跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張均宥
研究生(外文):CHANG, CHUN-YU
論文名稱:透過第一原理計算感測 Ti3C2TX MXene 表面上的揮發性有機化合物 (VOCs)
論文名稱(外文):Sensing of Volatile Organic Compounds (VOCs) on Ti3C2Tx MXene Surfaces by First-principle Calculations
指導教授:葉丞豪
指導教授(外文):YEH, CHEN-HAO
口試委員:張鈞智黃志嘉
口試委員(外文):CHANG, CHUN-CHIHHUANG, CHIH-CHIA
口試日期:2024-06-26
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:129
中文關鍵詞:氣體感測器第一原理計算
外文關鍵詞:MXeneSensorTi3C2F2Ti3C2O2Ti3C2(OH)2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二微奈米材料有著優異的電學、光學以及熱學的特性。MXene是二維過度金屬碳化物、碳氮化物或氮化物的新家族,其通式為Mn+1XnTx,其中M為早期過度金屬,X為碳化物(C)或氮化物(N),TX為表面終止基團(OH、O、F)。MXene可用於多種應用,如能源儲存、生物醫學應用和氣體感測。本實驗使用第一計算原理來計算丙酮、甲醛、甲醇以及水分子對Ti3C2F2、Ti3C2O2、Ti3C2(OH)2三個表面進行吸附並藉由Bader Charge、(Electron Density Diffrence) EDD、(Density of States) DOS來進行測試並探討分析其特性。從觀察發現在Ti3C2F2、Ti3C2O2 兩個表面上丙酮的吸附能最優,分別為-0.56 eV、-0.46 eV。而在Ti3C2(OH)2表面上甲醛的吸附能為-0.99 eV,在EDD這邊觀測到在Ti3C2(OH)2有最大的電子轉移,是因為表面的OH鍵與丙酮和甲醛產生了作用力,後期增加了機械力感測以及電感測,發現在拉伸應變和壓縮應變這方面丙酮和甲醛在Ti3C2(OH)2的表面上吸附能呈現了正比的趨勢,達到可調式吸附能之效果。而在導電率這方面丙酮以及甲醛在Ti3C2(OH)2表面上有最佳的導電率變化,由上述實驗可得知Ti3C2(OH)2表面有最好的性能。
Two-dimensional materials have been proven to exhibit excellent electrical, optical, and thermal properties. MXene is a new family of two-dimensional materials with the general formula Mn+1XnTx, where M is an early transition metal, X is carbon or nitrogen, and T represents surface termination groups1. MXene has been reported in many application fields, such as energy storage, biomedical applications, and gas sensing2. In this work, first-principles calculations were employed to study the gas-sensing properties of acetone, formaldehyde, methanol, and water molecules on the three MXene monolayers3, including Ti3C2F2, Ti3C2O2, and Ti3C2(OH)2. It was observed that acetone exhibited the most favorable adsorption energy on the Ti3C2F2 and Ti3C2O2 monolayers, with values of -0.56 eV and -0.46 eV, respectively. Besides, formaldehyde showed the strongest adsorption energy on the Ti3C2(OH)2monolayer at -0.99 eV. Calculating the electronic properties shows that the most significant electron transfer exists between formaldehyde and Ti3C2(OH)2, attributing to the hydrogen bonding between surface OH bonds and formaldehyde. Subsequently, electrical and mechanical properties were carried out to identify the sensitivity of these gas molecules. The formaldehyde showed optimal conductivity variations on the Ti3C2(OH)2 monolayer through conductivity calculation. Moreover, we found that the adsorption energies of the formaldehyde on the Ti3C2(OH)2 monolayer would largely increase and decrease under compressive and tensile strains, respectively. This phenomenon indicates that the mechanical properties can efficiently affect the adsorption of formaldehyde towards Ti3C2(OH)2 monolayer. Thus, our results demonstrate that the Ti3C2(OH)2 monolayer can be the electrical and mechanical gas sensors of formaldehyde.
