跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林雍郢
研究生(外文):LIN, YUNG-YING
論文名稱:氮化銦鋁鎵/氮化鎵/碳化矽金屬-氧化物-半導體異質結構場效電晶體之研製
論文名稱(外文):Investigations on InAlGaN/GaN/SiC MOS-HFETs
指導教授:李景松
指導教授(外文):LEE, CHING-SUNG
口試委員:許渭州劉漢胤
口試委員(外文):HSU, WEI-CHOULIU, HAN-YIN
口試日期:2024-07-13
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:71
中文關鍵詞:氮化鎵通道氮化銦鋁鎵四元化合物氧化鋯閘極介電層超音波霧化熱裂解沉積閘極場極板異質結構場效電晶體
外文關鍵詞:GaN channelInAlGaN quaternary compoundZrO2 gate dielectric layerultrasonic spray pyrolysis depositiongate field-plateheterostructured field-effect transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉金屬有機化學氣相沉積法研製具有氮化銦鋁鎵障壁層及氮化鎵通道金屬-氧化物-半導體異質結構場效電晶體;為應用於功率開關和高功率放大器元件,選擇寬能隙、高電子遷移率和高臨界電場的GaN作為通道材料。四元化合物InAlGaN取代InAlN作為障壁層,改善晶格應力以及磊晶溫度差異導致的晶格缺陷,提升通道的電子遷移率。源極和汲極沉積摻雜矽離子的n型氮化鎵覆蓋層以降低接觸電阻。採用超音波霧化熱裂解沉積高k值氧化鋁、氧化鋯作為閘極介電層,減少閘極的漏電流並鈍化表面,提升元件直流特性。
本論文研製兩微米閘極長度具有不同閘極氧化層以及一微米閘極長度具有閘極場極板的金屬-氧化物-半導體異質結構場效電晶體;LG為1 μm、源極-閘極間距(LSG)為3 μm、閘極-汲極間距(LGD)為10 μm、閘極場板長度(LGFP)為2 μm時所量測直流特性為:最大飽和電流密度 (IDS,max) 1794 mA/mm,最大轉導 (gm,max) 為207 mS/mm,開關電流比(Ion/Ioff) 為1.8× 108,導通電阻(Ron) 為3.9 Ω·mm,閘極場極板有效降低閘極汲極間的峰值電場,量測三端關閉狀態崩潰電壓(BVDS)為504 V。
實驗結果表示In0.1Al0.8Ga0.1N/AlN/GaN 寬能隙通道金屬-氧化物-半導體異質結構場效電晶體降低磊晶過程中產生的缺陷,提升通道電子遷移率且提升最大飽和電流密度。採用低成本且非真空的超音波霧化熱裂解沉積法沉積閘極介電質,高k值的氧化鋯提供更高的氧化層電容,有效提升閘極對通道的控制能力,提高電流密度。採用閘極場極板可有效改善崩潰電壓特性。本論文之設計有利應用功率開關以及功率放大元件。

In this thesis, metal-oxide-semiconductor heterostructure field-effect transistors with InAlGaN barrier layer and GaN channels were fabricated using metal-organic chemical vapor deposition (MOCVD). GaN was chosen as the channel material for power switching and high power amplification due to its wide energy gap, high electron mobility, and high critical field. InAlGaN, was employed as the barrier layer instead of InAlN to improve the lattice stress and reduce lattice defects caused by epitaxial temperature difference, enhancing the electron mobility in the channel. At the source and drain electrodes, n-type GaN cap layer was deposited with silicon ions doping to reduce the contact resistance. High k-value Al2O3 and ZrO2 were deposited using ultrasonic spray pyrolysis deposition to reduce the leakage current and passivate the surface of the gate electrode.
In this work, metal-oxide-semiconductor heterostructured field-effect transistors with gate length of 2 μm and different gate oxide were fabricated. Additionally, a transistor with a gate length of 1 μm and a gate field-plate was also fabricated. The measured DC characteristics for LG = 1 μm, LSG = 3 μm, LGD = 10 μm, and LGFP = 2 μm include a maximum saturation current density (IDS,max) of 1794 mA/mm, a maximum extrinsic transconductance (gm,max) of 207 mS/mm, an on/off ratio (Ion/Ioff) of 1.8 × 108, and an on-resistance (Ron) of 3.9 Ω-mm. The gate field-plate mitigates the peak electric field in gate-drain region, resulting in a three-terminal off-state breakdown voltage (BVDS) of 504 V.
