跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊竣允
論文名稱:透過自組裝單層薄膜(SAMs)上的偽平面分子修飾增強鈣鈦礦太陽能電池
論文名稱(外文):Reinforcing Perovskite Solar Cells through Pseudo-Planar Molecule Modification on Self-Assembled Monolayers (SAMs)
指導教授:邱長塤
口試委員:張育誠邱聖貴
口試日期:2024-06-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:55
中文關鍵詞:自組裝鈣鈦礦太陽能電池界面對齊電洞選擇層
外文關鍵詞:self-assembledperovskite solar cellsenergy-alignedhole-selective layers
DOI:10.1002/advs.202404725
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
最近,基於咔唑的自組裝單層(SAMs)被廣泛用作反式鈣鈦礦太陽能電池(PSCs)中的有效電洞選擇層(HSLs)。然而,這些SAM由於其兩親性質而傾向於在溶劑中聚集,妨礙了ITO基板上緻密單層的形成,並阻礙了鈣鈦礦中深層缺陷的有效鈍化。在本研究中,我們合成了一系列新型SAMs,包括 DPA-B-PY、CBZ-B-PY、POZ-B-PY、POZ-PY、POZ-T-PY 和 POZ-BT-PY,並採用作為界面修復劑並塗覆在CNph SAM 頂部,形成堅固的CNph SAM@偽平面單分子層,作為高效反式PSC中的HSL。CNph SAM@偽平面單分子層策略能夠與鈣鈦礦形成良好的界面對齊,協同促進鈣鈦礦晶體生長,改善電荷提取/傳輸,並最大限度地減少非輻射界面複合損失。因此,POZ-BT-PY修飾的PSC實現了高達24.45% 的太陽能效率顯著提高以及82.63% 的填充因子。
Lately, carbazole-based self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a dense monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, we synthesize a series of new SAMs including DPA-B-PY, CBZ-B-PY, POZ-B-PY, POZ-PY, POZ-T-PY, and POZ-BT-PY, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo-planar monolayer as HSL in efficient inverted PSCs. The CNph SAM@pseudo-planar monolayer strategy enables a well-aligned interface with perovskites, synergistically promoting perovskite crystal growth, improving charge extraction/transport, and minimizing nonradiative interfacial recombination loss. As a result, the POZ-BT-PY-modified PSC realizes an impressively enhanced solar efficiency of up to 24.45% together with a fill factor of 82.63%.
致 謝 I
摘要 II
Abstract III
圖目錄 VI
表目錄 VIII
第一章、 緒論 1
1.1 前言 1
1.2 太陽能電池種類 2
1.3 鈣鈦礦簡介 4
1.4 鈣鈦礦太陽能電池元件結構 6
1.5 鈣鈦礦太陽能電池工作原理 7
1.6 太陽能電池基本參數 10
第二章、 文獻回顧與研究動機 13
2.1 文獻回顧 13
2.2 研究動機 18
第三章、 實驗與研究方法 23
3.1 實驗材料 23
3.2 實驗儀器 24
3.3 藥品配置 25
3.4 製備太陽能電池元件流程 26
第四章、 結果與討論 29
4.1 偽平面分子 29
4.2 偽平面分子鈣鈦礦太陽能元件性能測試 33
4.3 偽平面分子對鈣鈦礦薄膜之表面化學分析 37
4.4 偽平面分子對鈣鈦礦薄膜之形態微結構分析 40
4.5 偽平面分子對鈣鈦礦薄膜結晶之影響 42
4.6 偽平面分子對鈣鈦礦太陽能電池之電性分析 44
4.7. 偽平面分子對鈣鈦礦薄膜之載子動力學 47
第五章、結論 49
第六章、參考文獻 50
圖目錄
圖1-1. NREL所公布之太陽能電池效率排行。 3
圖1-2. 鈣鈦礦晶格結構示意圖。 5
圖1-3. 兩種典型PSC結構中的(A)正結構和(B)反結構示意圖。 6
圖1-4. 太陽能電池電荷轉移及再結合示意圖。 9
圖1-5. J-V 曲線示意圖。 12
圖2-1. 理想結構(a)無缺陷,(b)引入缺陷後。半導體晶體結構可能存在的缺陷: (c)點缺陷,(d)缺陷對,以及(e)高維度缺陷。 16
圖2-2. 偽平面分子結構示意圖。 21
圖2-3. SAM分子鈍化示意圖。 22
圖3-1. 太陽能元件示意圖。 28
圖4-1. 偽平面系列分子的CV及DPV圖。 32
圖4-2. 偽平面系列分子的UV-vis圖。 32
圖4-3. PSC中不同SAM分子的能階示意圖。 32
圖4-4. 鈣鈦礦對照組(紅線),和CBZ-B-PY(藍線)、DPA-B-PY(黃線)、POZ-B-PY(綠線)、POZ-PY(綠線)、POZ-T-PY(橙線)、POZ-BT-PY(灰線)處理後之鈣鈦礦J-V圖。 34
圖4-5. 有/無偽平面系列修飾的IPCE和積分短路電流密度圖。 36
圖4-6. 有/無偽平面分子修飾的薄膜之In 3d XPS能譜。 37
圖4-7. 有/無偽平面分子修飾的薄膜之N 1s及Cs 3d XPS能譜。 38
圖4-8. 有/無偽平面分子修飾的薄膜之Pb 4f XPS能譜。 39
圖4-9. 有/無偽平面分子修飾的薄膜之I 3d XPS能譜。 39
圖4-10. 鈣鈦礦於CNph和CNph@POZ-BT-PY上的橫截面SEM圖。 40
圖4-11. 鈣鈦礦於CNph和CNph@POZ-BT-PY上的表面形態SEM圖。 41
圖4-12. 透過SAM修飾之鈣鈦礦薄膜XRD圖。 43
圖4-13. Nyquist曲線圖。 44
圖4-14. Voc對光強度圖 45
圖4-15. 基於純電洞元件的CNph和CNph@偽平面分子修飾的鈣鈦礦SCLC圖。(ITO/SAMs/perovskite/PM6/MoOx/Ag)。 46
圖4-16. 有/無CNph@POZ-BT-PY修飾的鈣鈦礦薄膜穩態PL圖。 48
圖4-17. 有/無CNph@POZ-BT-PY修飾的鈣鈦礦薄膜TRPL衰減圖。 48
表目錄
表4-1. 不同濃度偽平面分子製備的鈣鈦礦元件光伏參數表。 34

1.Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. (2016). On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci, 7, 4548-4556.
2.Yang, W. S.; Park, B.W.; Jung, E. H. et al. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 356 (6345), 1376-1379.