第一章 緒論 1
第二章 文獻探討 3
2.1 揮發性有機化合物 3
2.1.1揮發性有機化合物 3
2.1.2揮發性有機化合物的影響 3
2.1.3丙酮 CH3COCH3 4
2.1.4甲醛 CH2O 4
2.1.5甲醇 CH3OH 4
2.2氣體感測器 5
2.3 MXene 5
2.4 MXene用於檢測VOCs氣體感測器 6
2.5 Ti3C2TX MXene氣體感測器 7
第三章 理論與計算原理 8
3.1結構參數與吸附能計算 8
第四章 結果與討論 10
4.1 Ti3C2F2表面對VOCs氣體吸附 10
4.1.1吸附結構分析 10
4.1.2 Ti3C2F2電子結構分析 22
4.2 Ti3C2O2表面對VOCS氣體吸附 28
4.2.1吸附結構分析 28
4.2.2 Ti3C2O2電子結構分析 39
4.3 Ti3C2(OH)2表面對VOCS氣體吸附 45
4.3.1吸附結構分析 45
4.3.2 Ti3C2(OH)2電子結構分析 58
4.4 拉伸/壓縮應力對MXene的影響 65
4.4.1拉伸和壓縮應變 65
4.4.2 恢復時間 90
4.5導電率變化 93
第五章 結論 109
參考文獻 111







(1)Guo, H.; Gao, Y.; Liu, T. A Theoretical Study of the VOC Sensor Based on Polymer-Coated Diaphragm Embedded with FBAR. Measurement 2018, 129, 206–210. https://doi.org/10.1016/j.measurement.2018.07.021.
(2)Chava, R. K.; Cho, H.-Y.; Yoon, J.-M.; Yu, Y.-T. Fabrication of Aggregated In2O3 Nanospheres for Highly Sensitive Acetaldehyde Gas Sensors. Journal of Alloys and Compounds 2019, 772, 834–842. https://doi.org/10.1016/j.jallcom.2018.09.183.
(3)Ppb-Level Xylene Gas Sensors Based on Co3O4 Nanoparticle-Coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature | IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9488181 (accessed 2024-04-01).
(4)Al-Salman, H. S.; Abdullah, M. J. Preparation of ZnO Nanostructures by RF-Magnetron Sputtering on Thermally Oxidized Porous Silicon Substrate for VOC Sensing Application. Measurement 2015, 59, 248–257. https://doi.org/10.1016/j.measurement.2014.08.011.
(5)Bouricha, B.; Souissi, R.; Bouguila, N.; Labidi, A. A Real-Time Sharp Selectivity with In2S3 Gas Sensor Using a Nonlinear Dynamic Response for VOCs. Measurement 2021, 185, 110070. https://doi.org/10.1016/j.measurement.2021.110070.
(6)Loghin, F.; Abdellah, A.; Falco, A.; Becherer, M.; Lugli, P.; Rivadeneyra, A. Time Stability of Carbon Nanotube Gas Sensors. Measurement 2019, 136, 323–325. https://doi.org/10.1016/j.measurement.2018.12.097.
(7)Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: Definitions and Classification. Pure and Applied Chemistry 1991, 63 (9), 1247–1250. https://doi.org/10.1351/pac199163091247.
(8)Hristoforou, E.; Hauser, H.; Dimitropoulos, P. D. On a New Principle of a Smart Multisensor Based on Magnetic Effects. IEEE Sensors Journal 2006, 6 (2), 372–379. https://doi.org/10.1109/JSEN.2005.859781.
(9)Miah, M. R.; Yang, M.; Khandaker, S.; Bashar, M. M.; Alsukaibi, A. K. D.; Hassan, H. M. A.; Znad, H.; Awual, Md. R. Polypyrrole-Based Sensors for Volatile Organic Compounds (VOCs) Sensing and Capturing: A Comprehensive Review. Sensors and Actuators A: Physical 2022, 347, 113933. https://doi.org/10.1016/j.sna.2022.113933.
