跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉郁佐
研究生(外文):LIU, YU-TSO
論文名稱:消費者對廣告的情緒反應:比較傳統廣告與人工智能生成廣告
論文名稱(外文):Consumers’ emotional responses to advertisements: traditional advertisements versus AI-generated advertisements
指導教授:王婉禎
指導教授(外文):WANG, WAN-CHEN
口試委員:簡士超龔昶元
口試委員(外文):CHIEN, Charles S.KUNG, C.Y.
口試日期:2024-06-27
學位類別:碩士
校院名稱:逢甲大學
系所名稱:行銷學系全球行銷碩士班
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:162
中文關鍵詞:傳統廣告人工智能生成廣告涉入程度情緒研究廣告效益廣告態度品牌態度購買意願
外文關鍵詞:Traditional AdvertisementsAI-generated advertisementsLevel of involvementEmotion ResearchAdvertising EffectivenessAdvertising AttitudeBrand AttitudePurchase Intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景
隨著人工智能(AI)技術的迅速發展,AI人工智能生成廣告開始在市場上崭露頭角,並逐漸改變了傳統廣告的製作和傳播方式。過去的研究已經探討了不同廣告形式對消費者行為的影響,但對於傳統廣告與AI人工智能生成廣告在情緒反應上的差異研究相對較少。因此,本研究旨在探討消費者在觀看傳統廣告和AI生成廣告時的情緒反應及其對廣告效果的影響。
研究目的
本研究的主要目的是比較消費者對傳統廣告和AI人工智能生成廣告的情緒反應,並分析這些情緒反應如何影響廣告態度、品牌態度和購買意願。此外,本研究還探討了性別、是否知情為AI人工智能生成廣告及涉入程度等調節變數對情緒反應的影響。
研究方法
本研究採用問卷調查法,收集來自不同年齡和背景的受訪者對於傳統廣告和AI人工智能生成廣告的情緒反應及其後續行為意圖的數據。調查問卷包括了情緒反應量表、廣告態度量表、品牌態度量表和購買意願量表。此外,還設計了涉入程度和知情程度的測量項目。數據分析使用SPSS軟件進行,採用描述性統計、線性迴歸分析和共線性診斷等方法來檢驗研究假設。
研究發現
研究結果顯示,消費者對於AI人工智能生成廣告的情緒反應與傳統廣告存在顯著差異。具體來說AI人工智能生成廣告更容易引發快樂和驚奇等正面情緒反應,然而在知情程度較高的情況下,部分受訪者對於AI人工智能生成廣告的情緒反應則可能偏向負面。
研究結論
本研究證實了AI人工智能生成廣告在引發消費者情緒反應方面的潛力,並強調了知情程度、性別和涉入程度等因素對情緒反應的調節作用。這些發現對於廣告主和行銷人員在設計和優化廣告策略時具有重要的參考價值。未來的研究可以進一步探討不同人格特質和文化背景下AI人工智能生成廣告的效果,以便更全面地理解其在全球市場中的應用潛力。
Research Background
With the rapid development of artificial intelligence (AI) technology, AI-generated advertisements have begun to emerge in the market and have gradually changed the way traditional advertisements are produced and disseminated. Past research has explored the impact of different advertising forms on consumer behavior, but there are relatively few studies on the differences in emotional responses between traditional advertising and AI-generated advertising. Therefore, this study aims to explore consumers’ emotional reactions when watching traditional advertisements and AI-generated advertisements and their impact on advertising effectiveness.
Research purposes
The main purpose of this study is to compare consumers’ emotional responses to traditional advertising and AI-generated advertising, and to analyze how these emotional responses affect advertising attitudes, brand attitudes, and purchase intentions. In addition, this study also explores the impact of moderating variables such as gender, informed consent and degree of involvement on emotional responses to AI-generated advertisements.
