|
(1)Guo, H.; Gao, Y.; Liu, T. A Theoretical Study of the VOC Sensor Based on Polymer-Coated Diaphragm Embedded with FBAR. Measurement 2018, 129, 206–210. https://doi.org/10.1016/j.measurement.2018.07.021. (2)Chava, R. K.; Cho, H.-Y.; Yoon, J.-M.; Yu, Y.-T. Fabrication of Aggregated In2O3 Nanospheres for Highly Sensitive Acetaldehyde Gas Sensors. Journal of Alloys and Compounds 2019, 772, 834–842. https://doi.org/10.1016/j.jallcom.2018.09.183. (3)Ppb-Level Xylene Gas Sensors Based on Co3O4 Nanoparticle-Coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature | IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9488181 (accessed 2024-04-01). (4)Al-Salman, H. S.; Abdullah, M. J. Preparation of ZnO Nanostructures by RF-Magnetron Sputtering on Thermally Oxidized Porous Silicon Substrate for VOC Sensing Application. Measurement 2015, 59, 248–257. https://doi.org/10.1016/j.measurement.2014.08.011. (5)Bouricha, B.; Souissi, R.; Bouguila, N.; Labidi, A. A Real-Time Sharp Selectivity with In2S3 Gas Sensor Using a Nonlinear Dynamic Response for VOCs. Measurement 2021, 185, 110070. https://doi.org/10.1016/j.measurement.2021.110070. (6)Loghin, F.; Abdellah, A.; Falco, A.; Becherer, M.; Lugli, P.; Rivadeneyra, A. Time Stability of Carbon Nanotube Gas Sensors. Measurement 2019, 136, 323–325. https://doi.org/10.1016/j.measurement.2018.12.097. (7)Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: Definitions and Classification. Pure and Applied Chemistry 1991, 63 (9), 1247–1250. https://doi.org/10.1351/pac199163091247. (8)Hristoforou, E.; Hauser, H.; Dimitropoulos, P. D. On a New Principle of a Smart Multisensor Based on Magnetic Effects. IEEE Sensors Journal 2006, 6 (2), 372–379. https://doi.org/10.1109/JSEN.2005.859781. (9)Miah, M. R.; Yang, M.; Khandaker, S.; Bashar, M. M.; Alsukaibi, A. K. D.; Hassan, H. M. A.; Znad, H.; Awual, Md. R. Polypyrrole-Based Sensors for Volatile Organic Compounds (VOCs) Sensing and Capturing: A Comprehensive Review. Sensors and Actuators A: Physical 2022, 347, 113933. https://doi.org/10.1016/j.sna.2022.113933. (10)Hu, B.; Xu, H.; Deng, J.; Yi, Z.; Chen, J.; Xu, L.; Hong, Z.; Chen, X.; Hong, Y. Characteristics and Source Apportionment of Volatile Organic Compounds for Different Functional Zones in a Coastal City of Southeast China. Aerosol Air Qual. Res. 2018, 18 (11), 2840–2852. https://doi.org/10.4209/aaqr.2018.04.0122. (11)Xuan, L.; Ma, Y.; Xing, Y.; Meng, Q.; Song, J.; Chen, T.; Wang, H.; Wang, P.; Zhang, Y.; Gao, P. Source, Temporal Variation and Health Risk of Volatile Organic Compounds (VOCs) from Urban Traffic in Harbin, China. Environmental Pollution 2021, 270, 116074. https://doi.org/10.1016/j.envpol.2020.116074. (12)Zhong, Y.; Wang, Y.; Ji, Y.; Zhang, X.; Wang, X. Biomass Carbon-Based Composites for Adsorption/Photocatalysis Degradation of VOCs: A Comprehensive Review. Colloid and Interface Science Communications 2023, 57, 100749. https://doi.org/10.1016/j.colcom.2023.100749. (13)Bruinen de Bruin, Y.; Koistinen, K.; Kephalopoulos, S.; Geiss, O.; Tirendi, S.; Kotzias, D. Characterisation of Urban Inhalation Exposures to Benzene, Formaldehyde and Acetaldehyde in the European Union. Environ Sci Pollut Res 2008, 15 (5), 417–430. https://doi.org/10.1007/s11356-008-0013-4. (14)Mudassir, M. A.; Batool, M.; Kousar, S.; Makarem, M. A.; Razia, E. T.; Meshksar, M.; Murtaza, M.; Tariq, K.; Ud Din, M. A.; Bodlah, M. A.; Rahimpour, M. R. Plasma-Assisted Hydrodeoxygenation of Bio-Oils. Fuel Processing Technology 2023, 250, 107872. https://doi.org/10.1016/j.fuproc.2023.107872. (15)Mirzaei, A.; Leonardi, S. G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceramics International 2016, 42 (14), 