ADS 1115 for DAQ (b) Current probe on Mold Temperature Controller Device (c) Current Probe on Melt Temperature Controller and Motor Controller Device 39
Figure 18 CENTER 206 Datalogger Dual Input Thermometer 39
Figure 19 Model Development 42
Figure 20 Schematic view of part product 43
Figure 21 Correlation Matrix from Preliminary Experiment 44
Figure 22 Code for Digital Low Pass Filter 46
Figure 23 Motor Controller Current Data 46
Figure 24 Melt Temperature Controller Current Data 47
Figure 25 Mold Temperature Controller Current Data 47
Figure 26 Data loss from filtering 47
Figure 27 Focus Observation for Motor Energy Consumption 48
Figure 28 Code for Data Split 49
Figure 29 Distribution of 486 Data 49
Figure 30 Code for Data Normalization 50
Figure 31 Normalization for input variable 51
Figure 32 Normalization for response 51
Figure 33 Illustration of activation function 53
Figure 34 Different Activation Response 54
Figure 35 Code For Hyperparameter Optimization using gp_minimize 55
Figure 36 7 Control Parameter for Base Model 57
Figure 37 Example of Training and Validation Loss Result 58
Figure 38 Correlation Matrix Experiment 1 60
Figure 39 Correlation Matrix Experiment 2 60
Figure 40 Correlation Matrix Combined Data 61
Figure 41 Illustration of 5 input base ANN model 62
Figure 42 Predict vs True Value 5 Input Base Model 63
Figure 43 Distribution Error 5 Input Base Model 63
Figure 44 Transfer Learning Model Illustration from 5 input to 7 input 64
Figure 45 Illustration of 7 input base ANN model 64
Figure 46 Predict vs True Value 7 Input Base Model 65
Figure 47 Distribution Error 7 Input Base Model 66
Figure 48 Transfer Learning Combination Method 67
Figure 49 Distribution Error of Weight Prediction 5 Input Transfer Learning Model 69
Figure 50 Distribution Error of Energy Consumption 5 Input Transfer Learning Model 70
Figure 51 Distribution Error of Weight Prediction 7 Input Transfer Learning Model 73
Figure 52 Distribution Error of Energy Consumption 7 Input Transfer Learning Model 74
Figure 53 Comparison of Loss Graph of (a) Conventional (b) 5 Input TL (c) 7 Input TL model 77

List of Tables
Table 1 Research State of The Art 7
Table 2 FCS HT-150SV Specification 37
Table 3 JSW-4018E Specification 37
Table 4 HZK-FA210 Specification 38
Table 5 Specification of CENTER 206 Datalogger Dual Input Thermometer 39
Table 6 Design of Experiment Taguchi L27 for preliminary 44
Table 7 Design of Experiment Full Factorial 243 45
Table 8 Design of Experiment CCD 158 46
Table 9 Hyperparameter tuning search space and results for 5 input base ANN model 56
Table 10 Hyperparameter tuning search space and results for 7 input base ANN model 57
Table 11 Hyperparameter tuning search space and results for 5 input TL ANN model 58
Table 12 Performance Comparison of Base Model 66
Table 13 Performance Comparison of 5 Input Transfer Learning Model 71
Table 14 Performance Comparison of 7 Input Transfer Learning Model 76
Table 15 5 Input TL Model Frozen Layer Effect 78
Table 16 7 Input TL Model Frozen Layer Effect 78
Table 17 Performance Comparison of 5 Input,7 Input Transfer Learning Model, and Conventional Model 78

[1]J. Y.Chen, P. H.Hung, andM. S.Huang, “Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding,” Int. J. Heat Mass Transf., vol. 180, p. 121788, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121788.
[2]D.V.Rosato, “Injection Molding Higher Performance Reinforced Plastic Composites,” J. Vinyl Addit. Technol., vol. 2, no. 3, pp. 216–220, 1996, doi: 10.1002/vnl.10128.
[3]J.Gim, H.Yang, andL. S.Turng, “Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts,” J. Manuf. Process., vol. 87, no. December 2022, pp. 11–24, 2023, doi: 10.1016/j.jmapro.2022.12.055.