(10)Hu, B.; Xu, H.; Deng, J.; Yi, Z.; Chen, J.; Xu, L.; Hong, Z.; Chen, X.; Hong, Y. Characteristics and Source Apportionment of Volatile Organic Compounds for Different Functional Zones in a Coastal City of Southeast China. Aerosol Air Qual. Res. 2018, 18 (11), 2840–2852. https://doi.org/10.4209/aaqr.2018.04.0122.
(11)Xuan, L.; Ma, Y.; Xing, Y.; Meng, Q.; Song, J.; Chen, T.; Wang, H.; Wang, P.; Zhang, Y.; Gao, P. Source, Temporal Variation and Health Risk of Volatile Organic Compounds (VOCs) from Urban Traffic in Harbin, China. Environmental Pollution 2021, 270, 116074. https://doi.org/10.1016/j.envpol.2020.116074.
(12)Zhong, Y.; Wang, Y.; Ji, Y.; Zhang, X.; Wang, X. Biomass Carbon-Based Composites for Adsorption/Photocatalysis Degradation of VOCs: A Comprehensive Review. Colloid and Interface Science Communications 2023, 57, 100749. https://doi.org/10.1016/j.colcom.2023.100749.
(13)Bruinen de Bruin, Y.; Koistinen, K.; Kephalopoulos, S.; Geiss, O.; Tirendi, S.; Kotzias, D. Characterisation of Urban Inhalation Exposures to Benzene, Formaldehyde and Acetaldehyde in the European Union. Environ Sci Pollut Res 2008, 15 (5), 417–430. https://doi.org/10.1007/s11356-008-0013-4.
(14)Mudassir, M. A.; Batool, M.; Kousar, S.; Makarem, M. A.; Razia, E. T.; Meshksar, M.; Murtaza, M.; Tariq, K.; Ud Din, M. A.; Bodlah, M. A.; Rahimpour, M. R. Plasma-Assisted Hydrodeoxygenation of Bio-Oils. Fuel Processing Technology 2023, 250, 107872. https://doi.org/10.1016/j.fuproc.2023.107872.
(15)Mirzaei, A.; Leonardi, S. G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceramics International 2016, 42 (14), 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.
(16)Broder, I.; Corey, P.; Brasher, P.; Lipa, M.; Cole, P. Formaldehyde Exposure and Health Status in Households. Environmental Health Perspectives 1991, 95, 101–104. https://doi.org/10.1289/ehp.9195101.
(17)Chen, T.; Hu, X.; Zhao, T.; Ge, Y. Nitrogen and Oxygen Co-Doped Porous Carbon Fabric for Efficient Removal of Formaldehyde. Fibers Polym 2022, 23 (7), 1888–1893. https://doi.org/10.1007/s12221-022-4143-y.
(18)Andersen, M. E.; Gentry, P. R.; Swenberg, J. A.; Mundt, K. A.; White, K. W.; Thompson, C.; Bus, J.; Sherman, J. H.; Greim, H.; Bolt, H.; Marsh, G. M.; Checkoway, H.; Coggon, D.; Clewell, H. J. Considerations for Refining the Risk Assessment Process for Formaldehyde: Results from an Interdisciplinary Workshop. Regulatory Toxicology and Pharmacology 2019, 106, 210–223. https://doi.org/10.1016/j.yrtph.2019.04.015.
(19)Church, A. S.; Witting, M. D. Laboratory Testing in Ethanol, Methanol, Ethylene Glycol, and Isopropanol Toxicities. The Journal of Emergency Medicine 1997, 15 (5), 687–692. https://doi.org/10.1016/S0736-4679(97)00150-9.
(20)Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature. J. Electron. Mater. 2017, 46 (4), 2476–2482. https://doi.org/10.1007/s11664-017-5316-0.
(21)Paulraj, R.; Mani, G. K.; Nallathambi, L.; Rayappan, J. B. B. A Room Temperature Methanol Vapour Sensor Based on Polyaniline Nanoparticles. Journal of Nanoscience and Nanotechnology 2016, 16 (8), 8315–8321. https://doi.org/10.1166/jnn.2016.11769.
