跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡筑廷
研究生(外文):TSAI, CHU-TING
論文名稱:新穎混合吸收劑之二氧化碳捕捉效率及再生循環應用研究
論文名稱(外文):Carbon Dioxide Capture Efficiency, Regeneration, and Cyclic Application of Novel Mixed Absorbents
指導教授:陳志成陳志成引用關係
指導教授(外文):Chen, Jyh-Cherng
口試委員:彭彥彬陳俊吉陳志成
口試委員(外文):Peng, Yen-PingCHEN, CHUN-CHIChen, Jyh-Cherng
口試日期:2024-01-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:118
中文關鍵詞:碳捕捉混合吸收劑吸收解吸循環吸收
外文關鍵詞:carbon captureblended absorbentabsorptiondesorptioncyclic absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
隨著溫室效應與氣候變遷逐年嚴重,減碳技術發展成當務之急,2050年淨零排放目標儼然成為全球各國共識。減碳技術包含碳捕捉、碳利用與碳封存,簡稱為CCUS(Carbon Capture, Utilization, and Storage),其中以燃燒後捕捉之化學吸收技術最為普遍成熟,具有捕捉效率高、應用容易等優勢,但仍有腐蝕性與再生能耗較高等問題需克服改善。化學吸收法除了使用傳統單一吸收劑,如單乙醇胺(Monoethanolamine, MEA)、甲基二乙醇胺(Methyldiethanolamine, MDEA)與氨水外,目前許多研究亦開發新型態化學吸收劑,如混合醇胺、離子液體(Ionic liquid, IL)與深共熔溶劑(Deep-eutectic Solvent, DES)等,改善傳統吸收劑不足之處,提升應用效益與競爭優勢。
本研究以三級醇胺1-二甲基氨基-2-丙醇(1-Dimethylamino-2-propanol, 1DMAP)為主要吸收劑,並分別添加MEA、哌嗪(piperazine, PZ)與氫氧化鈉(sodium hydroxide, NaOH)配製為混合吸收劑,模擬一般燃燒之煙道氣CO2濃度進行碳捕捉吸收實驗,亦使用1-乙基-3-甲基咪唑醋酸鹽(1-Ethyl-3-methylimidazolium acetate, [Emim][Ac]) 離子液體與的尿素-氯化膽鹼(Urea+ChCl, Reline)深共熔溶劑進行CO2吸收實驗,探討不同新穎吸收劑對CO2之吸收負載量、吸收反應速率、解吸效果以及重複循環吸收效果,藉以評估未來實廠應用潛力。
實驗結果顯示,1DMAP之CO2吸收效率可達80%以上,混合吸收劑較單一吸收劑更具碳捕捉效果,碳捕捉效率皆可高達90%以上。1DMAP添加MEA或NaOH可提升吸收速率,而添加PZ可促進吸收與解吸效率,發揮互補協作功能,故混合吸收劑具有應用發展潛力;離子液體[Emim][Ac]與深共熔溶劑Urea+ChCl黏滯度較大,較不適用於曝氣吸收系統,需於密閉加壓系統方具良好吸收效率。當CO2吸收反應器之進氣流量越小,氣液接觸時間增加,可減緩初始吸收速率並增加吸收效率。
綜合考量吸收、解吸與循環吸收實驗結果,最佳混合吸收劑為1DMAP+PZ,其最佳操作條件為吸收劑濃度1M+0.5M、進氣流量150 mL/min、CO2濃度為15%、反應溫度50℃,不僅CO2吸收效率高達99%、吸收負載量可達0.6 mole/mole,而CO2解吸效率可達62%,再生單位能耗亦為最低;且3次循環吸收實驗後之碳捕捉效率仍能維持於90%,解吸效率約為60%,具良好循環應用效果。不同吸收劑吸收與再生後皆可由FTIR分析發現碳酸(氫)鹽或氨基甲酸根官能基之生成與消失,可證實吸收劑與CO2之化學反應作用機制。進一步評估使用不同吸收劑進行循環吸收之相對吸收劑成本發現,以1DMAP+MEA(1M+0.5M) 進行碳捕捉為最低(0.5508 NTD/min),其次為1DMAP+PZ(1M+0.5M),皆較實廠普遍應用的30wt.% MEA更具經濟效益。
As the severity of greenhouse effect and climate change are becoming more serious, the development of efficient carbon reduction technologies is more urgent, and the implement of net-zero emissions in 2050 has become a global consensus. Carbon reduction technology includes carbon capture, carbon utilization and carbon storage, abbreviated as CCUS. Chemical Absorption is the most widely used and mature post-combustion capture technology among the various CCUS technologies. It has the advantages of high CO2 capture efficiency and easy application, but there are still problems of corrosiveness and high regeneration energy consumption that need to be overcome and improved. In addition to traditional single absorbent used in chemical absorption method, such as Monoethanolamine (MEA), Methyldiethanolamine (MDEA), and ammonia, recent researches have also developed various novel chemical absorbents to improve the shortcomings of conventional absorbents and increase the application efficiency and competitive advantage, such as blended amines, Ionic Liquids (IL), and Deep-eutectic Solvents (DES).