Research methods
This study uses a questionnaire survey method to collect data on the emotional reactions and subsequent behavioral intentions of respondents from different ages and backgrounds to traditional advertising and AI-generated advertising. The questionnaire included emotional response scale, advertising attitude scale, brand attitude scale and purchase intention scale. In addition, items to measure the degree of involvement and knowledge were also designed. Data analysis was conducted using SPSS software, and methods such as descriptive statistics, linear regression analysis, and collinearity diagnosis were used to test the research hypotheses.
The study found
Research results show that consumers’ emotional reactions to AI-generated advertisements are significantly different from traditional advertisements. Specifically, AI-generated advertisements are more likely to trigger positive emotional reactions such as happiness and surprise. However, with a high degree of knowledge, some respondents may have negative emotional reactions to AI-generated advertisements.
Analysis conclusion
This study confirms the potential of AI-generated advertising in inducing consumers’ emotional responses, and highlights the moderating effects of factors such as informedness, gender, and involvement on emotional responses. These findings have important reference value for advertisers and marketers when designing and optimizing advertising strategies. Future research can further explore the effects of AI-generated advertising under different personality traits and cultural backgrounds to more fully understand its application potential in the global market.

目  錄
第一章 緒論 1
第一節 研究動機及背景 2
第二節 研究目的 3
第三節 研究範圍 4

第二章 文獻探討 5
第一節 傳統廣告VS人工智能生成廣告 10
第二節 性別研究 17
第三節 是否知情廣告為AI生成 19
第四節 涉入程度 21
第五節 情緒研究 28
第六節 廣告效益 38
第七節 廣告態度 41
第八節 品牌態度 45
第九節 購買意願 49
第十節 研究架構與假說 53

第三章 研究設計與實施 54
第一節 研究對象 56
第二節 研究方法.A 60
第三節 研究方法.B 69
第四節 研究實施方式與執行流程 71
第五節 初級資料 74
第六節 資料分析方法 75

第四章 實證結果與分析 76
第一節 廣告態度平均數_線性迴歸 81
第二節 廣告態度對品牌態度 95
第三節 品牌態度對購買意願 102
第四節 自我報告 VS 臉部表情 109
第五節 研究假說結論 115

第五章 結論與建議 116
第一節 研究目的與結論建議 117
第二節 管理意涵 124
第三節 研究限制與未來研究建議 128


參考文獻 130

附錄 研究問卷 149
王健宗孔令煒, & Jianzong WANG, L. K. (2021). 聯邦學習隱私保護研究進展. 大數據, 7(3), 2021030. https://doi.org/10.11959/j.issn.2096-0271.2021030
王韋堯, 黃詩珮, & 劉怡寧. (2012). 消費品廣告設計之情緒效價與喚起分析. 設計學報(Journal of Design), 17(3), Article 3. https://www.jodesign.org.tw/index.php/JODesign/article/view/936
Aaker, D. A. (1996). Measuring Brand Equity Across Products and Markets. California Management Review, 38(3), 102–120. https://doi.org/10.2307/41165845
Aaker, D. A. (2009). Managing Brand Equity: Capitalizing on the Value of a Brand Name. Simon and Schuster.
Aaker, D. A., Stayman, D. M., & Hagerty, M. R. (1986). Warmth in Advertising: Measurement, Impact, and Sequence Effects. Journal of Consumer Research, 12(4), 365–381. https://doi.org/10.1086/208524
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2002). Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the Theory of Planned Behavior1. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
Ananthakrishnan, R., & Arunachalam, D. T. (2022). Comparison Of Consumers Perception Between Human Generated And Ai Aided Brand Content. 19(2).