The experimental results demonstrate that the developed In0.1Al0.8Ga0.1N/AlN/GaN wide bandgap channel metal-oxide-semiconductor heterostructure field-effect transistors reduce epitaxial defects, improve electron mobility, and increase maximum saturation current density. Using low-cost and non-vacuum ultrasonic spray pyrolysis deposition technology, the gate dielectric layer was deposited, effectively reducing gate leakage current under high voltage. The high-k value ZrO2 results in a high oxide capacitance, enhancing gate control over the channel and increasing current density. Additionally, the gate field-plate effectively improves the breakdown voltage characteristics. The present design is advantageous for applications in power switching and power amplification.

誌謝 III
摘要 V
Abstract VII
Contents IX
Figure Captions XI
Table Captions XIII
Chapter 1 Introduction 1
Chapter 2 Device Structure and Fabrication 7
2-1 Device Structure 7
2-2 Device Fabrication 7
2-2-1 Mesa Isolation 7
2-2-2 n-GaN Cap Layer Etching 9
2-2-3 Source/Drain Ohmic Contacts 10
2-2-4 Gate Dielectric Deposition by USPD 12
2-2-5 Gate (Gate Field-Plate) Electrode Deposition 14
Chapter 3 Experimental Results and Discussion 16
3-1 Materials Analysis 16
3-1-1 Hall measurement 16
3-1-2 X-ray diffraction (XRD) 17
3-1-3 X-ray Photoelectron Spectrometer (XPS) 17
3-2 Electrical Analyses 18
3-2-1 Output Characteristics 19
3-2-2 Transfer Characteristics 20
3-2-3 Transfer Length Method (TLM) 22
3-2-4 Breakdown Characteristics 23
3-2-5 Power Characteristics and Overall Performance 23
3-4 Capacitance-Voltage Characteristics 27
3-4-1 Hysteresis Phenomenon 28
3-4-2 Interface State Density (Dit) 28
Chapter 4 Conclusions 30
References 31
Figures 40

[1]M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp. 1214-1215, Aug. 1993.
[2]E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures,” J. Vac. Sci. Technol. B, vol. 17, no. 4, pp. 1740-1749, Jul. 1999.
[3]R. Wang, G. Li, J. Verma, B. Sensale-Rodriguez, T. Fang, J. Guo, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. Xing, “220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs,” IEEE Electron Device Letters, vol. 32, no. 9, pp. 1215-1217, Sep. 2011.
[4]F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, H. Kalisch, A. Vescan, M. Heuken, and J.-C. De Jaeger, “Power performance at 40 GHz on quaternary barrier InAlGaN/GaN HEMT,” IEEE Electron Device Letters, vol. 34, no. 8, pp. 978-980, Aug. 2013.
[5]W. Wang, X. Yu, J. Zhou, D. Chen, K. Zhang, C. Kong, Y. Kong, Z. Li, and T. Chen, “Improvement of power performance of GaN HEMT by using quaternary InAlGaN barrier,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 360-364, Feb. 2018.
[6]F. Lumbantoruan, X. X. Zheng, J. H. Huang, R. Y. Huang, F. Mangasa, E. Y. Chang, Y. Y. Tu, and C. T. Lee, “Structural and electrical properties analysis of InAlGaN/GaN heterostructures grown at elevated temperatures by MOCVD,” Journal of Crystal Growth, vol. 501, pp. 7-12, Nov. 2018.
[7]A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” Journal of Applied Physics, vol. 81, no. 9, pp. 6332-6338, May. 1997.
[8]L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S.P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN high-power microwave HEMT,” IEEE Electron Device Letters, vol. 22, no. 10, pp. 457-459, Oct. 2001.
[9]J. Zhang, X. Yang, J. Cheng, Y. Feng, P. Ji, A. Hu, F. Xu, N. Tang, X. Wang, and B. Shen, “Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality,” Applied Physics Letters, vol. 110, 172101, Apr. 2018.
[10]H. Yu, L. McCarthy, H. Xing, P. Waltereit, L. Shen, S. Keller, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Dopant activation and ultralow resistance ohmic contacts to Si-ion-implanted GaN using pressurized rapid thermal annealing,” Applied Physics Letters, vol. 85, no. 22, pp. 5254-5256, Nov. 2004.
[11]S. Bajaj, Z. Yang, F. Akyol, P. S. Park, Y. Zhang, A. L. Price, S. Krishnamoorthy, D. J. Meyer, and S. Rajan, “Graded AlGaN channel transistors for improved current and power gain linearity,” IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3114-3119, Aug. 2017.
[12]C. S. Lee, Y. T. Shen, W. C. Hsu, Y. P. Huang, and C. Y. You, “Al0.75Ga0.25N/AlxGa1-xN/Al0.75Ga0.25N/AlN/SiC Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors With Symmetrically-Graded Widegap Channel,” IEEE Journal of the Electron Devices Society, vol. 8, no. 1, pp. 9-14, Jan. 2020.