This study used a tertiary amine of 1-Dimethylamino-2-propanol (1DMAP) of as the primary absorbent, and mixed with MEA, piperazine (PZ), and sodium hydroxide (NaOH) to prepare the blended absorbents. Carbon capture absorption experiments were conducted by simulating the CO2 concentrations in the flue gas of general combustion processes. CO2 absorption experiments were also conducted by using the IL of 1-Ethyl-3-methylimidazolium acetate([Emim][Ac]) and DES of Reline (Urea+ChCl). The performance of different blended and novel absorbents on the CO2 capture, including the unit absorption loads, absorption rate, desorption efficiency, and cyclic absorption feature, were investigated to evaluate their practical application potentials in the future.
Experimental results show that the absorption efficiency of CO2 by single 1DMAP was higher than 80%, and the performance of blended absorbents were better than single absorbent with the carbon capture efficiencies all above 90%. The absorption rate of 1DMAP can be increased by blending MEA or NaOH, and the absorption and desorption efficiencies can be imporved by blending PZ. It demonstrated that blended absorents have complementary and collaborative interactions and have good application development potential. The performance of [Emim][Ac] and Urea+ChCl were not satisfied because they had higher viscosities, they were not suitable for use in aeration absorption system and require a closed pressurized system to achieve good absorption efficiency. When the inlet gas flow rates of CO2 absorption reactors were decreased, the contact time of gas and liquid was increased, which can slow down the initial absorption rate and improve the absorption efficiency.
Comprehensive consideration of the absorption, desorption, and cyclic absorption experimental results, the optimal blended absorbent was 1DMAP+PZ, and its optimal operating conditions were concentration of 1M+0.5M, inlet flow rate of 150 mL/min, CO2 concentration of 15%, reaction temperature of 50℃. The CO2 absorption efficiency can achieve 99%, the CO2 load capacity can reach 0.6 mole/mole, and the CO2 desorption efficiency was 62%, and the regeneration energy consumption was the lowest. After 3 cycle absorption-desorption experiments, the CO2 capture efficiency still maintained at 90% and the desorption efficiency was about 60%. The blended absorbents 1DMAP+PZ had excellent cyclic application performance. After absorption and regeneration of different absorbents, the formation and disappearance of carbonate, bicarbonate or carbamate functional groups can be founded by FTIR analysis, which can confirm the chemical reaction mechanism between the absorbent and CO2. Further evaluating the relative absorbent costs of different absorbents during the cyclic absorption experiments, it was found that 1DMAP+MEA (1M+0.5M) was the lowest (0.5508 NTD/min), followed by 1DMAP+PZ (1M+0.5M). All of them were more economical and competitive than the 30wt.%MEA commonly used in current practical applications.
目錄 VII
圖目錄 X
表目錄 XII
第一章、前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章、文獻回顧 5
2-1 全球淨零碳排現況 5
2-1-1全球溫室氣體排放狀況 5
2-1-2世界各國淨零排碳政策與規劃 7
2-2 CCUS技術與發展 10
2-2-1 碳捕捉(Carbon Capture) 10
2-2-2 碳利用(Carbon Utilization) 14
2-2-3 碳封存(Carbon Storage) 15
2-3 碳捕捉技術應用發展概況 16
2-3-1 台灣實廠應用碳捕捉技術之發展應用 18
2-3-2 國際碳捕捉技術之發展應用 19
2-4 CO2吸收劑介紹 21
2-4-1 醇胺 21
2-4-2氨水 27
2-4-3碳酸鹽吸收劑 29
2-4-4氫氧化物 31
2-4-5離子液體 32
2-4-6深共熔溶劑 36
第三章、實驗材料與方法 39
3-1 實驗藥品 39
3-2 實驗設備 40
3-3 實驗方法 41
3-3-1 吸收劑配製 41
3-3-2 吸收CO2實驗 43
3-3-3 解吸CO2實驗 45
3-4 實驗分析 46
3-4-1 吸收液中CO2吸收負載量分析 46
3-4-2 傅立葉變換紅外光譜儀(ATR-FTIR) 47
3-5 實驗結果計算方式與參數定義 48
3-5-1 CO2吸收實驗 48
3-5-2 CO2再生實驗 49
3-5-3 相對吸收劑成本 50
第四章、結果與討論 51
4-1 不同吸收劑吸收CO2成效 51
4-1-1 以1DMAP為主之混合吸收劑 51
4-1-1-1 不同濃度混合吸收劑之CO2捕捉效果 52
4-1-1-2 不同進流氣體流量對吸收劑捕捉CO2效率之影響 56
4-1-2 吸收劑中CO2含量(負載量)之分析定量方法 61
4-1-3 新興吸收劑 64
4-2 傅立葉轉換紅外線光譜儀(FTIR) 68
4-3 吸收劑解吸再生 72
4-3-1不同吸收劑之解吸再生成效 72
4-3-2不同吸收劑之解吸再生能耗 74
4-4 不同吸收劑之吸收-再生循環應用效果 75
4-5 CO2吸收系統之質量平衡檢核 81
4-6 不同吸收劑之相對成本比較 85
第五章、結論與建議 87
5-1結論 87
5-2建議 89
參考文獻 90



Abbott, A. P., Capper, G., & Gray, S. (2006). Design of improved deep eutectic solvents using hole theory. Chemphyschem, 7(4), 803-806.
