|
王健宗孔令煒, & Jianzong WANG, L. K. (2021). 聯邦學習隱私保護研究進展. 大數據, 7(3), 2021030. https://doi.org/10.11959/j.issn.2096-0271.2021030 王韋堯, 黃詩珮, & 劉怡寧. (2012). 消費品廣告設計之情緒效價與喚起分析. 設計學報(Journal of Design), 17(3), Article 3. https://www.jodesign.org.tw/index.php/JODesign/article/view/936 Aaker, D. A. (1996). Measuring Brand Equity Across Products and Markets. California Management Review, 38(3), 102–120. https://doi.org/10.2307/41165845 Aaker, D. A. (2009). Managing Brand Equity: Capitalizing on the Value of a Brand Name. Simon and Schuster. Aaker, D. A., Stayman, D. M., & Hagerty, M. R. (1986). Warmth in Advertising: Measurement, Impact, and Sequence Effects. Journal of Consumer Research, 12(4), 365–381. https://doi.org/10.1086/208524 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T Ajzen, I. (2002). Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the Theory of Planned Behavior1. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x Ananthakrishnan, R., & Arunachalam, D. T. (2022). Comparison Of Consumers Perception Between Human Generated And Ai Aided Brand Content. 19(2). Andrews, J. C., & Shimp, T. A. (2018). Advertising, promotion, and other aspects of integrated marketing communications. Cengage Learning. https://thuvienso.hoasen.edu.vn/handle/123456789/12329 Araujo, T., Helberger, N., Kruikemeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & SOCIETY, 35(3), 611–623. https://doi.org/10.1007/s00146-019-00931-w Bagozzi, R. P., Gopinath, M., & Nyer, P. U. (1999). The Role of Emotions in Marketing. Journal of the Academy of Marketing Science, 27(2), 184–206. https://doi.org/10.1177/0092070399272005 Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2798607 Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychological Science in the Public Interest, 20(1), 1–68. https://doi.org/10.1177/1529100619832930 Barrett, L. F., Lane, R. D., Sechrest, L., & Schwartz, G. E. (2000). Sex Differences in Emotional Awareness. Personality and Social Psychology Bulletin, 26(9), 1027–1035. https://doi.org/10.1177/01461672002611001 Batra, R., & Ray, M. L. (1986). Affective Responses Mediating Acceptance of Advertising. Journal of Consumer Research, 13(2), 234–249. https://doi.org/10.1086/209063 Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of Consumer Susceptibility to Interpersonal Influence. Journal of Consumer Research, 15(4), 473–481. https://doi.org/10.1086/209186 Belch, G. E., & Belch, M. A. (2018). Advertising and promotion: An integrated marketing communications perspective. McGraw-Hill. https://thuvienso.hoasen.edu.vn/handle/123456789/8039 Belk, R. W. (1975). Situational Variables and Consumer Behavior. Journal of Consumer Research, 2(3), 157–164. https://doi.org/10.1086/208627 Berger, J. (2013). Contagious: How to Build Word of Mouth in the Digital Age. Simon and Schuster. Bower, G. H. (1981). Mood and memory. American Psychologist, 36(2), 129–148. https://doi.org/10.1037/0003-066X.36.2.129 Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. Cognitive neuroscience of emotion (242–276). Oxford University Press. Brakus, J. J., Schmitt, B. H., & Zarantonello, L. (2009). Brand Experience: What is It? How is it Measured? Does it Affect Loyalty? Journal of Marketing, 73(3), 52–68. https://doi.org/10.1509/jmkg.73.3.052 Brown, S. P., & Stayman, D. M. (1992). Antecedents and Consequences of Attitude toward the Ad: A Meta-analysis. Journal of Consumer Research, 19(1), 34–51. https://doi.org/10.1086/209284 Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html Bruce, N. I., Foutz, N. Z., & Kolsarici, C. (2012). Dynamic Effectiveness of Advertising and Word of Mouth in Sequential Distribution of New Products. Journal of Marketing Research, 49(4), 469–486. https://doi.org/10.1509/jmr.07.0441 Campbell, C., Plangger, K., Sands, S., Kietzmann, J., & Bates, K. (2022). How Deepfakes and Artificial Intelligence Could Reshape the Advertising Industry: The Coming Reality of AI Fakes and Their Potential Impact on Consumer Behavior. Journal