[13]Y. Yue, Z. Hu, J. Guo, B. S.-R, G. Li, R. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and H. Xing, “InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz,” IEEE Electron Device Letters, vol. 33, no. 7, pp. 988-990, Jul. 2012.
[14]B. J. Baliga, “Semiconductors for high voltage, vertical channel field effect transistors,” Journal of Applied Physics, vol. 53, no. 3, pp. 1759 1764, Mar. 1982.
[15]B. J. Baliga, “Power semiconductor device figure of merit for high frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp. 455–457, Oct. 1989.
[16]Y. Yue, Z. Hu, J. Guo, B. S.-R, G. Li, R. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and H. Xing, “AlInGaN/GaN HEMTs with high Johnson’s figure-of-merit on low resistivity silicon substrate,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 130-136, Dec. 2020.
[17]S. Karmalkar and U. K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 1515-1521, Aug. 2001.
[18]J. K. Mun, K. Cho, W. Chang, H.-W. Jung, and J. Do, “2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate,” ECS Journal of Solid State Science and Technology, vol. 8, no. 7, pp. 3079-3082, Feb. 2019.
[19]C. H. Lee, W. R. Lin, Y. H. Lee, and J. J. Huang, “Characterizations of enhancement-mode double heterostructure GaN HEMTs with gate field plates,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 488-492, Feb. 2018.
[20]A. Chini, F. Soci, F. Fantini, A. Nanni, A. Pantellini, C. Lanzieri, G. Meneghesso, and E. Zanoni, “Impact of field-plate geometry on the reliability of GaN-on-SiC HEMTs,” Microelectronics Reliability, vol. 53, no. 9-11, pp. 1461-1465, Sep-Nov. 2013.
[21]Y. Ando, H. Takahashi, Q. Ma, A. Wakejima, and J. Suda, “Impact of film stress of field-plate dielectric on electric characteristics of GaN-HEMTs,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5421-5426, Dec. 2020.
[22]P. Murugapandiyan, M.T. Hasan, V. Rajya Lakshmi, M. Wasim, J. Ajayan, N. Ramkumar, and D. Nirmal, “Breakdown voltage enhancement of gate field plate Al0.295Ga0.705N/GaN HEMTs,” International Journal of Electronics, vol. 108, no. 8, pp. 1273-1287, Dec. 2020.
[23]A. Soni, Ajay, and M. Shrivastava, “Novel drain-connected field plate GaN HEMT designs for improved VBD–RON tradeoff and RF PA performance,” IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1718-1725, Apr. 2020.
[24]A. Soni, and M. Shrivastava, “Implications of various charge sources in AlGaN/GaN epi-stack on the drain & gate connected field plate design in HEMTs,” IEEE Access, vol. 10, pp. 74533-74541, Jul. 2022.
[25]A. Malmros, P. Gamarra, M.-A. di Forte-Poisson, H. Hjelmgren, C. Lacam, M. Thorsell, M. Tordjman, R. Aubry, and N. Rorsman, “Evaluation of thermal versus plasma-assisted ALD Al2O3 as passivation for InAlN/AlN/GaN HEMTs,” IEEE Electron Device Letters, vol. 36, no. 3, pp. 235-237, Mar. 2015.
[26]A. Soni, and M. Shrivastava, “High-performance GaN MOSHEMTs fabricated with ALD Al2O3 dielectric and NBE gate recess technology for high frequency power applications,” IEEE Electron Device Letters, vol. 38, no. 6, pp. 771-774, Jun. 2017.
[27]R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige, “A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT,” IEEE Electron Device Letters, vol. 35, no. 9, pp. 906-908, Sep. 2014.
[28]A. Rawat, M. Meer, V. K. Surana, N. Bhardwaj, V. Pendem, N. S. Garigapati, Y. Yadav, S. Ganguly, and D. Saha, “Thermally grown TiO2 and Al2O3 for GaN-based MOS-HEMTs,” IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3725-3731, Jul. 2018.
[29]O. Odabasi, S. Mohanty, K. Khan, and E. Ahmadi, “N-Polar GaN deep recess HEMT with atomic layer deposition HfO2 as gate insulator,” IEEE Transactions on Electron Devices, vol. 70, no. 9, pp. 4572-4577, Jul. 2023.
[30]H. Jiang, C. W. Tang, and K. M. Lau, “Enhancement-mode GaN MOS-HEMTs with recess-free barrier engineering and high- k ZrO2 gate dielectric,” IEEE Electron Device Letters, vol. 39, no. 3, pp. 405-408, Mar. 2018.