Andrews, J. C., & Shimp, T. A. (2018). Advertising, promotion, and other aspects of integrated marketing communications. Cengage Learning. https://thuvienso.hoasen.edu.vn/handle/123456789/12329
Araujo, T., Helberger, N., Kruikemeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & SOCIETY, 35(3), 611–623. https://doi.org/10.1007/s00146-019-00931-w
Bagozzi, R. P., Gopinath, M., & Nyer, P. U. (1999). The Role of Emotions in Marketing. Journal of the Academy of Marketing Science, 27(2), 184–206. https://doi.org/10.1177/0092070399272005
Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2798607
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychological Science in the Public Interest, 20(1), 1–68. https://doi.org/10.1177/1529100619832930
Barrett, L. F., Lane, R. D., Sechrest, L., & Schwartz, G. E. (2000). Sex Differences in Emotional Awareness. Personality and Social Psychology Bulletin, 26(9), 1027–1035. https://doi.org/10.1177/01461672002611001
Batra, R., & Ray, M. L. (1986). Affective Responses Mediating Acceptance of Advertising. Journal of Consumer Research, 13(2), 234–249. https://doi.org/10.1086/209063
Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of Consumer Susceptibility to Interpersonal Influence. Journal of Consumer Research, 15(4), 473–481. https://doi.org/10.1086/209186
Belch, G. E., & Belch, M. A. (2018). Advertising and promotion: An integrated marketing communications perspective. McGraw-Hill. https://thuvienso.hoasen.edu.vn/handle/123456789/8039
Belk, R. W. (1975). Situational Variables and Consumer Behavior. Journal of Consumer Research, 2(3), 157–164. https://doi.org/10.1086/208627
Berger, J. (2013). Contagious: How to Build Word of Mouth in the Digital Age. Simon and Schuster.
Bower, G. H. (1981). Mood and memory. American Psychologist, 36(2), 129–148. https://doi.org/10.1037/0003-066X.36.2.129
Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. Cognitive neuroscience of emotion (242–276). Oxford University Press.
Brakus, J. J., Schmitt, B. H., & Zarantonello, L. (2009). Brand Experience: What is It? How is it Measured? Does it Affect Loyalty? Journal of Marketing, 73(3), 52–68. https://doi.org/10.1509/jmkg.73.3.052
Brown, S. P., & Stayman, D. M. (1992). Antecedents and Consequences of Attitude toward the Ad: A Meta-analysis. Journal of Consumer Research, 19(1), 34–51. https://doi.org/10.1086/209284
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
Bruce, N. I., Foutz, N. Z., & Kolsarici, C. (2012). Dynamic Effectiveness of Advertising and Word of Mouth in Sequential Distribution of New Products. Journal of Marketing Research, 49(4), 469–486. https://doi.org/10.1509/jmr.07.0441
Campbell, C., Plangger, K., Sands, S., Kietzmann, J., & Bates, K. (2022). How Deepfakes and Artificial Intelligence Could Reshape the Advertising Industry: The Coming Reality of AI Fakes and Their Potential Impact on Consumer Behavior. Journal of Advertising Research, 62(3), 241–251. https://doi.org/10.2501/JAR-2022-017
Celsi, R. L., & Olson, J. C. (1988). The Role of Involvement in Attention and Comprehension Processes. Journal of Consumer Research, 15(2), 210–224. https://doi.org/10.1086/209158
Chaffey, D., & Ellis-Chadwick, F. (2019). Digital Marketing. Pearson UK.
