|
1.Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. (2016). On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci, 7, 4548-4556. 2.Yang, W. S.; Park, B.W.; Jung, E. H. et al. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 356 (6345), 1376-1379. 3.Saliba, M.; Matsui, T.; Seo, J-Y.; Domanski, K,; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 9, 1989-1997. 4.Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P. (2021). Efficient perovskite solar cells via improved carrier management. Nature, 590, 587. 5.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Am. Chem. Soc. 131 (17), 6050. 6.Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2 (591), 591. 7.Liang, Z.; Zhang, Y.; Xu, H. et al. (2023). Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 624, 557–563. 8.Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. (2018). Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering Chem. Soc. Rev, 47, 4581-4610. 9.Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J. (2023) Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 379 (6633), 683-690. 10.Wang, K.; Subhani, W. S.; Wang, Y.; Zuo, X.; Wang, H.; Duan, L.; Liu, S. (2019). Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Adv. Mater. 31 (50), 1902037. 11.Chen, J.; Lee, D.; Park, N.-G. (2019). Stabilizing the Ag Electrode and Reducing J-V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 9 (41), 36338-36349. 12.Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.; Grancini, G.; Gao, P.; Graetzel, M.; Nazeeruddin, M. K. (2015). High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors Energy Environ. Sci, 8 (12), 3550-3556. 13.You, S.; Zeng, H.; Liu, Y.; Han, B.; Li, M.; Li, L.; Zheng, X.; Guo, R.; Luo, L.; Li, Z. (2023). Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science, 379 (6629), 288-294. 14.Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. (2022). Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells Science, 377 (6605), 531-534. 15.Taylor, A. D.; Sun, Q.; Goetz, K. P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. (2021) A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun, 12 (1), 1878. 16.Gao, L.; Spanopoulos, I.; Ke, W.; Huang, S.; Hadar, I.; Chen, L.; Li, X.; Yang, G.; Kanatzidis, M. G. (2019). Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI3 Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Lett, 4 (7), 1763-1769. 17.Yang, J.; Cao, Q.; He, Z.; Pu, X.; Li, T.; Gao, B.; Li, X. (2021). The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy, 82, 105731. 18.Xiang, W.; Liu, S.; Tress, W. (2021). Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angew. Chem., 60 (51), 26440-26453. 19.Wang, S.; Sakurai, T.; Wen, W.; Qi, Y. (2018). Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Adv. Mater. Interfaces, 5 (22), 1800260. 20.Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. (2020). Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 367 (6484), 1352-1358. 21.Wang, C.; Malinoski, A.; Yuan, J.; Brea, C.; Hu, G. (2023) A Surface Engineering Approach for Promoting Dexter Energy Transfer from Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C, 127 (2), 1135-1144. 22.Lu, J.; Lin, X.; Jiao, X.; Gengenbach, T.; Scully, A. D.; Jiang, L.; Tan, B.; Sun, J.; Li, B.; Pai, N. (2018) Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci, 11 (7), 1880-1889. 23.Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L. (2019). Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature energy, 4 (5), 408-415. 24.Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. (2018). Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 555 (7697), 497-501. 25.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. (2017). Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy, 2 (7), 17102. 