(22)Fonseca, R. R. F.; Gaspar, R. D. L.; Raimundo, I. M.; Luz, P. P. Photoluminescent Tb3+-Based Metal-Organic Framework as a Sensor for Detection of Methanol in Ethanol Fuel. Journal of Rare Earths 2019, 37 (3), 225–231. https://doi.org/10.1016/j.jre.2018.07.006.
(23)Raya, I.; Kzar, H. H.; Mahmoud, Z. H.; Al Ayub Ahmed, A.; Ibatova, A. Z.; Kianfar, E. A Review of Gas Sensors Based on Carbon Nanomaterial. Carbon Lett. 2022, 32 (2), 339–364. https://doi.org/10.1007/s42823-021-00276-9.
(24)Dhall, S.; Mehta, B. R.; Tyagi, A. K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sensors International 2021, 2, 100116. https://doi.org/10.1016/j.sintl.2021.100116.
(25)Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in Gas Sensors and Electronic Nose Technologies for Agricultural Cycle Applications. Computers and Electronics in Agriculture 2022, 193, 106673. https://doi.org/10.1016/j.compag.2021.106673.
(26)John, A. T.; Murugappan, K.; Nisbet, D. R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21 (7), 2271. https://doi.org/10.3390/s21072271.
(27)Kushwaha, A.; Kumar, R.; Goel, N. Chemiresistive Gas Sensors beyond Metal Oxides: Using Ultrathin Two-Dimensional Nanomaterials. FlatChem 2024, 43, 100584. https://doi.org/10.1016/j.flatc.2023.100584.
(28)Buckley, D. J.; Black, N. C. G.; Castanon, E. G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of Graphene and 2D Material-Based Gas Sensors for Environmental Monitoring. 2D Mater. 2020, 7 (3), 032002. https://doi.org/10.1088/2053-1583/ab7bc5.
(29)Wang, H.; Ma, J.; Zhang, J.; Feng, Y.; Vijjapu, M. T.; Yuvaraja, S.; Surya, S. G.; Salama, K. N.; Dong, C.; Wang, Y.; Kuang, Q.; Tshabalala, Z. P.; Motaung, D. E.; Liu, X.; Yang, J.; Fu, H.; Yang, X.; An, X.; Zhou, S.; Zi, B.; Liu, Q.; Urso, M.; Zhang, B.; Akande, A. A.; Prasad, A. K.; Hung, C. M.; Duy, N. V.; Hoa, N. D.; Wu, K.; Zhang, C.; Kumar, R.; Kumar, M.; Kim, Y.; Wu, J.; Wu, Z.; Yang, X.; Vanalakar, S. A.; Luo, J.; Kan, H.; Li, M.; Jang, H. W.; Orlandi, M. O.; Mirzaei, A.; Kim, H. W.; Kim, S. S.; Uddin, A. S. M. I.; Wang, J.; Xia, Y.; Wongchoosuk, C.; Nag, A.; Mukhopadhyay, S.; Saxena, N.; Kumar, P.; Do, J.-S.; Lee, J.-H.; Hong, S.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Bruzzi, M.; Zhu, C.; Gerald, R. E.; Huang, J. Gas Sensing Materials Roadmap. J. Phys.: Condens. Matter 2021, 33 (30), 303001. https://doi.org/10.1088/1361-648X/abf477.
(30)Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Materials Science 2021, 3 (4), 390–403. https://doi.org/10.1016/j.nanoms.2021.05.011.
(31)Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal Oxide Semiconductors for Gas Sensing. Engineering Reports 2023, 5 (6), e12604. https://doi.org/10.1002/eng2.12604.
(32)Gautam, Y. K.; Sharma, K.; Tyagi, S.; Ambedkar, A. K.; Chaudhary, M.; Pal Singh, B. Nanostructured Metal Oxide Semiconductor-Based Sensors for Greenhouse Gas Detection: Progress and Challenges. Royal Society Open Science 2021, 8 (3), 201324. https://doi.org/10.1098/rsos.201324.
(33)Sensors | Free Full-Text | Semiconductor Gas Sensors: Materials, Technology, Design, and Application. https://www.mdpi.com/1424-8220/20/22/6694 (accessed 2024-01-10).