Adeyemi, I., Abu-Zahra, M. R., & Alnashef, I. (2017). Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia, 105, 1394-1400.
Ahmadi, M., Ghaemi, A., & Qasemnazhand, M. (2023). Lithium hydroxide as a high capacity adsorbent for CO2 capture: experimental, modeling and DFT simulation. Scientific Reports, 13(1), 7150.
Aravena, C., Lee, D., Park, J., & Yoo, Y. (2022). Characteristics of Deep eutectic solvents for CO2 capture with Hydro effects for improvement of mass transfer. Journal of Industrial and Engineering Chemistry, 111, 337-345.
Aroonwilas, A., & Tontiwachwuthikul, P. (1997). High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP). Separation and Purification Technology, 12(1), 67-79.
Asgarifard, P., Rahimi, M., & Tafreshi, N. (2021). Response surface modelling of CO2 capture by ammonia aqueous solution in a microchannel. The Canadian Journal of Chemical Engineering, 99(2), 601-612.
Bai, L., Zhao, D., Zhong, X., Dong, S., & Liu, H. (2023). Comprehensive technical analysis of CO2 absorption into a promising blended amine of DEEA-HMDA. Chemical Engineering Science, 119025.
Bajpai, S., Shreyash, N., Singh, S., Memon, A. R., Sonker, M., Tiwary, S. K., & Biswas, S. (2022). Opportunities, challenges and the way ahead for carbon capture, utilization and sequestration (CCUS) by the hydrocarbon industry: Towards a sustainable future. Energy Reports, 8, 15595-15616.

Barzagli, F., Giorgi, C., Mani, F., & Peruzzini, M. (2017). CO2 capture by aqueous Na2CO3 integrated with high-quality CaCO3 formation and pure CO2 release at room conditions. Journal of CO2 Utilization, 22, 346-354.
Bhattacharyya, S., & Shah, F. U. (2016). Ether functionalized choline tethered amino acid ionic liquids for enhanced CO2 capture. ACS Sustainable Chemistry & Engineering, 4(10), 5441-5449.
BloombergNEF (2022). G-20 Zero-Carbon Policy Scoreboard 2022. Retrieved March 29 2022, from
https://assets.bbhub.io/professional/sites/24/BNEF-G20-Zero-Carbon-Policy-Scoreboard-Executive-Summary.pdf
Bonaventura, D., Chacartegui, R., Valverde, J. M., Becerra, J. A., & Verda, V. (2017). Carbon capture and utilization for sodium bicarbonate production assisted by solar thermal power. Energy Conversion and Management, 149, 860-874.
Borhani, T. N. G., Azarpour, A., Akbari, V., Alwi, S. R. W., & Manan, Z. A. (2015). CO2 capture with potassium carbonate solutions: A state-of-the-art review. International Journal of Greenhouse Gas Control, 41, 142-162.
Caplow, M. (1968). Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, 90(24), 6795-6803.
Chang, Y. C. (1958). Potentiometric titration of free amine and amine carbonate in carbonated monoethanolamine solutions. Analytical Chemistry, 30(6), 1095-1097.
Choi, W. J., Seo, J. B., Jang, S. Y., Jung, J. H., & Oh, K. J. (2009). Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. Journal of Environmental Sciences, 21(7), 907-913.
Dey, A., Dash, S. K., & Mandal, B. (2020). Elucidating the performance of (N-(3-aminopropyl)-1, 3-propanediamine) activated (1-dimethylamino-2-propanol) as a novel amine formulation for post combustion carbon dioxide capture. Fuel, 277, 118209.
Diao, Y. F., Zheng, X. Y., He, B. S., Chen, C. H., & Xu, X. C. (2004). Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion and Management, 45(13-14), 2283-2296.