Chattopadhyay, A., & Basu, K. (1990). Humor in Advertising: The Moderating Role of Prior Brand Evaluation. Journal of Marketing Research, 27(4), 466–476. https://doi.org/10.1177/002224379002700408
Chaudhuri, A., & Holbrook, M. B. (2001). The Chain of Effects from Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty. Journal of Marketing, 65(2), 81–93. https://doi.org/10.1509/jmkg.65.2.81.18255
Chen, H., Chan-Olmsted, S., Kim, J., & Mayor Sanabria, I. (2021). Consumers’ perception on artificial intelligence applications in marketing communication. Qualitative Market Research: An International Journal, 25(1), 125–142. https://doi.org/10.1108/QMR-03-2021-0040
Chiou, J.-S. (2004). The antecedents of consumers’ loyalty toward Internet Service Providers. Information & Management, 41(6), 685–695. https://doi.org/10.1016/j.im.2003.08.006
Clarke K., & Belk R. W. (1979). THE EFFECTS OF PRODUCT INVOLVEMENT AND TASK DEFINITION ON ANTICIPATED CONSUMER EFFORT. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:6604086?sid=ebsco:plink:crawler&id=ebsco:gcd:6604086
Cohn, J. F., Zlochower, A. J., Lien, J., & Kanade, T. (1999). Automated face analysis by feature point tracking has high concurrent validity with manual FACS coding. Psychophysiology, 36(1), 35–43. https://doi.org/10.1017/S0048577299971184
Colwyn, S. (2014). The State of Search Marketing [Infographic]. Smart Insights. https://www.smartinsights.com/search-engine-marketing/hannah/
Darley, W. K., & Smith, R. E. (1995). Gender Differences in Information Processing Strategies: An Empirical Test of the Selectivity Model in Advertising Response. Journal of Advertising, 24(1), 41–56. https://doi.org/10.1080/00913367.1995.10673467
Davenport, T. H., & Ronanki, R. (2018). Don’t start with moon shots.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
de Mooij, M. (2021). Global Marketing and Advertising: Understanding Cultural Paradoxes. 1–100.
Derbaix, C. M. (1995). The Impact of Affective Reactions on Attitudes toward the Advertisement and the Brand: A Step toward Ecological Validity. Journal of Marketing Research, 32(4), 470–479. https://doi.org/10.1177/002224379503200409
Dick, A. S., & Basu, K. (1994). Customer loyalty: Toward an integrated conceptual framework. Journal of the Academy of Marketing Science, 22(2), 99–113. https://doi.org/10.1177/0092070394222001
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.1177/002224379102800305
Duncan, C. P., & Nelson, J. E. (1985). Effects of Humor in a Radio Advertising Experiment. Journal of Advertising, 14(2), 33–64. https://doi.org/10.1080/00913367.1985.10672944
Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes (頁 xxii, 794). Harcourt Brace Jovanovich College Publishers.
Edell, J. A., & Burke, M. C. (1987). The Power of Feelings in Understanding Advertising Effects. Journal of Consumer Research, 14(3), 421–433. https://doi.org/10.1086/209124
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
Ekman, P., & Friesen, W. V. (2019). Facial Action Coding System [Dataset]. https://doi.org/10.1037/t27734-000
el Kaliouby, R., & Robinson, P. (2005). Real-Time Inference of Complex Mental States from Facial Expressions and Head Gestures. B. Kisačanin, V. Pavlović, & T. S. Huang, Real-Time Vision for Human-Computer Interaction (181–200). Springer US. https://doi.org/10.1007/0-387-27890-7_11
Erdem, T., & Swait, J. (2004). Brand Credibility, Brand Consideration, and Choice. Journal of Consumer Research, 31(1), 191–198. https://doi.org/10.1086/383434
Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philosophy and Rhetoric, 10(2), 130–132.