(34)Small Methods. Wiley Online Library. https://doi.org/10.1002/(ISSN)2366-9608.
(35)Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH3 Gas Sensor Based on Phthalocyanine-Optimized Non-Covalent Hybrid of Carbon Nanotubes with Pyrrole. Sensors and Actuators B: Chemical 2022, 357, 131352. https://doi.org/10.1016/j.snb.2021.131352.
(36)Ying, G.; Kota, S.; Dillon, A. D.; Fafarman, A. T.; Barsoum, M. W. Conductive Transparent V2CTx (MXene) Films. FlatChem 2018, 8, 25–30. https://doi.org/10.1016/j.flatc.2018.03.001.
(37)Wen, D.; Wang, X.; Liu, L.; Hu, C.; Sun, C.; Wu, Y.; Zhao, Y.; Zhang, J.; Liu, X.; Ying, G. Inkjet Printing Transparent and Conductive MXene (Ti3C2Tx) Films: A Strategy for Flexible Energy Storage Devices. ACS Appl. Mater. Interfaces 2021, 13 (15), 17766–17780. https://doi.org/10.1021/acsami.1c00724.
(38)Morales-García, Á.; Calle-Vallejo, F.; Illas, F. MXenes: New Horizons in Catalysis. ACS Catal. 2020, 10 (22), 13487–13503. https://doi.org/10.1021/acscatal.0c03106.
(39)Xie, X.; Zhang, N. Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials 2020, 30 (36), 2002528. https://doi.org/10.1002/adfm.202002528.
(40)Carbon Capture and Usage by MXenes | ACS Catalysis. https://pubs.acs.org/doi/10.1021/acscatal.1c02663 (accessed 2024-01-12).
(41)Morales-García, Á.; Fernández-Fernández, A.; Viñes, F.; Illas, F. CO2 Abatement Using Two-Dimensional MXene Carbides. J. Mater. Chem. A 2018, 6 (8), 3381–3385. https://doi.org/10.1039/C7TA11379J.
(42)Xu, S.; Dall’Agnese, Y.; Li, J.; Gogotsi, Y.; Han, W. Thermally Reduced Graphene/MXene Film for Enhanced Li-Ion Storage. Chemistry – A European Journal 2018, 24 (69), 18556–18563. https://doi.org/10.1002/chem.201805162.
(43)Cheng, R.; Hu, T.; Zhang, H.; Wang, C.; Hu, M.; Yang, J.; Cui, C.; Guang, T.; Li, C.; Shi, C.; Hou, P.; Wang, X. Understanding the Lithium Storage Mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123 (2), 1099–1109. https://doi.org/10.1021/acs.jpcc.8b10790.
(44)Xu, K.; Merlet, C.; Lin, Z.; Shao, H.; Taberna, P.-L.; Miao, L.; Jiang, J.; Zhu, J.; Simon, P. Effects of Functional Groups and Anion Size on the Charging Mechanisms in Layered Electrode Materials. Energy Storage Materials 2020, 33, 460–469. https://doi.org/10.1016/j.ensm.2020.08.030.
(45)Zhao, S.; Chen, C.; Zhao, X.; Chu, X.; Du, F.; Chen, G.; Gogotsi, Y.; Gao, Y.; Dall’Agnese, Y. Flexible Nb4C3Tx Film with Large Interlayer Spacing for High-Performance Supercapacitors. Advanced Functional Materials 2020, 30 (47), 2000815. https://doi.org/10.1002/adfm.202000815.
(46)VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372 (6547), eabf1581. https://doi.org/10.1126/science.abf1581.
(47)Ran, F.; Wang, T.; Chen, S.; Liu, Y.; Shao, L. Constructing Expanded Ion Transport Channels in Flexible MXene Film for Pseudocapacitive Energy Storage. Applied Surface Science 2020, 511, 145627. https://doi.org/10.1016/j.apsusc.2020.145627.