[31]Y. Zhang, Y. Gu, J. Chen, Y. Zhu, B. Chen, H. Jiang, K. M. Lau, and X. Zou, “Small Vth shift and low dynamic Ron in GaN MOSHEMT with ZrO2 gate dielectric,” IEEE Transactions on Electron Devices, vol. 70, no. 11, pp. 5590-5595, Nov. 2023.
[32]Y. Liang, Y. Zhang, X. He, Y. Zhao, J. Yan, M. Wang, and W. Liu, “Dynamic RON degradation in AlGaN/GaNMIS-HEMTs with Si3N4 or Si3N4/ZrO2 passivation layer,” IEEE Transactions on Electron Devices, vol. 71, no. 5, pp. 2914-2919, May. 2024.
[33]S. Kundu, T. Shripathi, and P. Banerji, “Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2–GaAs metal–oxide–semiconductor devices,” Solid State Communications, vol. 151, no. 24, pp. 1881-1884, Dec. 2011.
[34]S. Kundu, T. Shripathi, and P. Banerji, “AlGaN/GaN MIS-HEMT with PECVD SiNx - SiON - SiO2 as gate dielectric and passivation layer,” Electronics, vol. 7, no. 12, pp. 416-426, Dec. 2018.
[35]S. H. Sohel, M. W. Rahman, A. Xie, E. Beam, Y. Cui, M. Kruzich, H. Xue, T. Razzak, S. Bajaj, Y. Cao, W. Lu, and S. Rajan, “Linearity improvement with AlGaN polarization- graded field effect transistors with low pressure chemical vapor deposition grown SiNx passivation,” IEEE Electron Device Letters, vol. 41, no. 1, pp. 19-22, Jan. 2020.
[36]G. Dutta, N. DasGupta, and A. DasGupta, “Effect of sputtered-Al2O3 layer thickness on the threshold voltage of III-Nitride MIS-HEMTs,” IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1450-1458, Apr. 2016.
[37]W. Zhang, L. Fu, X. Liu, J. Zhang, S. Zhao, Z. Wang, and Y. Hao, “In-situ-SiN/AlN/Al0.05Ga0.95N high electron-mobility transistors on Si-substrate using Al2O3/SiO2 passivation,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 348-352, Mar. 2021.
[38]B. Y. Chou, H. Y. Liu, W. C. Hsu, C. S. Lee, Y. S. Wu, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3-Passivated AlGaN/GaN HEMTs by Using Nonvacuum Ultrasonic Spray Pyrolysis Deposition Technique,” IEEE Electron Device Letters, vol.35, no. 9, pp.903-905, Sep. 2014.
[39]Z. Gao, M. F. Romero, A. Redondo-Cubero, M. A. Pampillón, E. San Andrés, and F. Calle, “Effects of Gd2O3 gate dielectric on proton-irradiated AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol.38, no. 5, pp.611-614, May. 2017.
[40]C. H. Chou, H. H. Chang, C. C. Hsu, W. K. Yeh, and C. H. Chien, “Low-leakage tetragonal ZrO2 with in situ plasma interfacial passivation on germanium,” IEEE Electron Device Letters, vol.37, no. 2, pp.138-141, Feb. 2016.
[41]I. Sanyal, E. S. Lin, Y. C. Wan, K. M. Chen, P. T. Tu, P. C. Yeh, and J. I. Chyi, “AlInGaN/GaN HEMTs with high johnson’s figure-of-merit on low resistivity silicon substrate,” IEEE Journal of the Electron Devices Society, vol.9, pp.130-136, Dec. 2020.
[42]Z. Sun, H. Huang, R. Wang, N. Sun, P. Tao, Y. Ren, S. Song, H. Wang, S. Li, W. Cheng, J. Gao, and H. Liang, “Improving performances of enhancement-mode AlGaN/GaN MIS-HEMTs on 6-inch Si substrate utilizing SiON/Al2O3 stack dielectrics,” IEEE Electron Device Letters, vol.41, no. 1, pp.135-138, Jan. 2020.
[43]B. Duan, L. Yang, Y. Wang, and Y. Yang, “Experimental results for AlGaN/GaN HEMTs improving breakdown voltage and output current by electric field modulation,” IEEE Transactions on Electron Devices, vol.68, no. 5, pp.2240-2245, May. 2021.
[44]S. Gao, X. Liu, J. Chen, Z. Xie, Q. Zhou, and H. Wang, “High breakdown-voltage GaN-Based HEMTs on silicon with Ti/Al/Ni/Ti ohmic contacts,” IEEE Electron Device Letters, vol.42, no. 4, pp.481-484, Apr. 2021.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top