Fombrun, C., & Shanley, M. (1990). What’s in a Name? Reputation Building and Corporate Strategy. Academy of Management Journal, 33(2), 233–258. https://doi.org/10.5465/256324
Goldberg, M. E., & Gorn, G. J. (1987). Happy and Sad TV Programs: How They Affect Reactions to Commercials. Journal of Consumer Research, 14(3), 387–403. https://doi.org/10.1086/209122
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
Goodwin, S., & Etgar, M. (1980). An Experimental Investigation of Comparative Advertising: Impact of Message Appeal, Information Load, and Utility of Product Class. Journal of Marketing Research, 17(2), 187–202. https://doi.org/10.1177/002224378001700203
Greenwald, A. G., & Leavitt, C. (1984). Audience Involvement in Advertising: Four Levels. Journal of Consumer Research, 11(1), 581–592. https://doi.org/10.1086/208994
Grewal, D., Bart, Y., Spann, M., & Zubcsek, P. P. (2016). Mobile Advertising: A Framework and Research Agenda. Journal of Interactive Marketing, 34(1), 3–14. https://doi.org/10.1016/j.intmar.2016.03.003
Hoffman, D. L., & Novak, T. P. (2018). Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. Journal of Consumer Research, 44(6), 1178–1204. https://doi.org/10.1093/jcr/ucx105
Holbrook, M. B., & Batra, R. (1987). Assessing the Role of Emotions as Mediators of Consumer Responses to Advertising. Journal of Consumer Research, 14(3), 404–420. https://doi.org/10.1086/209123
Holbrook, M. B., & Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(2), 132–140. https://doi.org/10.1086/208906
Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. Journal of Interactive Marketing, 28(2), 149–165. https://doi.org/10.1016/j.intmar.2013.12.002
Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
Huang, M.-H., & Rust, R. T. (2021). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1), 30–41. https://doi.org/10.1177/1094670520902266
Huh, J., Nelson, M. R., & Russell, C. A. (2023). ChatGPT, AI Advertising, and Advertising Research and Education. Journal of Advertising, 52(4), 477–482. https://doi.org/10.1080/00913367.2023.2227013
Hutter, K., Hautz, J., Dennhardt, S., & Füller, J. (2013). The impact of user interactions in social media on brand awareness and purchase intention: The case of MINI on Facebook. Journal of Product & Brand Management, 22(5/6), 342–351. https://doi.org/10.1108/JPBM-05-2013-0299
Isen, A. M. (2001). An Influence of Positive Affect on Decision Making in Complex Situations: Theoretical Issues With Practical Implications. Journal of Consumer Psychology, 11(2), 75–85. https://doi.org/10.1207/S15327663JCP1102_01
Jarek, K., & Mazurek, G. (2019). Marketing and Artificial Intelligence. Central European Business Review, 8(2), 46–55. https://doi.org/10.18267/j.cebr.213
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. 4401–4410. https://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
Keller, K. L. (1993). Conceptualizing, Measuring, and Managing Customer-Based Brand Equity. Journal of Marketing, 57(1), 1–22. https://doi.org/10.1177/002224299305700101
Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial Intelligence in Advertising: How Marketers Can Leverage Artificial Intelligence Along the Consumer Journey. Journal of Advertising Research, 58(3), 263–267. https://doi.org/10.2501/JAR-2018-035
Kotler, P., & Armstrong, G. (2010). Principles of marketing. Pearson education. https://scholar.google.com/scholar?cluster=3499785125170439461&hl=en&oi=scholarr
Kotler, P., Armstrong, G., & Armstrong, G. M. (2010). Principles of Marketing. Prentice Hall.
KrizhevskyAlex, SutskeverIlya, & E, H. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM. https://doi.org/10.1145/3065386
KRUGMAN, H. E. (1965). THE IMPACT OF TELEVISION ADVERTISING: LEARNING WITHOUT INVOLVEMENT. Public Opinion Quarterly, 29(3), 349–356. https://doi.org/10.1086/267335
Lane Keller, K. (2013). Strategic Brand Managment: Building, Measuring, and Managing Brand Equity. UK: Pearson Education Limited. http://thuvienso.thanglong.edu.vn//handle/TLU/27
Lang, A. (2000). The Limited Capacity Model of Mediated Message Processing. Journal of Communication, 50(1), 46–70. https://doi.org/10.1111/j.1460-2466.2000.tb02833.x
Lang, A., Dhillon, K., & Dong, Q. (1995). The effects of emotional arousal and valence on television viewers’ cognitive capacity and memory. Journal of Broadcasting & Electronic Media, 39(3), 313–327. https://doi.org/10.1080/08838159509364309