[4]N.Khoshooee andP. D.Coates, “Application of the Taguchi method for consistent polymer melt production in injection moulding,” J. Eng. Manuf., vol. 212, no. 8, p. 611, 1998, [Online]. Available: http://dx.doi.org/10.1016/j.jaci.2012.05.050
[5]X.Zhou, Y.Zhang, T.Mao, andH.Zhou, “Monitoring and dynamic control of quality stability for injection molding process,” J. Mater. Process. Tech., vol. 249, no. June, pp. 358–366, 2017, doi: 10.1016/j.jmatprotec.2017.05.038.
[6]Y.Yang andF.Gao, “Injection molding product weight: Online prediction and control based on a nonlinear principal component regression model,” Polym. Eng. Sci., pp. 1–10, 2006, doi: https://doi.org/10.1002/PEN.20522.
[7]K. K.Wang andJ.Zhou, “Concurrent-engineering approach toward the online adaptive control of injection molding process,” CIRP Ann. - Manuf. Technol., vol. 49, no. 1, pp. 379–382, 2000, doi: 10.1016/S0007-8506(07)62969-2.
[8]P.Zhao et al., “Intelligent Injection Molding on Sensing, Optimization, and Control,” Adv. Polym. Technol., vol. 2020, pp. 1–22, Mar.2020, doi: 10.1155/2020/7023616.
[9]J. Y.Chen, K. J.Yang, andM. S.Huang, “Online quality monitoring of molten resin in injection molding,” Int. J. Heat Mass Transf., vol. 122, pp. 681–693, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.019.
[10]D.Lovrec, V.Tic, andT.Tasner, “Dynamic behaviour of different hydraulic drive concepts - comparison and limits,” Int. J. Simul. Model., vol. 16, no. 3, pp. 448–457, 2017, doi: 10.2507/IJSIMM16(3)7.389.
[11]M.Paolucci, D.Anghinolfi, andF.Tonelli, “Facing energy-aware scheduling: a multi-objective extension of a scheduling support system for improving energy efficiency in a moulding industry,” Soft Comput., vol. 21, no. 13, pp. 3687–3698, 2017, doi: 10.1007/s00500-015-1987-8.
[12]M. S.Meiabadi, A.Vafaeesefat, andF.Sharifi, “Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm,” J. Optim. Ind. Eng., vol. 13, no. September 2013, pp. 49–54, 2013.
[13]D.Weichert, P.Link, A.Stoll, S.Rüping, S.Ihlenfeldt, andS.Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol., vol. 104, no. 5–8, pp. 1889–1902, 2019, doi: 10.1007/s00170-019-03988-5.
[14]D. H.Kim et al., “Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 5, no. 4, pp. 555–568, 2018, doi: 10.1007/s40684-018-0057-y.
[15]H.Jung, J.Jeon, D.Choi, andA. J. Y.Park, “Application of machine learning techniques in injection molding quality prediction: Implications on sustainable manufacturing industry,” Sustain., vol. 13, no. 8, 2021, doi: 10.3390/su13084120.
[16]C.Shen, L.Wang, andQ.Li, “Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method,” J. Mater. Process. Technol., vol. 183, no. 2–3, pp. 412–418, 2007, doi: 10.1016/j.jmatprotec.2006.10.036.
[17]F.Finkeldey, J.Volke, J. C.Zarges, H. P.Heim, andP.Wiederkehr, “Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data,” J. Manuf. Process., vol. 60, no. October, pp. 134–143, 2020, doi: 10.1016/j.jmapro.2020.10.028.
[18]J.Liu, F.Guo, H.Gao, M.Li, Y.Zhang, andH.Zhou, “Defect detection of injection molding products on small datasets using transfer learning,” J. Manuf. Process., vol. 70, no. September, pp. 400–413, 2021, doi: 10.1016/j.jmapro.2021.08.034.
[19]S. J.Pan andQ.Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010, doi: 10.1109/TKDE.2009.191.
[20]A.Tellaeche andR.Arana, “Machine learning algorithms for quality control in plastic molding industry,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–4, 2013, doi: 10.1109/ETFA.2013.6648103.
[21]M.Werner et al., “Development of a digital assistance system for continuous quality assurance in the plastic injection moulding process with a focus on self-learning algorithms,” Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 1, no. October, pp. 486–490, 2020.
[22]D.Török andT.Ageyeva, “Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction,” 2022.