Dinul, F. I., Nurdin, H., Rahmadiawan, D., Laghari, I. A., & Elshaarani, T. (2023). Comparison of NaOH and Na2CO3 as absorbents for CO2 absorption in carbon capture and storage technology. Journal of Engineering Researcher and Lecturer, 2(1), 28-34.
Donaldson, T. L., & Nguyen, Y. N. (1980). Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals, 19(3), 260-266.
Emma stein,清大─長春產學聯盟開發數項綠色化工技術,先進碳捕捉已投入應用,上網日期:2022年12月31日,檢自:https://technews.tw/2021/12/29/co2-green-energy-carbon-capture-ccpg/
Fu, L., Ren, Z., Si, W., Ma, Q., Huang, W., Liao, K., Hung, Z, Wang, Y, Li, J & Xu, P. (2022). Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization, 66, 102260.
Gao, H., Wu, Z., Liu, H., Luo, X., & Liang, Z. (2017). Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture. Energy & Fuels, 31(12), 13883-13891.
García, G., Aparicio, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents: physicochemical properties and gas separation applications. Energy & Fuels, 29(4), 2616-2644.
Gautam, A., & Mondal, M. K. (2023). Novel aqueous amine blend of 2-(Butylamino) ethanol and 2-Dimethylaminoethanol for CO2 capture: Equilibrium CO2 loading, RSM optimization, desorption study, characterization and toxicity assessment. Separation and Purification Technology, 124279.

Global CCS Institute. (2023). Global Status of CCS 2023 – Executive Summary. Retrieved November 9, 2023, from
https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2023-executive-summary/
Gupta, M., da Silva, E. F., Hartono, A., & Svendsen, H. F. (2013). Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature. The Journal of Physical Chemistry B,117(32), 9457-9468.
Gomez-Coma, L., Garea, A., & Irabien, A. (2016). Carbon dioxide capture by [emim][Ac] ionic liquid in a polysulfone hollow fiber membrane contactor. International Journal of Greenhouse Gas Control, 52, 401-409.
Greig, C., & Uden, S. (2021). The value of CCUS in transitions to net-zero emissions. The Electricity Journal, 34(7), 107004.
Haider, M. B., & Kumar, R. (2020). Solubility of CO2 and CH4 in sterically hindered amine-based deep eutectic solvents. Separation and Purification Technology, 248, 117055.
Haider, M. B., Hussain, Z., & Kumar, R. (2016). CO2 absorption and kinetic study in ionic liquid amine blends. Journal of Molecular Liquids, 224, 1025-1031.
Haider, M. B., Jha, D., Marriyappan Sivagnanam, B., & Kumar, R. (2018). Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents. Journal of Chemical & Engineering Data, 63(8), 2671-2680.
Hairul, N. A. H., Shariff, A. M., & Bustam, M. A. (2016). Mass transfer performance of 2-amino-2-methyl-1-propanol and piperazine promoted 2-amino-2-methyl-1-propanol blended solvent in high pressure CO2 absorption. International Journal of Greenhouse Gas Control, 49, 121-127.
Han, S. J., Yoo, M., Kim, D. W., & Wee, J. H. (2011). Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy & Fuels, 25(8), 3825-3834.
Hilliard, M. D. (2008). A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. Unpublished doctoral dissertation, University of Texas at Austin, United States – Texas.
Horwitz, W. J. G. B. C. (1975). Association of official analytical chemists (AOAC) methods. Menasha: George Banta Company.
Hu, X., Huang, J., He, X., Luo, Q., Li, C. E., Zhou, C., & Zhang, R. (2022). Analyzing the potential benefits of trio-amine systems for enhancing the CO2 desorption processes. Fuel, 316, 123216.
IPCC (2023). AR6 Synthesis Report: Climate Change 2023. Retrieved March 20, 2023, from https://www.ipcc.ch/report/sixth-assessment-report-cycle/
Jiang, K., Ashworth, P., Zhang, S., Liang, X., Sun, Y., & Angus, D. (2020). China's carbon capture, utilization and storage (CCUS) policy: A critical review. Renewable and Sustainable Energy Reviews, 119, 109601.
Jinzhi, Z., Cai, J., Haifeng, D., Jinquan, W., Xiangping, Z., & Suojiang, Z. (2013). A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO2 Capture. Industrial & Engineering Chemistry Research, 52(17), 5835-5841.
Kadiwala, S., Rayer, A. V., & Henni, A. (2012). Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique. Chemical Engineering Journal, 179, 262-271.
Kang, S., Chung, Y. G., Kang, J. H., & Song, H. (2020). CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids. Journal of Molecular Liquids, 297, 111825.