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145. (16)Broder, I.; Corey, P.; Brasher, P.; Lipa, M.; Cole, P. Formaldehyde Exposure and Health Status in Households. Environmental Health Perspectives 1991, 95, 101–104. https://doi.org/10.1289/ehp.9195101. (17)Chen, T.; Hu, X.; Zhao, T.; Ge, Y. Nitrogen and Oxygen Co-Doped Porous Carbon Fabric for Efficient Removal of Formaldehyde. Fibers Polym 2022, 23 (7), 1888–1893. https://doi.org/10.1007/s12221-022-4143-y. (18)Andersen, M. E.; Gentry, P. R.; Swenberg, J. A.; Mundt, K. A.; White, K. W.; Thompson, C.; Bus, J.; Sherman, J. H.; Greim, H.; Bolt, H.; Marsh, G. M.; Checkoway, H.; Coggon, D.; Clewell, H. J. Considerations for Refining the Risk Assessment Process for Formaldehyde: Results from an Interdisciplinary Workshop. Regulatory Toxicology and Pharmacology 2019, 106, 210–223. https://doi.org/10.1016/j.yrtph.2019.04.015. (19)Church, A. S.; Witting, M. D. Laboratory Testing in Ethanol, Methanol, Ethylene Glycol, and Isopropanol Toxicities. The Journal of Emergency Medicine 1997, 15 (5), 687–692. https://doi.org/10.1016/S0736-4679(97)00150-9. (20)Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature. J. Electron. Mater. 2017, 46 (4), 2476–2482. https://doi.org/10.1007/s11664-017-5316-0. (21)Paulraj, R.; Mani, G. K.; Nallathambi, L.; Rayappan, J. B. B. A Room Temperature Methanol Vapour Sensor Based on Polyaniline Nanoparticles. Journal of Nanoscience and Nanotechnology 2016, 16 (8), 8315–8321. https://doi.org/10.1166/jnn.2016.11769. (22)Fonseca, R. R. F.; Gaspar, R. D. L.; Raimundo, I. M.; Luz, P. P. Photoluminescent Tb3+-Based Metal-Organic Framework as a Sensor for Detection of Methanol in Ethanol Fuel. Journal of Rare Earths 2019, 37 (3), 225–231. https://doi.org/10.1016/j.jre.2018.07.006. (23)Raya, I.; Kzar, H. H.; Mahmoud, Z. H.; Al Ayub Ahmed, A.; Ibatova, A. Z.; Kianfar, E. A Review of Gas Sensors Based on Carbon Nanomaterial. Carbon Lett. 2022, 32 (2), 339–364. https://doi.org/10.1007/s42823-021-00276-9. (24)Dhall, S.; Mehta, B. R.; Tyagi, A. K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sensors International 2021, 2, 100116. https://doi.org/10.1016/j.sintl.2021.100116. (25)Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in Gas Sensors and Electronic Nose Technologies for Agricultural Cycle Applications. Computers and Electronics in Agriculture 2022, 193, 106673. https://doi.org/10.1016/j.compag.2021.106673. (26)John, A. T.; Murugappan, K.; Nisbet, D. R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21 (7), 2271. https://doi.org/10.3390/s21072271. (27)Kushwaha, A.; Kumar, R.; Goel, N. Chemiresistive Gas Sensors beyond Metal Oxides: Using Ultrathin Two-Dimensional Nanomaterials. FlatChem 2024, 43, 100584. https://doi.org/10.1016/j.flatc.2023.100584. (28)Buckley, D. J.; Black, N. C. G.; Castanon, E. G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of Graphene and 2D Material-Based Gas Sensors for Environmental Monitoring. 2D Mater. 2020, 7 (3), 032002. https://doi.org/10.1088/2053-1583/ab7bc5. (29)Wang, H.; Ma, J.; Zhang, J.; Feng, Y.; Vijjapu, M. T.; Yuvaraja, S.; Surya, S. G.; Salama, K. N.; Dong, C.; Wang, Y.; Kuang, Q.; Tshabalala, Z. P.; Motaung, D. E.; Liu, X.; Yang, J.; Fu, H.; Yang, X.; An, X.; Zhou, S.; Zi, B.; Liu, Q.; Urso, M.; Zhang, B.; Akande, A. A.; Prasad, A. K.; Hung, C. M.; Duy, N. V.; Hoa, N. D.; Wu, K.; Zhang, C.; Kumar, R.; Kumar, M.; Kim, Y.; Wu, J.; Wu, Z.; Yang, X.; Vanalakar, S. A.; Luo, J.; Kan, H.; Li, M.; Jang, H. W.; Orlandi, M. O.; Mirzaei, A.; Kim, H. W.; Kim, S. S.; Uddin, A. S. M. I.; Wang, J.; Xia, Y.; Wongchoosuk, C.; Nag, A.; Mukhopadhyay, S.; Saxena, N.; Kumar, P.; Do, J.-S.; Lee, J.-H.; Hong, S.