[23]S.Kenig, A.Ben-David, M.Omer, andA.Sadeh, “Control of properties in injection molding by neural networks,” Eng. Appl. Artif. Intell., vol. 14, no. 6, pp. 819–823, 2001, doi: 10.1016/S0952-1976(02)00006-4.
[24]M.ELGhadoui, A.Mouchtachi, andR.Majdoul, “A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm,” Sci. Rep., vol. 13, no. 1, pp. 1–15, 2023, doi: 10.1038/s41598-023-48679-0.
[25]Y. M.Huang, W. R.Jong, andS. C.Chen, “Transfer learning applied to characteristic prediction of injection molded products,” Polymers (Basel)., vol. 13, no. 22, 2021, doi: 10.3390/polym13223874.
[26]Y.Lockner, C.Hopmann, andW.Zhao, “Transfer learning with artificial neural networks between injection molding processes and different polymer materials,” J. Manuf. Process., vol. 73, no. November 2021, pp. 395–408, 2022, doi: 10.1016/j.jmapro.2021.11.014.
[27]M. S.Huang andC. C.Chen, “Enhancing Machine Learning Capabilities in Injection Molded Part Quality Prediction Using Transfer Learning Models,” 26th Int. Conf. Mechatronics Technol. ICMT 2023, pp. 1–5, 2023, doi: 10.1109/ICMT59920.2023.10373654.
[28]Z.-W.Zhou, H.-Y.Yang, B.-X.Xu, Y.-H.Ting, S.-C.Chen, andW.-R.Jong, “Prediction of Short-Shot Defects in Injection Molding by Transfer Learning,” Appl. Sci., vol. 13, no. 23, p. 12868, 2023, doi: 10.3390/app132312868.
[29]M.-L.Wang, R.-Y.Chang, andC.-H. (David)Hsu, Molding Simulation: Theory and Practice. Carl Hanser Verlag, 2018.
[30]M. H.Tsai et al., “Development of an Online Quality Control System for Injection Molding Process,” Polymers (Basel)., vol. 14, no. 8, 2022, doi: 10.3390/polym14081607.
[31]Nagahanumaiah andB.Ravi, “Effects of injection molding parameters on shrinkage and weight of plastic part - Produced by DMLS mold,” Rapid Prototyp. J., vol. 15, no. 3, pp. 179–186, 2009, doi: 10.1108/13552540910960271.
[32]Q.Wang, J.Wang, C.Yang, K.Du, W.Zhu, andX.Zhang, “Effect of process parameters on repeatability precision of weight for microinjection molding products,” Adv. Polym. Technol., vol. 2019, 2019, doi: 10.1155/2019/2604878.
[33]S.Farahani et al., “Evaluation of in-mold sensors and machine data towards enhancing product quality and process monitoring via Industry 4.0,” Int. J. Adv. Manuf. Technol., vol. 105, no. 1–4, pp. 1371–1389, 2019, doi: 10.1007/s00170-019-04323-8.
[34]Y.Lockner andC.Hopmann, “Induced network-based transfer learning in injection molding for process modelling and optimization with artificial neural networks,” Int. J. Adv. Manuf. Technol., vol. 112, no. 11–12, pp. 3501–3513, 2021, doi: 10.1007/s00170-020-06511-3.
[35]P.Zhao et al., “Optimization of Injection-Molding Process Parameters for Weight Control: Converting Optimization Problem to Classification Problem,” Adv. Polym. Technol., vol. 2020, 2020, doi: 10.1155/2020/7654249.
[36]J.Maderthaner, A.Kugi, andW.Kemmetmüller, “Part mass estimation strategy for injection molding machines,” IFAC-PapersOnLine, vol. 53, pp. 10366–10371, 2020, doi: 10.1016/j.ifacol.2020.12.2775.
[37]C.Nitnara, K.Tragangoon, andS.Muangpasee, “Optimization Of Energy Consumption, Density, And Shrinkage In Plastic Injection Molding Process,” J. Appl. Sci. Eng., vol. 27, no. 10, pp. 3251–3261, 2023, [Online]. Available: http://dx.doi.org/10.6180/jase.202410_27
[38]H.Mianehrow andA.Abbasian, “Energy monitoring of plastic injection molding process running with hydraulic injection molding machines,” J. Clean. Prod., vol. 148, pp. 804–810, 2017, doi: 10.1016/j.jclepro.2017.02.053.