3.Saliba, M.; Matsui, T.; Seo, J-Y.; Domanski, K,; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 9, 1989-1997.
4.Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P. (2021). Efficient perovskite solar cells via improved carrier management. Nature, 590, 587.
5.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Am. Chem. Soc. 131 (17), 6050.
6.Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2 (591), 591.
7.Liang, Z.; Zhang, Y.; Xu, H. et al. (2023). Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 624, 557–563.
8.Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. (2018). Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering Chem. Soc. Rev, 47, 4581-4610.
9.Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J. (2023) Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 379 (6633), 683-690.
10.Wang, K.; Subhani, W. S.; Wang, Y.; Zuo, X.; Wang, H.; Duan, L.; Liu, S. (2019). Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Adv. Mater. 31 (50), 1902037.
11.Chen, J.; Lee, D.; Park, N.-G. (2019). Stabilizing the Ag Electrode and Reducing J-V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 9 (41), 36338-36349.
12.Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.; Grancini, G.; Gao, P.; Graetzel, M.; Nazeeruddin, M. K. (2015). High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors Energy Environ. Sci, 8 (12), 3550-3556.
13.You, S.; Zeng, H.; Liu, Y.; Han, B.; Li, M.; Li, L.; Zheng, X.; Guo, R.; Luo, L.; Li, Z. (2023). Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science, 379 (6629), 288-294.
14.Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. (2022). Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells Science, 377 (6605), 531-534.
15.Taylor, A. D.; Sun, Q.; Goetz, K. P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. (2021) A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun, 12 (1), 1878.
16.Gao, L.; Spanopoulos, I.; Ke, W.; Huang, S.; Hadar, I.; Chen, L.; Li, X.; Yang, G.; Kanatzidis, M. G. (2019). Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI3 Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Lett, 4 (7), 1763-1769.
17.Yang, J.; Cao, Q.; He, Z.; Pu, X.; Li, T.; Gao, B.; Li, X. (2021). The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy, 82, 105731.
18.Xiang, W.; Liu, S.; Tress, W. (2021). Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angew. Chem., 60 (51), 26440-26453.
19.Wang, S.; Sakurai, T.; Wen, W.; Qi, Y. (2018). Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Adv. Mater. Interfaces, 5 (22), 1800260.
20.Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. (2020). Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 367 (6484), 1352-1358.
21.Wang, C.; Malinoski, A.; Yuan, J.; Brea, C.; Hu, G. (2023) A Surface Engineering Approach for Promoting Dexter Energy Transfer from Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C, 127 (2), 1135-1144.
22.Lu, J.; Lin, X.; Jiao, X.; Gengenbach, T.; Scully, A. D.; Jiang, L.; Tan, B.; Sun, J.; Li, B.; Pai, N. (2018) Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci, 11 (7), 1880-1889.
23.Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L. (2019). Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature energy, 4 (5), 408-415.
24.Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. (2018). Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 555 (7697), 497-501.