of Advertising Research, 62(3), 241–251. https://doi.org/10.2501/JAR-2022-017 Celsi, R. L., & Olson, J. C. (1988). The Role of Involvement in Attention and Comprehension Processes. Journal of Consumer Research, 15(2), 210–224. https://doi.org/10.1086/209158 Chaffey, D., & Ellis-Chadwick, F. (2019). Digital Marketing. Pearson UK. Chattopadhyay, A., & Basu, K. (1990). Humor in Advertising: The Moderating Role of Prior Brand Evaluation. Journal of Marketing Research, 27(4), 466–476. https://doi.org/10.1177/002224379002700408 Chaudhuri, A., & Holbrook, M. B. (2001). The Chain of Effects from Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty. Journal of Marketing, 65(2), 81–93. https://doi.org/10.1509/jmkg.65.2.81.18255 Chen, H., Chan-Olmsted, S., Kim, J., & Mayor Sanabria, I. (2021). Consumers’ perception on artificial intelligence applications in marketing communication. Qualitative Market Research: An International Journal, 25(1), 125–142. https://doi.org/10.1108/QMR-03-2021-0040 Chiou, J.-S. (2004). The antecedents of consumers’ loyalty toward Internet Service Providers. Information & Management, 41(6), 685–695. https://doi.org/10.1016/j.im.2003.08.006 Clarke K., & Belk R. W. (1979). THE EFFECTS OF PRODUCT INVOLVEMENT AND TASK DEFINITION ON ANTICIPATED CONSUMER EFFORT. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:6604086?sid=ebsco:plink:crawler&id=ebsco:gcd:6604086 Cohn, J. F., Zlochower, A. J., Lien, J., & Kanade, T. (1999). Automated face analysis by feature point tracking has high concurrent validity with manual FACS coding. Psychophysiology, 36(1), 35–43. https://doi.org/10.1017/S0048577299971184 Colwyn, S. (2014). The State of Search Marketing [Infographic]. Smart Insights. https://www.smartinsights.com/search-engine-marketing/hannah/ Darley, W. K., & Smith, R. E. (1995). Gender Differences in Information Processing Strategies: An Empirical Test of the Selectivity Model in Advertising Response. Journal of Advertising, 24(1), 41–56. https://doi.org/10.1080/00913367.1995.10673467 Davenport, T. H., & Ronanki, R. (2018). Don’t start with moon shots. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 de Mooij, M. (2021). Global Marketing and Advertising: Understanding Cultural Paradoxes. 1–100. Derbaix, C. M. (1995). The Impact of Affective Reactions on Attitudes toward the Advertisement and the Brand: A Step toward Ecological Validity. Journal of Marketing Research, 32(4), 470–479. https://doi.org/10.1177/002224379503200409 Dick, A. S., & Basu, K. (1994). Customer loyalty: Toward an integrated conceptual framework. Journal of the Academy of Marketing Science, 22(2), 99–113. https://doi.org/10.1177/0092070394222001 Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.1177/002224379102800305 Duncan, C. P., & Nelson, J. E. (1985). Effects of Humor in a Radio Advertising Experiment. Journal of Advertising, 14(2), 33–64. https://doi.org/10.1080/00913367.1985.10672944 Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes (頁 xxii, 794). Harcourt Brace Jovanovich College Publishers. Edell, J. A., & Burke, M. C. (1987). The Power of Feelings in Understanding Advertising Effects. Journal of Consumer Research, 14(3), 421–433. https://doi.org/10.1086/209124 Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068 Ekman, P., & Friesen, W. V. (2019). Facial Action Coding System [Dataset]. https://doi.org/10.1037/t27734-000 el Kaliouby, R., & Robinson, P. (2005). Real-Time Inference of Complex Mental States from Facial Expressions and Head Gestures. B. Kisačanin, V. Pavlović, & T. S. Huang, Real-Time Vision for Human-Computer Interaction (181–200). Springer US. https://doi.org/10.1007/0-387-27890-7_11 Erdem, T., & Swait, J. (2004). Brand Credibility, Brand Consideration, and Choice. Journal of Consumer Research, 31(1), 191–198. https://doi.org/10.1086/383434 Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philosophy and Rhetoric, 10(2), 130–132. Fombrun, C., & Shanley, M. (1990). What’s in a Name? Reputation