Kar, S., Goeppert, A., Galvan, V., Chowdhury, R., Olah, J., & Prakash, G. S. (2018). A carbon-neutral CO2 capture, conversion, and utilization cycle with low-temperature regeneration of sodium hydroxide. Journal of the American Chemical Society, 140(49), 16873-16876.
Kawatra, S. K., Eisele, T. C., & Simmons, J. J. (2011). Capture and sequestration of carbon dioxide in flue gases. Michigan Tech Patents. 115.
Kohl, A. L., & Nielsen, R. (1997). Gas purification. Netherlands: Elsevier.
Kumar, S., Cho, J. H., & Moon, I. L. (2014). Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review. International Journal of Greenhouse Gas Control, 20, 87-116.
Laddha, S. S., & Danckwerts, P. V. (1981). Reaction of CO2 with ethanolamines: kinetics from gas-absorption. Chemical Engineering Science, 36(3), 479-482.
Leron, R. B., Caparanga, A., & Li, M. H. (2013). Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T= 303.15–343.15 K and moderate pressures. Journal of the Taiwan Institute of Chemical Engineers, 44(6), 879-885.
Li, K., Yu, H., Feron, P., Tade, M., & Wardhaugh, L. (2015). Technical and energy performance of an advanced, aqueous ammonia-based CO2 capture technology for a 500 MW coal-fired power station. Environmental Science & Technology, 49(16), 10243-10252.
Li, X., Hou, M., Han, B., Wang, X., & Zou, L. (2008). Solubility of CO2 in a choline chloride+urea eutectic mixture. Journal of Chemical & Engineering Data, 53(2), 548-550.
Lin, C. M., Leron, R. B., Caparanga, A. R., & Li, M. H. (2014). Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems. The Journal of Chemical Thermodynamics, 68, 216-220.
Liu, X., Ao, Q., Shi, S., & Li, S. (2022). CO2 capture by alcohol ammonia based deep eutectic solvents with different water content. Materials Research Express, 9(1), 015504.

Liu, Y., Fan, W., Wang, K., & Wang, J. (2016). Studies of CO2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions. Journal of Cleaner Production, 112, 4012-4021.
Liu, Z. X., Gao, M., Zhang, X. M., Liang, Y., Guo, Y. J., Liu, W. L., & Bao, J. W. (2023). CCUS and CO2 injection field application in abroad and China: Status and progress. Geoenergy Science and Engineering, 212011.
Ma, Z., Cheah, W. Y., Ng, I. S., Chang, J. S., Zhao, M., & Show, P. L. (2022). Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends in Biotechnology. Retrieved March 18, 2023, from
https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(22)00236-0
Mani, F., Peruzzini, M., & Stoppioni, P. (2008). Combined process of CO2 capture by potassium carbonate and production of basic zinc (II) carbonates: CO2 release from bicarbonate solutions at room temperature and pressure. Energy & Fuels, 22(3), 1714-1719.
Mukesh, C., Khokarale, S. G., Virtanen, P., & Mikkola, J. P. (2019). Rapid desorption of CO2 from deep eutectic solvents based on polyamines at lower temperatures: An alternative technology with industrial potential. Sustainable Energy & Fuels, 3(8), 2125-2134.
Noorani, N., Mehrdad, A., & Ahadzadeh, I. (2021). CO2 absorption in amino acid-based ionic liquids: Experimental and theoretical studies. Fluid Phase Equilibria, 547, 113185.
Nwaoha, C., Saiwan, C., Supap, T., Idem, R., Tontiwachwuthikul, P., Rongwong, W., Al-Marri, M., & Benamor, A. (2016). Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). International Journal of Greenhouse Gas Control, 53, 292-304.
Park, S., Song, K., & Jo, H. (2017). Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution. Energy, 124, 589-598.
Peng, Y., Zhao, B., & Li, L. (2012). Advance in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia, 14, 1515-1522.
Ping, T., Dong, Y., & Shen, S. (2020). Energy-efficient CO2 capture using nonaqueous absorbents of secondary alkanolamines with a 2-butoxyethanol cosolvent. ACS Sustainable Chemistry & Engineering, 8(49), 18071-18082.
Pinto, A. M., Rodríguez, H., Arce, A., & Soto, A. (2014). Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. The Journal of Chemical Thermodynamics, 77, 197-205.
Rao, A. B., & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science & Technology, 36(20), 4467-4475.
Ren, H., Lian, S., Wang, X., Zhang, Y., & Duan, E. (2018). Exploiting the hydrophilic role of natural deep eutectic solvents for greening CO2 capture. Journal of Cleaner Production, 193, 802-810.
Richner, G., & Puxty, G. (2012). Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Industrial & Engineering Chemistry Research, 51(44), 14317-14324.