[39]S. M. S.Mukras, “Experimental-Based Optimization of Injection Molding Process Parameters for Short Product Cycle Time,” Adv. Polym. Technol., pp. 1–15, 2020.
[40]S.Kitayama, M.Yokoyama, M.Takano, andS.Aiba, “Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time,” Int. J. Adv. Manuf. Technol., vol. 92, no. 9–12, pp. 3991–3999, 2017, doi: 10.1007/s00170-017-0456-1.
[41]J. B.Tranter, P.Refalo, andA.Rochman, “Towards sustainable injection molding of ABS plastic products,” J. Manuf. Process., vol. 29, pp. 399–406, 2017, doi: 10.1016/j.jmapro.2017.08.015.
[42]I.Meekers, P.Refalo, andA.Rochman, “Analysis of Process Parameters affecting Energy Consumption in Plastic Injection Moulding,” Procedia CIRP, vol. 69, no. May, pp. 342–347, 2018, doi: 10.1016/j.procir.2017.11.042.
[43]C. C.Cheng andK. W.Liu, “Optimizing energy savings of the injection molding process by using a cloud energy management system,” Energy Effic., vol. 11, no. 2, pp. 415–426, 2018, doi: 10.1007/s12053-017-9574-8.
[44]D.He, Y.Zhang, Z.Jian, Y.Fan, andG.Zhou, “Numerical Simulation for Optimization of Plastics Process Parameters of Injection Molding Machine Based on Energy Consumption,” DEStech Trans. Eng. Technol. Res., 2016, doi: 10.12783/DTETR/ICMITE20162016/4631.
[45]H.Liu, X.Zhang, L.Quan, andH.Zhang, “Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units,” J. Clean. Prod., vol. 242, p. 118355, 2020, doi: 10.1016/j.jclepro.2019.118355.
[46]G.Lucchetta, D.Masato, andM.Sorgato, “Optimization of mold thermal control for minimum energy consumption in injection molding of polypropylene parts,” J. Clean. Prod., vol. 182, pp. 217–226, 2018, doi: 10.1016/j.jclepro.2018.01.258.
[47]P.Zhao et al., “In-situ ultrasonic measurement of molten polymers during injection molding,” J. Mater. Process. Technol., vol. 293, no. August 2020, p. 117081, 2021, doi: 10.1016/j.jmatprotec.2021.117081.
[48]P. Q.Trung, “A Study on the Temperature Optimization of Mold and Melt Using Design of Experiments for Children’s Chair,” Key Eng. Mater., vol. 969, pp. 59–64, 2023, doi: 10.4028/p-LWW9yY.
[49]J. S.Wen, C. H.Yin, S. C.Jiang, andG.Jin, “Study of Energy Consumption in the Injection Molding Process,” J. Macromol. Sci. Part B Phys., vol. 56, no. 8, pp. 553–567, 2017, doi: 10.1080/00222348.2017.1342967.
[50]V. G.Gomes, W. I.Patterson, andM. R.Kamal, “An Injection Molding Study. Part II: Evaluation of Alternative Control Strategies for Melt Temperature,” Chem. Eng. Sci., vol. 44, no. 9, pp. 1751–1752, 1989, doi: 10.1016/0009-2509(89)85116-4.
[51]İ.Karagöz, “An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials,” Polym. Bull., vol. 78, no. 5, pp. 2627–2644, 2021, doi: 10.1007/s00289-020-03231-2.
[52]J.Iwko, R.Wroblewski, andR.Steller, “Experimental study on energy consumption in the plasticizing unit of the injection molding machine,” Polimery/Polymers, vol. 63, no. 5, pp. 362–371, 2018, doi: 10.14314/polimery.2018.5.5.
[53]H.Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol., vol. 67, no. 1–4, pp. 675–686, 2013, doi: 10.1007/s00170-012-4514-4.
[54]G. Y.Liou et al., “Optimize Injection-Molding Process Parameters and Build an Adaptive Process Control System Based on Nozzle Pressure Profile and Clamping Force,” Polymers (Basel)., vol. 15, no. 3, 2023, doi: 10.3390/polym15030610.