Building and Corporate Strategy. Academy of Management Journal, 33(2), 233–258. https://doi.org/10.5465/256324 Goldberg, M. E., & Gorn, G. J. (1987). Happy and Sad TV Programs: How They Affect Reactions to Commercials. Journal of Consumer Research, 14(3), 387–403. https://doi.org/10.1086/209122 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html Goodwin, S., & Etgar, M. (1980). An Experimental Investigation of Comparative Advertising: Impact of Message Appeal, Information Load, and Utility of Product Class. Journal of Marketing Research, 17(2), 187–202. https://doi.org/10.1177/002224378001700203 Greenwald, A. G., & Leavitt, C. (1984). Audience Involvement in Advertising: Four Levels. Journal of Consumer Research, 11(1), 581–592. https://doi.org/10.1086/208994 Grewal, D., Bart, Y., Spann, M., & Zubcsek, P. P. (2016). Mobile Advertising: A Framework and Research Agenda. Journal of Interactive Marketing, 34(1), 3–14. https://doi.org/10.1016/j.intmar.2016.03.003 Hoffman, D. L., & Novak, T. P. (2018). Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. Journal of Consumer Research, 44(6), 1178–1204. https://doi.org/10.1093/jcr/ucx105 Holbrook, M. B., & Batra, R. (1987). Assessing the Role of Emotions as Mediators of Consumer Responses to Advertising. Journal of Consumer Research, 14(3), 404–420. https://doi.org/10.1086/209123 Holbrook, M. B., & Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(2), 132–140. https://doi.org/10.1086/208906 Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. Journal of Interactive Marketing, 28(2), 149–165. https://doi.org/10.1016/j.intmar.2013.12.002 Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459 Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9 Huang, M.-H., & Rust, R. T. (2021). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1), 30–41. https://doi.org/10.1177/1094670520902266 Huh, J., Nelson, M. R., & Russell, C. A. (2023). ChatGPT, AI Advertising, and Advertising Research and Education. Journal of Advertising, 52(4), 477–482. https://doi.org/10.1080/00913367.2023.2227013 Hutter, K., Hautz, J., Dennhardt, S., & Füller, J. (2013). The impact of user interactions in social media on brand awareness and purchase intention: The case of MINI on Facebook. Journal of Product & Brand Management, 22(5/6), 342–351. https://doi.org/10.1108/JPBM-05-2013-0299 Isen, A. M. (2001). An Influence of Positive Affect on Decision Making in Complex Situations: Theoretical Issues With Practical Implications. Journal of Consumer Psychology, 11(2), 75–85. https://doi.org/10.1207/S15327663JCP1102_01 Jarek, K., & Mazurek, G. (2019). Marketing and Artificial Intelligence. Central European Business Review, 8(2), 46–55. https://doi.org/10.18267/j.cebr.213 Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004 Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003 Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. 4401–4410. https://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html Keller, K. L. (1993). Conceptualizing, Measuring, and Managing Customer-Based Brand Equity. Journal of Marketing, 57(1), 1–22. https://doi.org/10.1177/002224299305700101 Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial Intelligence in Advertising: How Marketers Can Leverage Artificial Intelligence Along the Consumer Journey. Journal of Advertising Research, 58(3), 263–267. https://doi.org/10.2501/JAR-2018-035 Kotler, P., & Armstrong, G. (2010). Principles of marketing. Pearson education. https://scholar.google.com/scholar?cluster=3499785125170439461&hl=en&oi=scholarr Kotler, P., Armstrong, G., & Armstrong, G. M. (2010). Principles of Marketing. Prentice Hall. KrizhevskyAlex, SutskeverIlya, & E, H. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM. https://doi.org/10.1145/3065386 KRUGMAN, H. E. (1965). THE IMPACT OF TELEVISION ADVERTISING: LEARNING WITHOUT INVOLVEMENT. Public Opinion Quarterly, 29(3), 349–356. https://doi.org/10.1086/267335 Lane Keller, K. (2013). Strategic Brand Managment: Building, Measuring, and Managing Brand Equity. UK: Pearson Education Limited. http://thuvienso.thanglong.edu.vn//handle/TLU/27 Lang, A. (2000). The Limited Capacity Model of Mediated Message Processing. Journal of Communication, 50(1), 46–70. https://doi.org/10.1111/j.1460-2466.2000.tb02833.x Lang, A., Dhillon, K., & Dong, Q. (1995). The effects of emotional arousal and valence on television viewers’ cognitive capacity and memory. Journal of Broadcasting & Electronic Media, 39(3), 313–327. https://doi.org/10.1080/08838159509364309 Laurent, G., & Kapferer, J.-N. (1985). Measuring Consumer Involvement Profiles. Journal of Marketing Research, 22(1), 41–53. https://doi.org/10.1177/002224378502200104 Lavidge, R. J., & Steiner, G. A. (1961). A Model for Predictive Measurements of Advertising Effectiveness. Journal of Marketing, 25(6), 59–62. https://doi.org/10.1177/002224296102500611 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 Lutz R. J., McKenzie S. B., & Belch G. E. (1983). ATTITUDE TOWARD THE AD AS A MEDIATOR OF ADVERTISING EFFECTIVENESS: DETERMINANTS AND CONSEQUENCES. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:6430895?sid=ebsco:plink:crawler&id=ebsco:gcd:6430895 Lynch, J. G., Jr., & Srull, T. K. (1982). Memory and Attentional Factors in Consumer Choice: Concepts and Research Methods. Journal of Consumer Research, 9(1), 18–37. https://doi.org/10.1086/208893 MacKenzie, S. B., & Lutz, R. J. (1989). An Empirical Examination of the Structural Antecedents of Attitude toward the Ad in an Advertising Pretesting Context. Journal of Marketing, 53(2), 48–65. https://doi.org/10.1177/002224298905300204 MacKenzie, S. B., Lutz, R. J., & Belch, G. E. (1986). The Role of Attitude toward the Ad as a Mediator of Advertising Effectiveness: A Test of Competing Explanations. Journal of Marketing Research, 23(2), 130–143. https://doi.org/10.1177/002224378602300205 McDuff, D., Kaliouby, R. E., & Picard, R. W. (2012). Crowdsourcing Facial Responses to Online Videos. IEEE Transactions on Affective Computing, 3(4), 456–468. IEEE Transactions on Affective Computing. https://doi.org/10.1109/T-AFFC.2012.19 McStay, A. (2018). Emotional AI: The Rise of Empathic Media. 1–248. Menon, S., & Kahn, B. (2002). Cross-category effects of induced arousal and pleasure on the internet shopping experience. Journal of Retailing, 78(1), 31–40. https://doi.org/10.1016/S0022-4359(01)00064-1 Meyers-Levy, J., & Loken, B. (2015). Revisiting gender differences: What we know and what lies ahead. Journal of Consumer Psychology, 25(1), 129–149. https://doi.org/10.1016/j.jcps.2014.06.003 MGI-artificial-intelligence-discussion-paper.pdf. (2017). http://dln.jaipuria.ac.in:8080/jspui/bitstream/123456789/14268/1/MGI-artificial-intelligence-discussion-paper.pdf Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781 Mitchell, A. A., & Olson, J. C. (1981). Are Product Attribute Beliefs the Only Mediator of Advertising Effects on Brand Attitude? Journal of Marketing Research, 18(3), 318–332. https://doi.org/10.1177/002224378101800306 Mittal, B. (1989). Measuring Purchase-decision involvement. Psychology & Marketing, 6(2), 147–162. https://doi.org/10.1002/mar.4220060206 Mittal, B. (1995). A comparative analysis of four scales of consumer involvement. Psychology & Marketing, 12(7), 663–682. https://doi.org/10.1002/mar.4220120708 Mogaji, E. (2018). Emotional Appeals in Advertising. Emotional Appeals in Advertising Banking Services (25–46). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78756-299-820181003 Morales, A. C., & Fitzsimons, G. J. (2007). Product Contagion: Changing Consumer Evaluations through Physical Contact with “Disgusting” Products. Journal of Marketing Research, 44(2), 272–283. https://doi.org/10.1509/jmkr.44.2.272 Pan, J., Wang, C., Jia, X., Shao, J., Sheng, L., Yan, J., & Wang, X. (2019). Video Generation From Single Semantic Label Map. 3733–3742. https://openaccess.thecvf.com/content_CVPR_2019/html/Pan_Video_Generation_From_Single_Semantic_Label_Map_CVPR_2019_paper.html Park, C. W., Jaworski, B. J., & MacInnis, D. J. (1986). Strategic Brand Concept-Image Management. Journal of Marketing, 50(4), 135–145. https://doi.org/10.1177/002224298605000401 Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. BMVC 2015 - Proceedings of the British Machine Vision Conference 2015. https://ora.ox.ac.uk/objects/uuid:a5f2e93f-2768-45bb-8508-74747f85cad1 Pechmann, C., & Stewart, D. W. (1990). The Effects of Comparative Advertising on Attention, Memory, and Purchase Intentions. Journal of Consumer Research, 17(2), 180–191. https://doi.org/10.1086/208548 Petty, R. E., & Cacioppo, J. T. (2012). Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Springer Science & Business Media. Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement. Journal of Consumer Research, 10(2), 135–146. https://doi.org/10.1086/208954 Ph.D, C. R. T., Ph.D, G. R. F., & Ph.D, H.-K. B. (2006). Use and Effectiveness of Billboards: Perspectives from Selective-Perception Theory and Retail-Gravity Models. Journal of Advertising. https://doi.org/10.2753/JOA0091-3367350402 Pieters, R. G. M., & de Klerk-Warmerdam, M. (1996). Ad-evoked feelings: Structure and impact on Aad and recall. Journal of Business Research, 37(2), 105–114. https://doi.org/10.1016/0148-2963(96)00057-4 Pieters R., Warlop L., & Hartog M. (1997). The Effect of Time Pressure and Task Motivation on Visual Attention to Brands. | Advances in Consumer Research | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:83112720?sid=ebsco:plink:crawler&id=ebsco:gcd:83112720 Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765–781. https://doi.org/10.1287/mnsc.48.6.765.192 Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125. https://doi.org/10.1016/j.inffus.2017.02.003 Putrevu, S. (2004). COMMUNICATING WITH THE SEXES: Male and Female Responses to Print Advertisements. Journal of Advertising, 33(3), 51–62. https://doi.org/10.1080/00913367.2004.10639168 Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. R.e, P. (1986). The elaborative likelihood model of persuasion. Aavances in Experimental Social Paychology, 19, 123–205. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714 Schmidt, S., & Eisend, M. (2015). Advertising Repetition: A Meta-Analysis on Effective Frequency in Advertising. Journal of Advertising, 44(4), 415–428. https://doi.org/10.1080/00913367.2015.1018460 Schmitt, B. H. (2000). Experiential Marketing: How to Get Customers to Sense, Feel, Think, Act, Relate. Simon and Schuster. Schuller, B., Batliner, A., Steidl, S., & Seppi, D. (2011). Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Communication, 53(9), 1062–1087. https://doi.org/10.1016/j.specom.2011.01.011 Serengil, S. I., & Ozpinar, A. (2020). LightFace: A Hybrid Deep Face Recognition Framework. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), 1–5. https://doi.org/10.1109/ASYU50717.2020.9259802 Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489. https://doi.org/10.1038/nature16961 Solomon, M. R. (2020). Consumer behavior: Buying, having, and being. Pearson. https://thuvienso.hoasen.edu.vn/handle/123456789/11671 Spears, N., & Singh, S. N. (2004). Measuring Attitude toward the Brand and Purchase Intentions. Journal of Current Issues & Research in Advertising, 26(2), 53–66. https://doi.org/10.1080/10641734.2004.10505164 Strick, M., van Baaren, R. B., Holland, R. W., & van Knippenberg, A. (2009). Humor in advertisements enhances product liking by mere association. Journal of Experimental Psychology: Applied, 15(1), 35–45. https://doi.org/10.1037/a0014812 Sundar, S. S. (2008). The MAIN Model: A Heuristic Approach to Understanding Technology Effects on Credibility. Digital Media. Sundar, S. S. (2020). Rise of Machine Agency: A Framework for Studying the Psychology of Human–AI Interaction (HAII). Journal of Computer-Mediated Communication, 25(1), 74–88. https://doi.org/10.1093/jcmc/zmz026 Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 