Sarmad, S., Nikjoo, D., & Mikkola, J. P. (2020). Amine functionalized deep eutectic solvent for CO2 capture: Measurements and modeling. Journal of Molecular Liquids, 309, 113159.
Scottish Carbon Capture & Storage(SCCS). (2023). Global CCS Map. Retrieved Dec 3, 2023 from
https://www.sccs.org.uk/resources/global-ccs-map
Sharif, M., Fan, H., Wu, X., Yu, Y., Zhang, T., & Zhang, Z. (2023). Assessment of novel solvent system for CO2 capture applications. Fuel, 337, 127218.
Singh, P., van Swaaij, W. P. M., & Brilman, D. W. (2011). Kinetics study of carbon dioxide absorption in aqueous solutions of 1, 6-hexamethyldiamine (HMDA) and 1, 6-hexamethyldiamine, N, N′ di-methyl (HMDA, N, N′). Chemical Engineering Science, 66(20), 4521-4532.
Singh, S., Pandey, D., & Mondal, M. K. (2020). New experimental data on equilibrium CO2 loading into aqueous 3-dimethyl amino-1-propanol and 1, 5-diamino-2-methylpentane blend: Empirical model and CO2 absorption enthalpy. Journal of Chemical & Engineering Data, 66(1), 740-748.
Sohaib, Q., Kazemi, M. A., Charmette, C., Cartier, J., Younas, M., Azarafza, A., Rezakazemi, M., & Sanchez-Marcano, J. (2022). CO2 solubility and diffusivity in 1-ethyl-3-methylimidazolium cation-based ionic liquids; isochoric pressure drop approach. Fluid Phase Equilibria, 563, 113581.
Tzirakis, F., Tsivintzelis, I., Papadopoulos, A. I., & Seferlis, P. (2021). Experimental investigation of phase change amine solutions used in CO2 capture applications: Systems with dimethylcyclohexylamine (DMCA) and Ncyclohexyl-1, 3-propanediamine (CHAP) or 3-methylaminopropylamine (MAPA). International Journal of Greenhouse Gas Control, 109, 103353.
U.S. Department of Energy. (2007). Carbon Sequestration Technology Roadmap and Program Plan. Retrieved April, 2023 from http://cepac.cheme.cmu.edu/pasi2008/slides/siirola/library/reading/2007Roadmap.pdf
Ullah, A., Soomro, M. I., & Kim, W. S. (2019). Ammonia-based CO2 capture parameters optimization and analysis of lean and rich vapor compression processes. Separation and Purification Technology, 217, 8-16.
Valluri, S., & Kawatra, S. K. (2021). Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture. Fuel Processing Technology, 212, 106620.
Valluri, S., Claremboux, V., & Kawatra, S. (2022). Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences, 113, 322-344.
Villeneuve, K., Roizard, D., Remigy, J. C., Iacono, M., & Rode, S. (2018). CO2 capture by aqueous ammonia with hollow fiber membrane contactors: Gas phase reactions and performance stability. Separation and Purification Technology, 199, 189-197.
Vulin, D., Močilac, I. K., Jukić, L., Arnaut, M., Vodopić, F., Saftić, B., Sedlar, D. K., & Cvetković, M. (2023). Development of CCUS clusters in Croatia. International Journal of Greenhouse Gas Control, 124, 103857.
Wang, C., Xie, Y., Li, W., Ren, Q., Lv, B., Jing, G., & Zhou, Z. (2023). Performance and mechanism of the functional ionic liquid absorbent with the self-extraction property for CO2 capture. Chemical Engineering Journal, 473, 145266.
Xiao, M., Liu, H., Gao, H., Olson, W., & Liang, Z. (2019). CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Applied Energy, 235, 311-319.
Xiao, M., Liu, H., Idem, R., Tontiwachwuthikul, P., & Liang, Z. (2016). A study of structure–activity relationships of commercial tertiary amines for post-combustion CO2 capture. Applied Energy, 184, 219-229.
Xu, H., Pate, S. G., & O'Brien, C. P. (2024). The influence of amine structure on the mechanism of CO2 facilitated transport across amine-functionalized polymer membranes: An operando spectroscopy study. Journal of Membrane Science, 689, 122163.
Yan, M., Huan, Q., Zhang, Y., Fang, W., Chen, F., Pariatamby, A., Kanchanatip, E., Wibowo, H. (2022). Effect of operating parameters on CO2 capture from biogas with choline chloride—monoethanolamine deep eutectic solvent and its aqueous solution. Biomass Conversion and Biorefinery, 1-15.

Yang, Y., Xu, W., Wang, Y., Shen, J., Wang, Y., Geng, Z., Wang ,Y., & Zhu, T. (2022). Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chemical Engineering Journal, 450, 138438.