[55]G.Yi-chon, “Analysis on Plasticizing and Injection Energy Consumption in Foaming Injection Process,” Plast., 2014.
[56]Y. H.Chang, S. C.Chen, Y. H.Ting, C.TeFeng, andC. C.Hsu, “The Investigation of Novel Dynamic Packing Technology for Injection Molded Part Quality Control and Its Production Stability by Using Real-Time PVT Control Method,” Polymers (Basel)., vol. 14, no. 13, 2022, doi: 10.3390/polym14132720.
[57]J.Hou, G.Zhao, andG.Wang, “Polypropylene/talc foams with high weight-reduction and improved surface quality fabricated by mold-opening microcellular injection molding,” J. Mater. Res. Technol., vol. 12, pp. 74–86, 2021, doi: 10.1016/j.jmrt.2021.02.077.
[58]J. C.Fan-Jiang et al., “Study of an online monitoring adaptive system for an injection molding process based on a nozzle pressure curve,” Polymers (Basel)., vol. 13, no. 4, pp. 1–15, 2021, doi: 10.3390/polym13040555.
[59]L.Qingchun, “Study on Energy Distribution of Plastic Injection Molding Process Based on LabVIEW,” China Plast., 2011.
[60]B.Sanschagrin, “Process control of injection molding,” Polym. Eng. Sci., vol. 23, no. 8, pp. 431–438, 1983, doi: 10.1002/pen.760230804.
[61]L.Qingchun, “The Processing Factors of Polypropylene Foam Injection based on Intermittent Supercritical N_2 Gas Injection System,” Plast., 2012.
[62]W.Da-ming, “Influencing Factor of Plasticizing Capacity and Energy Consumption of the Screw in Injecting Molding Machine,” Plast., 2008.
[63]C.Nylund andK.Meinander, “The influence of heat transfer coefficient on cooling time in injection molding,” Heat Mass Transf. und Stoffuebertragung, vol. 41, no. 5, pp. 428–431, 2005, doi: 10.1007/s00231-004-0556-y.
[64]D.Singh andB.Singh, “Investigating the impact of data normalization on classification performance,” Appl. Soft Comput., vol. 97, p. 105524, 2020, doi: 10.1016/j.asoc.2019.105524.
[65]J.Han, M.Kamber, andJ.Pei, Data Mining: Concepts and Techniques, 3rd ed. in Morgan Kaufmann Series in Data Management Systems.Amsterdam: Morgan Kaufmann, 2011. [Online]. Available: http://www.sciencedirect.com/science/book/9780123814791
[66]R. A.van denBerg, H. C. J.Hoefsloot, J. A.Westerhuis, A. K.Smilde, andM. J.van derWerf, “Centering, scaling, and transformations: Improving the biological information content of metabolomics data,” BMC Genomics, vol. 7, pp. 1–15, 2006, doi: 10.1186/1471-2164-7-142.
[67]C.Janiesch, P.Zschech, andK.Heinrich, “Machine learning and deep learning,” Quantum Comput. Artif. Intell. Train. Mach. Deep Learn. Algorithms Quantum Comput., pp. 71–84, 2023, doi: 10.1515/9783110791402-004.
[68]A.Garg andV.Mago, “Role of machine learning in medical research: A survey,” Comput. Sci. Rev., vol. 40, p. 100370, 2021, doi: 10.1016/j.cosrev.2021.100370.
[69]C. L.Soh et al., “Present and future of machine learning in breast surgery: systematic review,” Br. J. Surg., vol. 109, no. 11, pp. 1053–1062, 2022, doi: 10.1093/bjs/znac224.
[70]S.V.Mahadevkar et al., “A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions,” IEEE Access, vol. 10, no. October, pp. 107293–107329, 2022, doi: 10.1109/ACCESS.2022.3209825.
[71]Z.Liu, D.Zhu, L.Raju, andW.Cai, “Tackling Photonic Inverse Design with Machine Learning,” Adv. Sci., vol. 8, no. 5, pp. 1–15, 2021, doi: 10.1002/advs.202002923.
[72]M.Jooshaki, A.Nad, andS.Michaux, “A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry,” Minerals, vol. 11, no. 8, 2021, doi: 10.3390/min11080816.
