|
[1] Z.-W. Sun, “教室學生行為之即時辨識嵌入式系統,” 逢甲大學 資訊工程學系 碩士論文, 2023. [Online]. Available: https://hdl.handle.net/11296/4sptg6 [2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 1302–1310. doi: 10.1109/CVPR.2017.143. [3] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018. [4] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.” arXiv, Jul. 06, 2022. doi: 10.48550/arXiv.2207.02696. [5] F.-C. Lin, H.-H. Ngo, C.-R. Dow, K.-H. Lam, and H. L. Le, “Student behavior recognition system for the classroom environment based on skeleton pose estimation and person detection,” Sensors, vol. 21, no. 16, p. 5314, 2021. [6] R. Zheng, F. Jiang, and R. Shen, “Intelligent Student Behavior Analysis System for Real Classrooms,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 9244–9248. doi: 10.1109/ICASSP40776.2020.9053457. [7] G. Jocher, “YOLOv5 by Ultralytics.” May 2020. doi: 10.5281/zenodo.3908559. [8] L. Li, M. Liu, L. Sun, Y. Li, and N. Li, “ET-YOLOv5s: Toward Deep Identification of Students’ in-Class Behaviors,” IEEE Access, vol. 10, pp. 44200–44211, 2022, doi: 10.1109/ACCESS.2022.3169586. [9] S.-Q. Yang, Y.-H. Chen, Z.-Y. Zhang, and J.-H. Chen, “Student in-class behaviors detection and analysis system based on CBAM-YOLOv5,” in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Apr. 2022, pp. 440–443. doi: 10.1109/ICSP54964.2022.9778630. [10] M. M. A. Parambil, L. Ali, F. Alnajjar, and M. Gochoo, “Smart Classroom: A Deep Learning Approach towards Attention Assessment through Class Behavior Detection,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), Feb. 2022, pp. 1–6. doi: 10.1109/ASET53988.2022.9735018. [11] R. Fu, T. Wu, Z. Luo, F. Duan, X. Qiao, and P. Guo, “Learning Behavior Analysis in Classroom Based on Deep Learning,” in 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Feb. 2019, pp. 206–212. doi: 10.1109/ICICIP47338.2019.9012177. [12] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition.” arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556. [13] M. H. Le, T. M. Doan, D. D. Nguyen, and M. S. Nguyen, “Smart Desk in Hybrid Classroom: Detecting student’s lack of concentration when studying,” in 2022 9th NAFOSTED Conference on Information and Computer Science (NICS), Oct. 2022, pp. 13–18. doi: 10.1109/NICS56915.2022.10013468. [14] C. Lugaresi et al., “MediaPipe: A Framework for Building Perception Pipelines.” arXiv, Jun. 14, 2019. doi: 10.48550/arXiv.1906.08172. [15] M. A. Samir, Y. Maged, and A. Atia, “Exam Cheating Detection System with Multiple-Human Pose Estimation,” in 2021 IEEE International Conference on Computing (ICOCO), Jan. 2021, pp. 236–240. doi: 10.1109/ICOCO53166.2021.9673534. [16] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields.” arXiv, May 30, 2019. doi: 10.48550/arXiv.1812.08008. [17] T. L. Munea, Y. Z. Jembre, H. T. Weldegebriel, L. Chen, C. Huang, and C. Yang, “The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation,” IEEE Access, vol. 8, pp. 133330–133348, 2020, doi: 10.1109/ACCESS.2020.3010248. [18] C. Zheng et al., “Deep Learning-based Human Pose Estimation: A Survey,” ACM Comput. Surv., vol. 56, no. 1, p. 11:1-11:37, Aug. 2023, doi: 10.1145/3603618. [19] D. Osokin, “Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose.” arXiv, Nov. 29, 2018. doi: 10.48550/arXiv.1811.12004. [20] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.” arXiv, Apr. 16, 2017. doi: 10.48550/arXiv.1704.04861. [21] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO.” Jan. 2023. Accessed: Jan. 23, 2024. [Online]. Available: https://github.com/ultralytics/ultralytics [22] “適用於嵌入式和邊緣系統的 NVIDIA Jetson Xavier NX,” NVIDIA. Accessed: Feb. 09, 2024. [Online]. Available: https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-xavier-nx/ [23] “部署人工智慧驅動的大規模自動化裝置,” NVIDIA. Accessed: Feb. 09, 2024. [Online]. Available: https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-agx-xavier/ [24] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep Learning Inference Parallelization on Heterogeneous Processors With TensorRT,” IEEE Embed. Syst. Lett., vol. 14, no. 1, pp. 15–18, Mar. 2022, doi: 10.1109/LES.2021.3087707.
|