Laurent, G., & Kapferer, J.-N. (1985). Measuring Consumer Involvement Profiles. Journal of Marketing Research, 22(1), 41–53. https://doi.org/10.1177/002224378502200104
Lavidge, R. J., & Steiner, G. A. (1961). A Model for Predictive Measurements of Advertising Effectiveness. Journal of Marketing, 25(6), 59–62. https://doi.org/10.1177/002224296102500611
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lutz R. J., McKenzie S. B., & Belch G. E. (1983). ATTITUDE TOWARD THE AD AS A MEDIATOR OF ADVERTISING EFFECTIVENESS: DETERMINANTS AND CONSEQUENCES. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:6430895?sid=ebsco:plink:crawler&id=ebsco:gcd:6430895
Lynch, J. G., Jr., & Srull, T. K. (1982). Memory and Attentional Factors in Consumer Choice: Concepts and Research Methods. Journal of Consumer Research, 9(1), 18–37. https://doi.org/10.1086/208893
MacKenzie, S. B., & Lutz, R. J. (1989). An Empirical Examination of the Structural Antecedents of Attitude toward the Ad in an Advertising Pretesting Context. Journal of Marketing, 53(2), 48–65. https://doi.org/10.1177/002224298905300204
MacKenzie, S. B., Lutz, R. J., & Belch, G. E. (1986). The Role of Attitude toward the Ad as a Mediator of Advertising Effectiveness: A Test of Competing Explanations. Journal of Marketing Research, 23(2), 130–143. https://doi.org/10.1177/002224378602300205
McDuff, D., Kaliouby, R. E., & Picard, R. W. (2012). Crowdsourcing Facial Responses to Online Videos. IEEE Transactions on Affective Computing, 3(4), 456–468. IEEE Transactions on Affective Computing. https://doi.org/10.1109/T-AFFC.2012.19
McStay, A. (2018). Emotional AI: The Rise of Empathic Media. 1–248.
Menon, S., & Kahn, B. (2002). Cross-category effects of induced arousal and pleasure on the internet shopping experience. Journal of Retailing, 78(1), 31–40. https://doi.org/10.1016/S0022-4359(01)00064-1
Meyers-Levy, J., & Loken, B. (2015). Revisiting gender differences: What we know and what lies ahead. Journal of Consumer Psychology, 25(1), 129–149. https://doi.org/10.1016/j.jcps.2014.06.003
MGI-artificial-intelligence-discussion-paper.pdf. (2017). http://dln.jaipuria.ac.in:8080/jspui/bitstream/123456789/14268/1/MGI-artificial-intelligence-discussion-paper.pdf
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781
Mitchell, A. A., & Olson, J. C. (1981). Are Product Attribute Beliefs the Only Mediator of Advertising Effects on Brand Attitude? Journal of Marketing Research, 18(3), 318–332. https://doi.org/10.1177/002224378101800306
Mittal, B. (1989). Measuring Purchase-decision involvement. Psychology & Marketing, 6(2), 147–162. https://doi.org/10.1002/mar.4220060206
Mittal, B. (1995). A comparative analysis of four scales of consumer involvement. Psychology & Marketing, 12(7), 663–682. https://doi.org/10.1002/mar.4220120708
Mogaji, E. (2018). Emotional Appeals in Advertising. Emotional Appeals in Advertising Banking Services (25–46). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78756-299-820181003
Morales, A. C., & Fitzsimons, G. J. (2007). Product Contagion: Changing Consumer Evaluations through Physical Contact with “Disgusting” Products. Journal of Marketing Research, 44(2), 272–283. https://doi.org/10.1509/jmkr.44.2.272
Pan, J., Wang, C., Jia, X., Shao, J., Sheng, L., Yan, J., & Wang, X. (2019). Video Generation From Single Semantic Label Map. 3733–3742. https://openaccess.thecvf.com/content_CVPR_2019/html/Pan_Video_Generation_From_Single_Semantic_Label_Map_CVPR_2019_paper.html
Park, C. W., Jaworski, B. J., & MacInnis, D. J. (1986). Strategic Brand Concept-Image Management. Journal of Marketing, 50(4), 135–145. https://doi.org/10.1177/002224298605000401
Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. BMVC 2015 - Proceedings of the British Machine Vision Conference 2015. https://ora.ox.ac.uk/objects/uuid:a5f2e93f-2768-45bb-8508-74747f85cad1
Pechmann, C., & Stewart, D. W. (1990). The Effects of Comparative Advertising on Attention, Memory, and Purchase Intentions. Journal of Consumer Research, 17(2), 180–191. https://doi.org/10.1086/208548
Petty, R. E., & Cacioppo, J. T. (2012). Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Springer Science & Business Media.
Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement. Journal of Consumer Research, 10(2), 135–146. https://doi.org/10.1086/208954
Ph.D, C. R. T., Ph.D, G. R. F., & Ph.D, H.-K. B. (2006). Use and Effectiveness of Billboards: Perspectives from Selective-Perception Theory and Retail-Gravity Models. Journal of Advertising. https://doi.org/10.2753/JOA0091-3367350402
Pieters, R. G. M., & de Klerk-Warmerdam, M. (1996). Ad-evoked feelings: Structure and impact on Aad and recall. Journal of Business Research, 37(2), 105–114. https://doi.org/10.1016/0148-2963(96)00057-4
Pieters R., Warlop L., & Hartog M. (1997). The Effect of Time Pressure and Task Motivation on Visual Attention to Brands. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:83112720?sid=ebsco:plink:crawler&id=ebsco:gcd:83112720
Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765–781. https://doi.org/10.1287/mnsc.48.6.765.192
Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125. https://doi.org/10.1016/j.inffus.2017.02.003
Putrevu, S. (2004). COMMUNICATING WITH THE SEXES: Male and Female Responses to Print Advertisements. Journal of Advertising, 33(3), 51–62. https://doi.org/10.1080/00913367.2004.10639168
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners.
R.e, P. (1986). The elaborative likelihood model of persuasion. Aavances in Experimental Social Paychology, 19, 123–205.
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714
Schmidt, S., & Eisend, M. (2015). Advertising Repetition: A Meta-Analysis on Effective Frequency in Advertising. Journal of Advertising, 44(4), 415–428. https://doi.org/10.1080/00913367.2015.1018460
Schmitt, B. H. (2000). Experiential Marketing: How to Get Customers to Sense, Feel, Think, Act, Relate. Simon and Schuster.
Schuller, B., Batliner, A., Steidl, S., & Seppi, D. (2011). Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Communication, 53(9), 1062–1087. https://doi.org/10.1016/j.specom.2011.01.011
Serengil, S. I., & Ozpinar, A. (2020). LightFace: A Hybrid Deep Face Recognition Framework. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), 1–5. https://doi.org/10.1109/ASYU50717.2020.9259802
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489. https://doi.org/10.1038/nature16961
Solomon, M. R. (2020). Consumer behavior: Buying, having, and being. Pearson. https://thuvienso.hoasen.edu.vn/handle/123456789/11671
Spears, N., & Singh, S. N. (2004). Measuring Attitude toward the Brand and Purchase Intentions. Journal of Current Issues & Research in Advertising, 26(2), 53–66. https://doi.org/10.1080/10641734.2004.10505164
Strick, M., van Baaren, R. B., Holland, R. W., & van Knippenberg, A. (2009). Humor in advertisements enhances product liking by mere association. Journal of Experimental Psychology: Applied, 15(1), 35–45. https://doi.org/10.1037/a0014812
Sundar, S. S. (2008). The MAIN Model: A Heuristic Approach to Understanding Technology Effects on Credibility. Digital Media.