[73]M.Bertolini, D.Mezzogori, M.Neroni, andF.Zammori, “Machine Learning for industrial applications: A comprehensive literature review,” Expert Syst. Appl., vol. 175, no. February, p. 114820, 2021, doi: 10.1016/j.eswa.2021.114820.
[74]Z. H.Zhou, “A brief introduction to weakly supervised learning,” Natl. Sci. Rev., vol. 5, no. 1, pp. 44–53, 2018, doi: 10.1093/nsr/nwx106.
[75]X.Liu et al., “Self-Supervised Learning: Generative or Contrastive,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 857–876, 2023, doi: 10.1109/TKDE.2021.3090866.
[76]Y. F.Li, L. Z.Guo, andZ. H.Zhou, “Towards Safe Weakly Supervised Learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 334–346, 2021, doi: 10.1109/TPAMI.2019.2922396.
[77]E. I.Knudsen, “Supervised learning in the brain,” J. Neurosci., vol. 14, no. 7, pp. 3985–3997, 1994, doi: 10.1523/jneurosci.14-07-03985.1994.
[78]J. L.Raymond andJ. F.Medina, “Computational principles of supervised learning in the cerebellum,” Annu. Rev. Neurosci., vol. 41, pp. 233–253, 2018, doi: 10.1146/annurev-neuro-080317-061948.
[79]Y.Li, “Safe semi-supervised learning : a brief introduction,” vol. 13, no. 4, pp. 669–676, 2019.
[80]X.Yang, Z.Song, I.King, andZ.Xu, “A Survey on Deep Semi-Supervised Learning,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 8934–8954, 2023, doi: 10.1109/TKDE.2022.3220219.
[81]Z.-H.Zhou andM.Li, “Semi-Supervised Learning by Disagreement,” Knowl. Inf. Syst., 2009, [Online]. Available: https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/kais10.pdf
[82]S.Bucci, A.D’Innocente, Y.Liao, F. M.Carlucci, B.Caputo, andT.Tommasi, “Self-Supervised Learning Across Domains,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5516–5528, 2022, doi: 10.1109/TPAMI.2021.3070791.
[83]Y.Xie, Z.Xu, J.Zhang, Z.Wang, andS.Ji, “Self-Supervised Learning of Graph Neural Networks: A Unified Review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 2412–2429, 2023, doi: 10.1109/TPAMI.2022.3170559.
[84]L.Wang, “Discovering phase transitions with unsupervised learning,” Phys. Rev. B, vol. 94, no. 19, pp. 2–6, 2016, doi: 10.1103/PhysRevB.94.195105.
[85]A.Glielmo, B. E.Husic, A.Rodriguez, C.Clementi, F.Noé, andA.Laio, “Unsupervised Learning Methods for Molecular Simulation Data,” Chem. Rev., vol. 121, no. 16, pp. 9722–9758, 2021, doi: 10.1021/acs.chemrev.0c01195.
[86]F.Piccialli, G.Casolla, S.Cuomo, F.Giampaolo, andV. S.DiCola, “Decision Making in IoT Environment through Unsupervised Learning,” IEEE Intell. Syst., vol. 35, no. 1, pp. 27–35, 2020, doi: 10.1109/MIS.2019.2944783.
[87]M. A. T.Figueiredo andA. K.Jain, “Unsupervised learning of finite mixture models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381–396, 2002, doi: 10.1109/34.990138.
[88]N.Li, M.Shepperd, andY.Guo, “A systematic review of unsupervised learning techniques for software defect prediction,” Inf. Softw. Technol., vol. 122, no. February, p. 106287, 2020, doi: 10.1016/j.infsof.2020.106287.
[89]Z.Solan, D.Horn, E.Ruppin, andS.Edelman, “Unsupervised learning of natural languages,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 33, pp. 11629–11634, 2005, doi: 10.1073/pnas.0409746102.
[90]F.Carcillo, Y. A.LeBorgne, O.Caelen, Y.Kessaci, F.Oblé, andG.Bontempi, “Combining unsupervised and supervised learning in credit card fraud detection,” Inf. Sci. (Ny)., vol. 557, pp. 317–331, 2021, doi: 10.1016/j.ins.2019.05.042.
[91]Bradley C. Love, “Comparing supervised and unsupervised category learning,” Psychon. Bull. Rev., vol. 9, no. 4, pp. 829–835, 2022.