(48)Zhao, W.-N.; Yun, N.; Dai, Z.-H.; Li, Y.-F. A High-Performance Trace Level Acetone Sensor Using an Indispensable V4C3Tx MXene. RSC Adv. 2020, 10 (3), 1261–1270. https://doi.org/10.1039/C9RA09069J.
(49)Sun, B.; Lv, H.; Liu, Z.; Wang, J.; Bai, X.; Zhang, Y.; Chen, J.; Kan, K.; Shi, K. Co3O4@PEI/Ti3C2Tx MXene Nanocomposites for a Highly Sensitive NOx Gas Sensor with a Low Detection Limit. J. Mater. Chem. A 2021, 9 (10), 6335–6344. https://doi.org/10.1039/D0TA11392A.
(50)Zhang, Y.; Jiang, Y.; Duan, Z.; Huang, Q.; Wu, Y.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Highly Sensitive and Selective NO2 Sensor of Alkalized V2CTx MXene Driven by Interlayer Swelling. Sensors and Actuators B: Chemical 2021, 344, 130150. https://doi.org/10.1016/j.snb.2021.130150.
(51)Thomas, T.; Ramos Ramón, J. A.; Agarwal, V.; Méndez, A. Á.-; Martinez, J. A. A.; Kumar, Y.; Sanal, K. C. Highly Stable, Fast Responsive Mo2CTx MXene Sensors for Room Temperature Carbon Dioxide Detection. Microporous and Mesoporous Materials 2022, 336, 111872. https://doi.org/10.1016/j.micromeso.2022.111872.
(52)Lee, S. H.; Eom, W.; Shin, H.; Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater. Interfaces 2020, 12 (9), 10434–10442. https://doi.org/10.1021/acsami.9b21765.
(53)Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4 (10), 2763–2770. https://doi.org/10.1021/acssensors.9b01308.
(54)Wang, X.; Sun, K.; Li, K.; Li, X.; Gogotsi, Y. Ti3C2Tx/PEDOT:PSS Hybrid Materials for Room-Temperature Methanol Sensor. Chinese Chemical Letters 2020, 31 (4), 1018–1021. https://doi.org/10.1016/j.cclet.2019.11.031.
(55)Wang, S.; Jiang, Y.; Liu, B.; Duan, Z.; Pan, H.; Yuan, Z.; Xie, G.; Wang, J.; Fang, Z.; Tai, H. Ultrathin Nb2CTx Nanosheets-Supported Polyaniline Nanocomposite: Enabling Ultrasensitive NH3 Detection. Sensors and Actuators B: Chemical 2021, 343, 130069. https://doi.org/10.1016/j.snb.2021.130069.
(56)Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat Rev Mater 2017, 2 (2), 1–17. https://doi.org/10.1038/natrevmats.2016.98.
(57)Damiri, F.; Rahman, M. H.; Zehravi, M.; Awaji, A. A.; Nasrullah, M. Z.; Gad, H. A.; Bani-Fwaz, M. Z.; Varma, R. S.; Germoush, M. O.; Al-malky, H. S.; Sayed, A. A.; Rojekar, S.; Abdel-Daim, M. M.; Berrada, M. MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. Materials 2022, 15 (5), 1666. https://doi.org/10.3390/ma15051666.
(58)Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D.-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9 (42), 37184–37190. https://doi.org/10.1021/acsami.7b11055.
(59)Kresse, G.; Hafner, J. Ab Initio Hellmann-Feynman Molecular Dynamics for Liquid Metals. Journal of Non-Crystalline Solids 1993, 156–158, 956–960. https://doi.org/10.1016/0022-3093(93)90104-6.
(60)Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6 (1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
(61)Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6 (1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
(62)Hafner, J. Structural, Electronic and Magnetic Properties of Liquid, Amorphous and Quasicrystalline Metals. Materials Science and Engineering: A 1994, 178 (1), 1–8. https://doi.org/10.1016/0921-5093(94)90509-6.
(63)Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
(64)Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
(65)Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.
(66)Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.
(67)Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. Journal of Computational Chemistry 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759.
(68)Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188.

電子全文 電子全文(網際網路公開日期:20260731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top