Ye, W., Huang, J., Lin, J., Zhang, X., Shen, J., Luis, P., & Van der Bruggen, B. (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent. Separation and Purification Technology, 144, 206-214.
Ye, X., & Lu, Y. (2014). Kinetics of CO2 absorption into uncatalyzed potassium carbonate–bicarbonate solutions: Effects of CO2 loading and ionic strength in the solutions. Chemical Engineering Science, 116, 657-667.
Yeh, A. C., & Bai, H. (1999). Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Science of the Total Environment, 228(2-3), 121-133.
Yeh, J. T., Resnik, K. P., Rygle, K., & Pennline, H. W. (2005). Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology, 86(14-15), 1533-1546.
Yincheng, G., Zhenqi, N., & Wenyi, L. (2011). Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Procedia, 4, 512-518.
Yoo, M., Han, S. J., & Wee, J. H. (2013). Carbon dioxide capture capacity of sodium hydroxide aqueous solution. Journal of Environmental Management, 114, 512-519.
Zhenqi, N., Yincheng, G., & Wenyi, L. (2009). Experimental studies on CO2 capture in a spray scrubber using NaOH solution. International Conference on Energy and Environment Technology, China.
Zhang, R., He, X., Liu, T., Li, C. E., Xiao, M., Ling, H., Hu, X., Zhang, X., Tang, F., & Luo, H. A. (2022). Thermodynamic studies for improving the prediction of CO2 equilibrium solubility in aqueous 2-dimethylamino-2-methyl-1-propanol. Separation and Purification Technology, 295, 121292.
Zhang, R., Zhang, X., Yang, Q., Yu, H., Liang, Z., & Luo, X. (2017). Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied Energy, 205, 1002-1011.
Zhang, X. M., Huang, K., Xia, S., Chen, Y. L., Wu, Y. T., & Hu, X. B. (2015). Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2. Chemical Engineering Journal, 274, 30-38.
Zhang, Y., Zhu, C., Fu, T., Gao, X., & Ma, Y. (2022). CO2 absorption performance of ChCl-MEA deep eutectic solvent in microchannel. Journal of Environmental Chemical Engineering, 10(6), 108792.
Zhu, Y., Taylor, D., & Wang, Z. (2023). The role of environmental taxes on carbon emissions in countries aiming for net-zero carbon emissions: Does renewable energy consumption matter? Renewable Energy, 218, 119239.
王芯雅,2012,咪唑類離子液體之合成及應用於二氧化碳吸附與生質物降解,逢甲大學化學工程學系碩士論文。
王涵、施怡君,2022,各國減碳宣言歲末大盤點!走在東亞前端的日本、韓國怎麼邁向「碳中和」? 上網日期:2023年1月27日,檢自:https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1669-2022-01-27-06-07-41.htmL。
台電綠網,碳捕捉、再利用及封存,上網日期:2023年12月3日,檢自:https://greennet.taipower.com.tw/sustainable/ccus_plan。