[92]Y.Song, L.Goncalves, andP.Perona, “Unsupervised learning of human motion models,” Adv. Neural Inf. Process. Syst., vol. 25, no. 7, pp. 814–827, 2002.
[93]M.Usama et al., “Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.
[94]S. L.Brunton andJ. N.Kutz, Data-Driven Science and Engineering.
[95]R.Aniza, W. H.Chen, F. C.Yang, A.Pugazhendh, andY.Singh, “Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis,” Bioresour. Technol., vol. 343, no. October 2021, p. 126140, 2022, doi: 10.1016/j.biortech.2021.126140.
[96]S.Wang et al., “State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation,” Pharmaceutics, vol. 14, no. 1, 2022, doi: 10.3390/pharmaceutics14010183.
[97]B.Nagy, D. L.Galata, A.Farkas, andZ. K.Nagy, “Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing—a Review,” AAPS J., vol. 24, no. 4, 2022, doi: 10.1208/s12248-022-00706-0.
[98]W.Sitek andJ.Trzaska, “Practical aspects of the design and use of the artificial neural networks in materials engineering,” Metals (Basel)., vol. 11, no. 11, 2021, doi: 10.3390/met11111832.
[99]N.V.Muravyev, G.Luciano, H. L.Ornaghi, R.Svoboda, andS.Vyazovkin, “Artificial neural networks for pyrolysis, thermal analysis, and thermokinetic studies: The status quo,” Molecules, vol. 26, no. 12, pp. 1–25, 2021, doi: 10.3390/molecules26123727.
[100]F.Feng, W.Na, J.Jin, J.Zhang, W.Zhang, andQ. J.Zhang, “Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art,” IEEE Trans. Microw. Theory Tech., vol. 70, no. 11, pp. 4597–4619, 2022, doi: 10.1109/TMTT.2022.3197751.
[101]W.He et al., “Using of Artificial Neural Networks (ANNs) to predict the thermal conductivity of Zinc Oxide–Silver (50%–50%)/Water hybrid Newtonian nanofluid,” Int. Commun. Heat Mass Transf., vol. 116, no. May, p. 104645, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104645.
[102]M. A.Alamir, “An artificial neural network model for predicting the performance of thermoacoustic refrigerators,” Int. J. Heat Mass Transf., vol. 164, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120551.
[103]N. N. S.Torres, V. S. D.Diaz, O. H. A.Junior, andJ. J.Ledesma, “Analysis of the Technical Feasibility of Using Artificial Intelligence for Smoothing Active Power in a Photovoltaic System Connected to the Power System.,” Brazilian Arch. Biol. Technol., 2021, doi: 10.1590/1678-4324-75years-2021210196.
[104]M. A.Rahman, R. C.Muniyandi, D.Albashish, M. M.Rahman, andO. L.Usman, “Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer,” PeerJ Comput. Sci., vol. 7, 2021, doi: 10.7717/peerj-cs.344.
[105]A. B.Çolak, “A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: An experimental study on the thermal conductivity of ZrO2 nanofluid,” Int. J. Energy Res., vol. 45, no. 13, pp. 18944–18956, 2021, doi: 10.1002/er.6989.
[106]M.Adil, R.Ullah, S.Noor, andN.Gohar, “Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design,” Neural Comput. Appl., vol. 34, no. 11, pp. 8355–8363, 2022, doi: 10.1007/s00521-020-05305-8.
[107]M.Ibnu Choldun R., J.Santoso, andK.Surendro, Determining the number of hidden layers in neural network by using principal component analysis, vol. 1038. Springer International Publishing, 2020. doi: 10.1007/978-3-030-29513-4_36.
[108]A.Alibakshi, “Strategies to develop robust neural network models: Prediction of flash point as a case study,” Anal. Chim. Acta, vol. 1026, pp. 69–76, 2018, doi: 10.1016/j.aca.2018.05.015.
[109]N. K.Manaswi, “Understanding and Working with Keras,” in Deep Learning with Applications Using Python : Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras, Berkeley, CA: Apress, 2018, pp. 31–43. doi: 10.1007/978-1-4842-3516-4_2.
[110]S.Saha andR.L, “Building and Improving Artificial Neural Network Classifier,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 2742–2747, 2019, doi: 10.35940/ijitee.i8311.078919.