1701–1708. https://openaccess.thecvf.com/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html Tang, Y., Li, Z., Nellikkal, M. A. N., Eramian, H., Chan, E. M., Norquist, A. J., Hsu, D. F., & Schrier, J. (2021). Improving Data and Prediction Quality of High-Throughput Perovskite Synthesis with Model Fusion. Journal of Chemical Information and Modeling, 61(4), 1593–1602. https://doi.org/10.1021/acs.jcim.0c01307 Teixeira, T., Wedel, M., & Pieters, R. (2012). Emotion-Induced Engagement in Internet Video Advertisements. Journal of Marketing Research, 49(2), 144–159. https://doi.org/10.1509/jmr.10.0207 Tellis, G. J. (2003). Effective Advertising: Understanding When, How, and Why Advertising Works. SAGE Publications. The state of AI in 2023: Generative AI’s breakout year | McKinsey. (2023). https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., & Zhou, Y. (2021). Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics. https://aclanthology.org/2021.naacl-main.0 Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Annals of Tourism Research, 81, 102883. https://doi.org/10.1016/j.annals.2020.102883 Tuten, T. L. (2023). Social Media Marketing. SAGE Publications. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926 Venkatesh, V., & Morris, M. G. (2000). Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115–139. https://doi.org/10.2307/3250981 Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, I–I. https://doi.org/10.1109/CVPR.2001.990517 Wang, W., & Siau, K. (2019). Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity: A Review and Research Agenda. Journal of Database Management (JDM), 30(1), 61–79. https://doi.org/10.4018/JDM.2019010104 Wang, W.-C. (2010). Towards a deeper understanding of human emotions in marketing communication: The‘Slogan Validator’and self-reported measurement contrasted [PhD, University of Glasgow]. https://eleanor.lib.gla.ac.uk/record=b2749054 Wang, W.-C., Chien, C. S., & Moutinho, L. (2015). Do you really feel happy? Some implications of Voice Emotion Response in Mandarin Chinese. Marketing Letters, 26(3), 391–409. https://doi.org/10.1007/s11002-015-9357-y Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063 Weilbacher, W. M. (2003). How Advertising Affects Consumers. Journal of Advertising Research, 43(2), 230–234. https://doi.org/10.1017/S0021849903030241 Wells, W., Spence-Stone, R., Moriarty, S., & Burnett, J. (2008). Australian Advertising Principles and Practice. Pearson Education Australia. https://opus.lib.uts.edu.au/handle/10453/12249 Witte, K., & Allen, M. (2000). A Meta-Analysis of Fear Appeals: Implications for Effective Public Health Campaigns. Health Education & Behavior, 27(5), 591–615. https://doi.org/10.1177/109019810002700506 Wu, L., & Wen, T. J. (2021). Understanding AI Advertising From the Consumer Perspective: What Factors Determine Consumer Appreciation of AI-Created Advertisements? Journal of Advertising Research, 61(2), 133–146. https://doi.org/10.2501/JAR-2021-004 Xu, S., Cheng, Y., Lin, Q., Allebach, J., Cheng, Y., Lin, Q., & Allebach, J. (2019). Emotion Recognition Using Convolutional Neural Networks. Electronic Imaging, 31, 1–9. https://doi.org/10.2352/ISSN.2470-1173.2019.8.IMAWM-402 Yeshin, T. (2006). Advertising. Thomson Learning. Zaichkowsky, J. L. (1985). Measuring the Involvement Construct*. Journal of Consumer Research, 12(3), 341–352. https://doi.org/10.1086/208520 Zaichkowsky, J. L. (1994). The Personal Involvement Inventory: Reduction, Revision, and Application to Advertising. Journal of Advertising, 23(4), 59–70. https://doi.org/10.1080/00913367.1943.10673459 Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2007). A survey of affect recognition methods: Audio, visual and spontaneous expressions. Proceedings of the 9th international conference on Multimodal interfaces, 126–133. https://doi.org/10.1145/1322192.1322216 Zhang, B., & Dafoe, A. (2019). Artificial Intelligence: American Attitudes and Trends (SSRN Scholarly Paper 3312874). https://doi.org/10.2139/ssrn.3312874
|