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Bruzzi, M.; Zhu, C.; Gerald, R. E.; Huang, J. Gas Sensing Materials Roadmap. J. Phys.: Condens. Matter 2021, 33 (30), 303001. https://doi.org/10.1088/1361-648X/abf477. (30)Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Materials Science 2021, 3 (4), 390–403. https://doi.org/10.1016/j.nanoms.2021.05.011. (31)Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal Oxide Semiconductors for Gas Sensing. Engineering Reports 2023, 5 (6), e12604. https://doi.org/10.1002/eng2.12604. (32)Gautam, Y. K.; Sharma, K.; Tyagi, S.; Ambedkar, A. K.; Chaudhary, M.; Pal Singh, B. Nanostructured Metal Oxide Semiconductor-Based Sensors for Greenhouse Gas Detection: Progress and Challenges. Royal Society Open Science 2021, 8 (3), 201324. https://doi.org/10.1098/rsos.201324. (33)Sensors | Free Full-Text | Semiconductor Gas Sensors: Materials, Technology, Design, and Application. https://www.mdpi.com/1424-8220/20/22/6694 (accessed 2024-01-10). (34)Small Methods. Wiley Online Library. https://doi.org/10.1002/(ISSN)2366-9608. (35)Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH3 Gas Sensor Based on Phthalocyanine-Optimized Non-Covalent Hybrid of Carbon Nanotubes with Pyrrole. Sensors and Actuators B: Chemical 2022, 357, 131352. https://doi.org/10.1016/j.snb.2021.131352. (36)Ying, G.; Kota, S.; Dillon, A. D.; Fafarman, A. T.; Barsoum, M. W. Conductive Transparent V2CTx (MXene) Films. FlatChem 2018, 8, 25–30. https://doi.org/10.1016/j.flatc.2018.03.001. (37)Wen, D.; Wang, X.; Liu, L.; Hu, C.; Sun, C.; Wu, Y.; Zhao, Y.; Zhang, J.; Liu, X.; Ying, G. Inkjet Printing Transparent and Conductive MXene (Ti3C2Tx) Films: A Strategy for Flexible Energy Storage Devices. ACS Appl. Mater. Interfaces 2021, 13 (15), 17766–17780. https://doi.org/10.1021/acsami.1c00724. (38)Morales-García, Á.; Calle-Vallejo, F.; Illas, F. MXenes: New Horizons in Catalysis. ACS Catal. 2020, 10 (22), 13487–13503. https://doi.org/10.1021/acscatal.0c03106. (39)Xie, X.; Zhang, N. Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials 2020, 30 (36), 2002528. https://doi.org/10.1002/adfm.202002528. (40)Carbon Capture and Usage by MXenes | ACS Catalysis. https://pubs.acs.org/doi/10.1021/acscatal.1c02663 (accessed 2024-01-12). (41)Morales-García, Á.; Fernández-Fernández, A.; Viñes, F.; Illas, F. CO2 Abatement Using Two-Dimensional MXene Carbides. J. Mater. Chem. A 2018, 6 (8), 3381–3385. https://doi.org/10.1039/C7TA11379J. (42)Xu, S.; Dall’Agnese, Y.; Li, J.; Gogotsi, Y.; Han, W. Thermally Reduced Graphene/MXene Film for Enhanced Li-Ion Storage. Chemistry – A European Journal 2018, 24 (69), 18556–18563. https://doi.org/10.1002/chem.201805162. (43)Cheng, R.; Hu, T.; Zhang, H.; Wang, C.; Hu, M.; Yang, J.; Cui, C.; Guang, T.; Li, C.; Shi, C.; Hou, P.; Wang, X. Understanding the Lithium Storage Mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123 (2), 1099–1109. https://doi.org/10.1021/acs.jpcc.8b10790. (44)Xu, K.; Merlet, C.; Lin, Z.; Shao, H.; Taberna, P.-L.; Miao, L.; Jiang, J.; Zhu, J.; Simon, P. Effects of Functional Groups and Anion Size on the Charging Mechanisms in Layered Electrode Materials. Energy Storage Materials 2020, 33, 460–469. https://doi.org/10.1016/j.ensm.2020.08.030. (45)Zhao, S.; Chen, C.; Zhao, X.; Chu, X.; Du, F.; Chen, G.; Gogotsi, Y.; Gao, Y.; Dall’Agnese, Y. Flexible Nb4C3Tx Film with Large Interlayer Spacing for High-Performance Supercapacitors. Advanced Functional Materials 2020, 30 (47), 2000815. https://doi.org/10.1002/adfm.202000815. (46)VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372 (6547), eabf1581. https://doi.org/10.1126/science.abf1581. (47)Ran, F.; Wang, T.; Chen, S.; Liu, Y.; Shao, L. Constructing Expanded Ion Transport Channels in Flexible MXene Film for Pseudocapacitive Energy Storage. Applied Surface Science 2020, 511, 145627. https://doi.org/10.1016/j.apsusc.2020.145627. (48)Zhao, W.