26.Li, Y.; Liu, M.; Li, Y.; Yuan, K.; Xu, L.; Yu, W.; Chen, R.; Qiu, X.; Yip, H. L. (2017). Poly(3,4-Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Adv. Energy Mater, 7 (6), 1601499. 27.Zhao, D.; Sexton, M.; Park, H. Y.; Baure, G.; Nino, J. C.; So, F. (2015). High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater, 5 (6), 1401855. 28.Yao, Y.; Cheng, C.; Zhang, C.; Hu, H.; Wang, K.; De Wolf, S. (2022). Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Adv. Mater, 34 (44), 2203794. 29.Tseng, Z.-L.; Chen, L.-C.; Chiang, C.-H.; Chang, S.-H.; Chen, C.-C.; Wu, C.-G. (2016). Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Solar Energy, 139 (1), 484-488. 30.Wu, T.; Ono, L. K.; Yoshioka, R.; Ding, C.; Zhang, C.; Mariotti, S.; Zhang, J.; Mitrofanov, K.; Liu, X.; Segawa, H. (2022). Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci, 15 (11), 4612-4624. 31.Chen, P.; Xiao, Y.; Li, L.; Zhao, L.; Yu, M.; Li, S.; Hu, J.; Liu, B.; Yang, Y.; Luo, D. (2023). Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition. Adv. Mater, 35 (5), 2206345. 32.Wang, H.; Song, Y.; Kang, Y.; Dang, S.; Feng, J.; Dong, Q. J. (2020). Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Mater. Chem. A, 8 (15), 7309-7316. 33.Cai, N.; Li, F.; Chen, Y.; Luo, R.; Hu, T.; Lin, F.; Yiu, S. M.; Liu, D.; Lei, D.; Zhu, Z. (2021). Synergistical Dipole–Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angew. Chem, 60 (37), 20437-20442. 34.Zuo, L.; Chen, Q.; De Marco, N.; Hsieh, Y.-T.; Chen, H.; Sun, P.; Chang, S.-Y.; Zhao, H.; Dong, S.; Yang, Y. (2017). Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Lett, 17 (1), 269-275. 35.Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H. (2015). Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. J. Am. Chem. Soc., 137 (7), 2674-2679. 36.Alghamdi, A. R. M.; Yanagida, M.; Shirai, Y.; Andersson, G. G.; Miyano, K. (2022). Surface Passivation of Sputtered NiOx Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS omega, 7 (14), 12147-12157. 37.Shih, Y. C.; Lan, Y. B.; Li, C. S.; Hsieh, H. C.; Wang, L.; Wu, C. I.; Lin, K. F. (2017). Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. Small, 13 (22), 1604305. 38.Magomedov, A.; Al‐Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V. (2018). Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Adv. Energy Mater, 8 (32), 1801892. 39.Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E. (2019). Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci, 12 (11), 3356-3369. 40.Lange, I.; Reiter, S.; Pätzel, M.; Zykov, A.; Nefedov, A.; Hildebrandt, J.; Hecht, S.; Kowarik, S.; Wöll, C.; Heimel, G.(2014). Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self-Assembled Monolayers. Adv. Funct. Mater, 24 (44), 7014-7024. 41.Jiang, W.; Li, F.; Li, M.; Qi, F.; Lin, F. R.; Jen, A. K. Y. (2022). π-Expanded Carbazoles as Hole-Selective Self-Assembled Monolayers for High-Performance Perovskite Solar Cells. Angew. Chem. Int. Ed, 61 (51), e202213560. 42.Li, Z.; Sun, X.; Zheng, X.; Li, B.; Gao, D.; Zhang, S.; Wu, X.; Li, S.; Gong, J.; Luther, J. M. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 382 (6668), 284-289. 43.Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. (1998). Insertion, Conductivity, and Structures of Conjugated Organic Oligomers in Self-Assembled Alkanethiol Monolayers on Au{111}. J. Am. Chem. Soc, 120 (12), 2721-2732. 44.Ulman, A. (1996). Formation and Structure of Self-Assembled Monolayers. Chem. Rev, 96 (4), 1533-1554. 45.Cravcenco, A.; Yu, Y.; Edhborg, F.; Goebel, J. F.; Takacs, Z. Yang Y.; Albinsson, B.; Börjesson, K. (2021). Exciton Delocalization Counteracts the Energy Gap: A New Pathway toward NIR-Emissive Dyes. J. Am. Chem. Soc, 143 (45), 19232-19239. 46.Zhang, H.; Tao, M.; Gao, B.; Chen, W.; Li, Q. Xu, Q.; Dong, S. (2017). Preparation of CH3NH3PbI3 thin films with tens of micrometer scale at high temperature. Sci, Rep, 7 (1), 8458.
|