Sundar, S. S. (2020). Rise of Machine Agency: A Framework for Studying the Psychology of Human–AI Interaction (HAII). Journal of Computer-Mediated Communication, 25(1), 74–88. https://doi.org/10.1093/jcmc/zmz026
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 1701–1708. https://openaccess.thecvf.com/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html
Tang, Y., Li, Z., Nellikkal, M. A. N., Eramian, H., Chan, E. M., Norquist, A. J., Hsu, D. F., & Schrier, J. (2021). Improving Data and Prediction Quality of High-Throughput Perovskite Synthesis with Model Fusion. Journal of Chemical Information and Modeling, 61(4), 1593–1602. https://doi.org/10.1021/acs.jcim.0c01307
Teixeira, T., Wedel, M., & Pieters, R. (2012). Emotion-Induced Engagement in Internet Video Advertisements. Journal of Marketing Research, 49(2), 144–159. https://doi.org/10.1509/jmr.10.0207
Tellis, G. J. (2003). Effective Advertising: Understanding When, How, and Why Advertising Works. SAGE Publications.
The state of AI in 2023: Generative AI’s breakout year | McKinsey. (2023). https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., & Zhou, Y. (2021). Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics. https://aclanthology.org/2021.naacl-main.0
Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Annals of Tourism Research, 81, 102883. https://doi.org/10.1016/j.annals.2020.102883
Tuten, T. L. (2023). Social Media Marketing. SAGE Publications.
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., & Morris, M. G. (2000). Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115–139. https://doi.org/10.2307/3250981
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, I–I. https://doi.org/10.1109/CVPR.2001.990517
Wang, W., & Siau, K. (2019). Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity: A Review and Research Agenda. Journal of Database Management (JDM), 30(1), 61–79. https://doi.org/10.4018/JDM.2019010104
Wang, W.-C. (2010). Towards a deeper understanding of human emotions in marketing communication: The‘Slogan Validator’and self-reported measurement contrasted [PhD, University of Glasgow]. https://eleanor.lib.gla.ac.uk/record=b2749054
Wang, W.-C., Chien, C. S., & Moutinho, L. (2015). Do you really feel happy? Some implications of Voice Emotion Response in Mandarin Chinese. Marketing Letters, 26(3), 391–409. https://doi.org/10.1007/s11002-015-9357-y
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
Weilbacher, W. M. (2003). How Advertising Affects Consumers. Journal of Advertising Research, 43(2), 230–234. https://doi.org/10.1017/S0021849903030241
Wells, W., Spence-Stone, R., Moriarty, S., & Burnett, J. (2008). Australian Advertising Principles and Practice. Pearson Education Australia. https://opus.lib.uts.edu.au/handle/10453/12249
Witte, K., & Allen, M. (2000). A Meta-Analysis of Fear Appeals: Implications for Effective Public Health Campaigns. Health Education & Behavior, 27(5), 591–615. https://doi.org/10.1177/109019810002700506
Wu, L., & Wen, T. J. (2021). Understanding AI Advertising From the Consumer Perspective: What Factors Determine Consumer Appreciation of AI-Created Advertisements? Journal of Advertising Research, 61(2), 133–146. https://doi.org/10.2501/JAR-2021-004
Xu, S., Cheng, Y., Lin, Q., Allebach, J., Cheng, Y., Lin, Q., & Allebach, J. (2019). Emotion Recognition Using Convolutional Neural Networks. Electronic Imaging, 31, 1–9. https://doi.org/10.2352/ISSN.2470-1173.2019.8.IMAWM-402
Yeshin, T. (2006). Advertising. Thomson Learning.
Zaichkowsky, J. L. (1985). Measuring the Involvement Construct*. Journal of Consumer Research, 12(3), 341–352. https://doi.org/10.1086/208520
Zaichkowsky, J. L. (1994). The Personal Involvement Inventory: Reduction, Revision, and Application to Advertising. Journal of Advertising, 23(4), 59–70. https://doi.org/10.1080/00913367.1943.10673459
Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2007). A survey of affect recognition methods: Audio, visual and spontaneous expressions. Proceedings of the 9th international conference on Multimodal interfaces, 126–133. https://doi.org/10.1145/1322192.1322216
Zhang, B., & Dafoe, A. (2019). Artificial Intelligence: American Attitudes and Trends (SSRN Scholarly Paper 3312874). https://doi.org/10.2139/ssrn.3312874


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