-N.; Yun, N.; Dai, Z.-H.; Li, Y.-F. A High-Performance Trace Level Acetone Sensor Using an Indispensable V4C3Tx MXene. RSC Adv. 2020, 10 (3), 1261–1270. https://doi.org/10.1039/C9RA09069J. (49)Sun, B.; Lv, H.; Liu, Z.; Wang, J.; Bai, X.; Zhang, Y.; Chen, J.; Kan, K.; Shi, K. Co3O4@PEI/Ti3C2Tx MXene Nanocomposites for a Highly Sensitive NOx Gas Sensor with a Low Detection Limit. J. Mater. Chem. A 2021, 9 (10), 6335–6344. https://doi.org/10.1039/D0TA11392A. (50)Zhang, Y.; Jiang, Y.; Duan, Z.; Huang, Q.; Wu, Y.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Highly Sensitive and Selective NO2 Sensor of Alkalized V2CTx MXene Driven by Interlayer Swelling. Sensors and Actuators B: Chemical 2021, 344, 130150. https://doi.org/10.1016/j.snb.2021.130150. (51)Thomas, T.; Ramos Ramón, J. A.; Agarwal, V.; Méndez, A. Á.-; Martinez, J. A. A.; Kumar, Y.; Sanal, K. C. Highly Stable, Fast Responsive Mo2CTx MXene Sensors for Room Temperature Carbon Dioxide Detection. Microporous and Mesoporous Materials 2022, 336, 111872. https://doi.org/10.1016/j.micromeso.2022.111872. (52)Lee, S. H.; Eom, W.; Shin, H.; Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater. Interfaces 2020, 12 (9), 10434–10442. https://doi.org/10.1021/acsami.9b21765. (53)Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4 (10), 2763–2770. https://doi.org/10.1021/acssensors.9b01308. (54)Wang, X.; Sun, K.; Li, K.; Li, X.; Gogotsi, Y. Ti3C2Tx/PEDOT:PSS Hybrid Materials for Room-Temperature Methanol Sensor. Chinese Chemical Letters 2020, 31 (4), 1018–1021. https://doi.org/10.1016/j.cclet.2019.11.031. (55)Wang, S.; Jiang, Y.; Liu, B.; Duan, Z.; Pan, H.; Yuan, Z.; Xie, G.; Wang, J.; Fang, Z.; Tai, H. Ultrathin Nb2CTx Nanosheets-Supported Polyaniline Nanocomposite: Enabling Ultrasensitive NH3 Detection. Sensors and Actuators B: Chemical 2021, 343, 130069. https://doi.org/10.1016/j.snb.2021.130069. (56)Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat Rev Mater 2017, 2 (2), 1–17. https://doi.org/10.1038/natrevmats.2016.98. (57)Damiri, F.; Rahman, M. H.; Zehravi, M.; Awaji, A. A.; Nasrullah, M. Z.; Gad, H. A.; Bani-Fwaz, M. Z.; Varma, R. S.; Germoush, M. O.; Al-malky, H. S.; Sayed, A. A.; Rojekar, S.; Abdel-Daim, M. M.; Berrada, M. MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. Materials 2022, 15 (5), 1666. https://doi.org/10.3390/ma15051666. (58)Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D.-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9 (42), 37184–37190. https://doi.org/10.1021/acsami.7b11055. (59)Kresse, G.; Hafner, J. Ab Initio Hellmann-Feynman Molecular Dynamics for Liquid Metals. Journal of Non-Crystalline Solids 1993, 156–158, 956–960. https://doi.org/10.1016/0022-3093(93)90104-6. (60)Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6 (1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0. (61)Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6 (1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0. (62)Hafner, J. Structural, Electronic and Magnetic Properties of Liquid, Amorphous and Quasicrystalline Metals. Materials Science and Engineering: A 1994, 178 (1), 1–8. https://doi.org/10.1016/0921-5093(94)90509-6. (63)Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. (64)Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953. (65)Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758. (66)Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344. (67)Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. Journal of Computational Chemistry 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759. (68)Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188.
|