25.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. (2017). Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy, 2 (7), 17102.
26.Li, Y.; Liu, M.; Li, Y.; Yuan, K.; Xu, L.; Yu, W.; Chen, R.; Qiu, X.; Yip, H. L. (2017). Poly(3,4-Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Adv. Energy Mater, 7 (6), 1601499.
27.Zhao, D.; Sexton, M.; Park, H. Y.; Baure, G.; Nino, J. C.; So, F. (2015). High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater, 5 (6), 1401855.
28.Yao, Y.; Cheng, C.; Zhang, C.; Hu, H.; Wang, K.; De Wolf, S. (2022). Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Adv. Mater, 34 (44), 2203794.
29.Tseng, Z.-L.; Chen, L.-C.; Chiang, C.-H.; Chang, S.-H.; Chen, C.-C.; Wu, C.-G. (2016). Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Solar Energy, 139 (1), 484-488.
30.Wu, T.; Ono, L. K.; Yoshioka, R.; Ding, C.; Zhang, C.; Mariotti, S.; Zhang, J.; Mitrofanov, K.; Liu, X.; Segawa, H. (2022). Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci, 15 (11), 4612-4624.
31.Chen, P.; Xiao, Y.; Li, L.; Zhao, L.; Yu, M.; Li, S.; Hu, J.; Liu, B.; Yang, Y.; Luo, D. (2023). Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition. Adv. Mater, 35 (5), 2206345.
32.Wang, H.; Song, Y.; Kang, Y.; Dang, S.; Feng, J.; Dong, Q. J. (2020). Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Mater. Chem. A, 8 (15), 7309-7316.
33.Cai, N.; Li, F.; Chen, Y.; Luo, R.; Hu, T.; Lin, F.; Yiu, S. M.; Liu, D.; Lei, D.; Zhu, Z. (2021). Synergistical Dipole–Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angew. Chem, 60 (37), 20437-20442.
34.Zuo, L.; Chen, Q.; De Marco, N.; Hsieh, Y.-T.; Chen, H.; Sun, P.; Chang, S.-Y.; Zhao, H.; Dong, S.; Yang, Y. (2017). Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Lett, 17 (1), 269-275.
35.Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H. (2015). Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. J. Am. Chem. Soc., 137 (7), 2674-2679.
36.Alghamdi, A. R. M.; Yanagida, M.; Shirai, Y.; Andersson, G. G.; Miyano, K. (2022). Surface Passivation of Sputtered NiOx Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS omega, 7 (14), 12147-12157.
37.Shih, Y. C.; Lan, Y. B.; Li, C. S.; Hsieh, H. C.; Wang, L.; Wu, C. I.; Lin, K. F. (2017). Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. Small, 13 (22), 1604305.
38.Magomedov, A.; Al‐Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V. (2018). Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Adv. Energy Mater, 8 (32), 1801892.
39.Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E. (2019). Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci, 12 (11), 3356-3369.
40.Lange, I.; Reiter, S.; Pätzel, M.; Zykov, A.; Nefedov, A.; Hildebrandt, J.; Hecht, S.; Kowarik, S.; Wöll, C.; Heimel, G.(2014). Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self-Assembled Monolayers. Adv. Funct. Mater, 24 (44), 7014-7024.
41.Jiang, W.; Li, F.; Li, M.; Qi, F.; Lin, F. R.; Jen, A. K. Y. (2022). π-Expanded Carbazoles as Hole-Selective Self-Assembled Monolayers for High-Performance Perovskite Solar Cells. Angew. Chem. Int. Ed, 61 (51), e202213560.
42.Li, Z.; Sun, X.; Zheng, X.; Li, B.; Gao, D.; Zhang, S.; Wu, X.; Li, S.; Gong, J.; Luther, J. M. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 382 (6668), 284-289.
43.Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. (1998). Insertion, Conductivity, and Structures of Conjugated Organic Oligomers in Self-Assembled Alkanethiol Monolayers on Au{111}. J. Am. Chem. Soc, 120 (12), 2721-2732.
44.Ulman, A. (1996). Formation and Structure of Self-Assembled Monolayers. Chem. Rev, 96 (4), 1533-1554.
45.Cravcenco, A.; Yu, Y.; Edhborg, F.; Goebel, J. F.; Takacs, Z. Yang Y.; Albinsson, B.; Börjesson, K. (2021). Exciton Delocalization Counteracts the Energy Gap: A New Pathway toward NIR-Emissive Dyes. J. Am. Chem. Soc, 143 (45), 19232-19239.
46.Zhang, H.; Tao, M.; Gao, B.; Chen, W.; Li, Q. Xu, Q.; Dong, S. (2017). Preparation of CH3NH3PbI3 thin films with tens of micrometer scale at high temperature. Sci, Rep, 7 (1), 8458.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top