行政院環境部,2023,我國國家溫室氣體排放清冊報告(2023年版),檢自:https://unfccc.saveoursky.org.tw/nir/tw_nir_2023.php。
行政院,2023,臺灣2050淨零排放,檢自:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
吳逸甯,2016,超重力系統中以深共熔溶劑混合醇胺吸收二氧化碳,中原大學化學工程學系碩士學位論文。
李文峰,2002,以MEA溶液去除煙道氣中二氧化碳之研究,國立成功大學環境工程學系碩士論文。
季宇文,2010,二氧化碳捕捉製程與實驗工程之模擬研究,國立清華大學化學工程研究所碩士論文。
李岳陽,2002,碳酸鉀負載於活性碳與矽酸鈣吸收二氧化碳之研究,國立臺灣大學化學工程學研究所碩士論文。
李孟玲,2015,四烷基銨氨基酸離子液體水溶液應用於二氧化碳捕捉,國立清華大學化學工程研究所碩士論文。
杜長青,2011,二氧化碳化學吸收程序之設計與操作,國立台灣科技大學化學工程研究所碩士論文。
沈健生,2017,二氧化碳吸收劑製備及解吸之研究,南台科技大學化學工程與材料工程系碩士班碩士學位論文。
林于萱,2021,改質層狀雙氫氧化物應用於二氧化碳吸附,國立宜蘭大學環境工程學系碩士論文。
林聖中,2016,以甘氨酸鈉溶液進行二氧化碳之捕捉及再生研究,龍華科大化工與材料工程研究所碩士論文。
林鈺孝,2013,探討於超重力旋轉床中添加無機鹽類對二氧化碳及氧氣吸收之影響,國立清華大學化學工程研究所碩士論文。
林翰宗,2010,使用鹼液於錯流式旋轉填充床去除空氣中二氧化碳,長庚大學化工與材料工程研究所碩士論文。
林東延,2000,二氧化碳與固體吸收劑低溫反應動力學研究,國立臺灣大學化學工程研究所碩士論文。
長春集團,企業永續責任(2022 ESG報告書),上網日期:2023年12月3日,檢自: https://www.ccp.com.tw/ccpweb.nsf/ProfileTW?OpenAgent&ProfileName=CSR
姚威良,2002,PZ/MDEA/H2O吸收二氧化碳之反應動力數據量測研究,中原大學化學工程研究所碩士論文。
柳萬霞、徐恆文、王欽銘、陳威丞、歐陽湘,2012,燃燒後捕捉二氧化碳技術-鈣迴路捕捉CO2技術國際現況與國內發展介紹,工業污染防治,121,71-86。
徐米君,2009,製備較高比表面積之矽酸鋰(Li4SiO4)於二氧化碳捕捉之應用,國立清華大學化學工程研究所碩士論文。
徐毅宏,2013,低共熔溶劑(Reline)+甲醇胺水溶液吸收二氧化碳之平衡溶解度量測研究,中原大學化學工程學系碩士學位論文。
國家發展委員會,臺灣2050淨零排放路徑及策略總說明,上網日期:2023年11月30日,檢自:https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76。
張洺愷,2019,電鍍參數與糖精對超臨界二氧化碳混和深共熔溶劑電鍍鎳的性質研究,台北科技大學製造科技研究所碩士論文。
張剛耀,2017,旋轉填充床中醇胺混合深共熔溶劑捕捉二氧化碳與其模擬,中原大學化學工程學系碩士學位論文。
張家諭,2015,旋轉床與固定床捕捉高爐燃燒尾氣之二氧化碳效能比較與溶劑評估,國立清華大學化學工程研究所碩士論文。
梁慈芳,2021,深共熔溶劑:結構研究及金奈米星的合成,國立中正大學化學暨生物化學系碩士論文。
許振譽,2014,台灣燃煤電廠二氧化碳捕捉集封存之成本效益分析,國立成功大學資源工程研究所碩士論文。
陳怡如,2022,CCUS是邁向淨零最後一哩路,工業技術與資訊月刊,362,42-45。
陳崇和,2012,高濃度醇胺於超重力旋轉床吸收CO2之應用,國立清華大學化學工程研究所碩士論文。
俞棠曦、詹大安,2022,專家帶路!一次看懂2021國際淨零政策與看點,上網日期:2023年6月22日,檢自:https://www.bplan.com.tw/post/net_zero_emissions_0222。
彭兆卿,2013,高爐氣燃燒尾氣之二氧化碳吸收溶劑效果評估,國立清華大學化學工程研究所碩士論文。
黃至弘、陳顥、談駿嵩,2016,於高速旋轉床中使用高效率低能耗吸收劑捕捉CO2,化工,63(1),38-53。
曾映棠,2002,化學溶劑吸收再生法回收廢氣中二氧化碳之溶劑使用成本分析,國立交通大學環境工程研究所碩士論文。
葉家豪,2011,高爐燃燒尾氣的二氧化碳捕捉,國立清華大學化學工程研究所碩士論文。
廖國荏,2002,都市焚化爐廢氣中二氧化碳控制技術研究,國立台灣大學環境工程研究所碩士論文。
蔡易謙,2019,1-丁基-3-甲基咪唑醋酸與1-丁基-3甲基咪唑甲硫胺酸離子液體/載體之二氧化碳吸收/解吸特性,南台科技大學化學工程與材料工程系碩士論文。
蔡志凡,2006,碳酸鈉和碳酸鉀負載於活性碳吸收煙道氣中二氧化碳之研究,國立台灣大學化學工程學研究所碩士論文。
歐陽湘、廖啓雯,2010,由二氧化碳減排看二氧化碳捕捉與封存技術發展,經濟前瞻,132,87-92。
鄭旭翔,2012,以醇胺水溶液搭配旋轉填充床捕獲二氧化碳,國立清華大學化學工程研究所博士論文。
蕭吉良,2005,以氨水溶液於填充塔中去除二氧化碳之研究,國立成功大學環境工程學系碩士論文。
羅振傑,2013,高爐燃燒尾氣之二氧化碳捕捉溶劑評估,國立清華大學化學工程研究所碩士論文。
謝文浩,2012,製備功能性離子液體奈米孔洞複合吸附劑並應用於捕捉燃煤電廠廢氣中的二氧化碳,高雄應用科技大學化工與材料工程研究所碩士論文。
謝祝欽、陳又瑄、林郁竣,2013,FCC廢觸媒與沸石合成二氧化碳吸附材料製備技術之研究,國立雲林科技大學環境與安全衛生工程系。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