[111]H.Tang andL.Notash, “Neural Network-Based Transfer Learning of Manipulator Inverse Displacement Analysis,” J. Mech. Robot., vol. 13, no. 3, p. 35004, 2021, doi: 10.1115/1.4050622.
[112]S.Leroux, B.Vankeirsbilck, T.Verbelen, P.Simoens, andB.Dhoedt, “Training binary neural networks with knowledge transfer,” Neurocomputing, vol. 396, pp. 534–541, 2020, doi: 10.1016/j.neucom.2018.09.103.
[113]Q.Zhan, G.Liu, X.Xie, G.Sun, andH.Tang, “Effective Transfer Learning Algorithm in Spiking Neural Networks,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13323–13335, 2022, doi: 10.1109/TCYB.2021.3079097.
[114]J.Wang, B.Zou, M.Liu, Y.Li, H.Ding, andK.Xue, “Milling force prediction model based on transfer learning and neural network,” J. Intell. Manuf., vol. 32, no. 4, pp. 947–956, 2021, doi: 10.1007/s10845-020-01595-w.
[115]T.Han, C.Liu, W.Yang, andD.Jiang, “Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions,” ISA Trans., vol. 93, pp. 341–353, 2019, doi: 10.1016/j.isatra.2019.03.017.
[116]X.Han, Z.Huang, B.An, andJ.Bai, “Adaptive Transfer Learning on Graph Neural Networks,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 565–574, 2021, doi: 10.1145/3447548.3467450.
[117]A. P.Utomo, R. D.Bintara, andSuprayitno, “Optimization Injection Molding Parameters of Polypropylene Materials to Minimize Product Not Complete Defects Using the Taguchi Method,” Proceeding Int. Conf. Relig. Sci. Educ., pp. 605–611, 2022, [Online]. Available: http://sunankalijaga.org/prosiding/index.php/icrse/article/view/843/805
[118]G. V.Research, “Plastic Market Size, Share & Trends Analysis Report By Product (PE, PP, PU, PVC, PET, PS), By Application (Injection molding, blow molding, roto molding, compression molding), By End-use, By Region, And Segment Forecasts, 2024 - 2030,” Grand View Research. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/global-plastics-market#
[119]J.Wang, Q.Mao, N.Jiang, andJ.Chen, “Effects of injection molding parameters on properties of insert-injection molded polypropylene single-polymer composites,” Polymers (Basel)., vol. 14, no. 1, 2022, doi: 10.3390/polym14010023.
[120]Y. E.Midilli andS.Parsutins, “Optimization of Deep Learning Hyperparameters with Experimental Design in Exchange Rate Prediction,” 2020 61st Int. Sci. Conf. Inf. Technol. Manag. Sci. Riga Tech. Univ. ITMS 2020 - Proc., no. January 2019, pp. 8–11, 2020, doi: 10.1109/ITMS51158.2020.9259300.
[121]F. T.ALGorain andA. S.Alnaeem, “Deep Learning Optimisation of Static Malware Detection with Grid Search and Covering Arrays,” Telecom, vol. 4, no. 2, pp. 249–264, 2023, doi: 10.3390/telecom4020015.
[122]C.Xu, P.Coen-Pirani, andX.Jiang, “Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis,” Cancers (Basel)., vol. 15, no. 7, pp. 1–14, 2023, doi: 10.3390/cancers15071969.
[123]J.Wu, X. Y.Chen, H.Zhang, L. D.Xiong, H.Lei, andS. H.Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” J. Electron. Sci. Technol., vol. 17, no. 1, pp. 26–40, 2019, doi: 10.11989/JEST.1674-862X.80904120.
[124]A. B.Çolak, “An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural,” Int. J. Energy Res., vol. 45, pp. 478–500, 2021, doi: DOI: 10.1002/er.5680.
[125]V. L.Tran, D. K.Thai, andS. E.Kim, “Application of ANN in predicting ACC of SCFST column,” Compos. Struct., vol. 228, no. June, p. 111332, 2019, doi: 10.1016/j.compstruct.2019.111332.
[126]A.Amir, “Artificial Neural Network Model For Surface Roughness Prediction In CNC Milling Machining,” Institut Teknologi Bandung, 2020.


電子全文 電子全文(網際網路公開日期:20290717)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top