跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋郡
研究生(外文):CHEN, WEI-CHUN
論文名稱:探討F-16戰機在不同菱形機首角度配置下之空氣動力學影響
論文名稱(外文):Investigation of The Aerodynamics Effects of The F-16 Fighter under Different Diamond-shaped Nose Cone Angle Configurations
指導教授:方俊方俊引用關係
指導教授(外文):FANG, JIUN
口試委員:方俊陳啟川管衍德
口試委員(外文):FANG, JIUNCHEN, CHII-CHUANKUAN, YEAN-DER
口試日期:2024-05-27
學位類別:碩士
校院名稱:逢甲大學
系所名稱:智能製造與工程管理碩士在職學位學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:55
中文關鍵詞:F-16計算流體力學菱形機首高攻角
外文關鍵詞:F-16CFDDiamond-Shaped NoseHigh Angle of Attack
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在各國主力戰機已發展到第五代戰鬥機的現在,由於匿蹤能力要求以及高攻角性能的關鍵指標下,第五代全機採帶角度設計,其中機首部分則以菱形設計為主,除了有效減少正面雷達反射截面積外,其菱形外型所產生之機首渦與主翼前緣渦耦合,於高攻角時可延緩渦流破碎的時機,並達到增加升力或加強操控性的效果。
而F-16為我國主力戰機之一,該型機為第四代戰鬥機且為圓弧形機首,其圓弧形外型無匿蹤能力且於高攻角飛行時渦流容易破碎,導致渦流升力驟降和力矩特性改變,且由於左、右兩側渦流破碎可能非同時發生,進而產生非對稱情況,將造成機翼翻滾、螺旋等,影響飛行安全。本研究將針對該型機在0.3馬赫下搭配不同攻角與菱形機首配置進行流場現象的探討,以我國航空工業具備能量前提下,作為後續下一代戰鬥機或其他用途軍機外型設計的發展參考資料,並期望可運用於現役戰鬥機之氣動力性能提升、改進與優化研究。
本研究使用SolidWorks繪圖軟體重建目標戰機之三維模型,並運用Ansys Fluent計算流體力學(Computational Fluid Dynamics)軟體,與採用雷諾平均納維-斯托克斯方程式(Reynolds-Averaged Navier-Stokes equation)及剪應力傳輸(Shear Stress Transport k-ω)紊流模型來執行數值模擬,網格則使用六面體混合多面體類型的非結構網格(Poly-Hexa core Mesh)來建構節點與劃分。
在對於原本F-16圓弧形機首及不同角度(55°、60°及65°)之菱形機首等四種外型配置中,設定模擬分析在M = 0.3馬赫數,以及各別在α = 0°、3°、6°、9°、12°、15°、18°、21°、24°、27°、30°、32°、34°、36°、38°及40°這16種攻角下搭配組合,來執行流場現象及氣動力數據探討比較。

In the current era, where the mainstay fighter aircraft of various countries have evolved into fifth-generation fighters, the design emphasis lies in achieving stealth capabilities and high angle-of-attack performance. The key features of fifth-generation aircraft include angular designs, particularly in the nose section, which predominantly adopts a diamond-shaped configuration. Apart from effectively reducing the frontal radar cross-sectional area, the diamond-shaped contour generates nose and leading-edge vortices that couple with each other. This coupling, especially at high angles of attack, delays the breakdown of vortices, leading to increased lift or enhanced controllability.
However, the F-16, as one of the main fighter aircraft in our country, is a fourth-generation fighter with a rounded nose, lacking stealth capability. During high angle of attack flight, the vortex is prone to break down, leading to a sudden drop in vortex lift, changes in moment characteristics, and the potential for asymmetric situations, causing wing rolling and spiraling, impacting flight safety. This study focuses on investigating the flow field phenomena of the F-16 with a rounded nose and different angles of attack at 0.3 Mach. The aircraft is then configured with a diamond-shaped nose, aiming to provide valuable reference data for the development of next-generation fighter aircraft or other military aircraft external designs. The research also aims to contribute to the improvement, modification, and optimization of the aerodynamic performance of existing fighter aircraft.
This study employed SolidWorks drawing software to reconstruct the three-dimensional model of the target fighter aircraft. Ansys Fluent, a Computational Fluid Dynamics (CFD) software, was utilized, employing the Reynolds-Averaged Navier-Stokes equation and the Shear Stress Transport k-ω turbulence model for numerical simulations. The mesh structure consisted of a Poly-Hexa core mesh incorporating hexahedral and polyhedral elements for node construction and partitioning.
Simulations were conducted for four aerodynamic configurations, including the original F-16 with a rounded nose and three different diamond-shaped nose angles (55°, 60°, and 65°). The analyses were performed at a Mach number of 0.3, considering various angles of attack (α) ranging from 0° to 30° in 3° increments and from 32° to 40° in 2° increments. This resulted in a total of 16 angle of attack combinations for each configuration. The study aimed to explore and compare flow field phenomena and aerodynamic data under these specified conditions.

目錄
致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機及目的 1
1.2 文獻回顧 2
1.3 論文架構 18
第二章 數學模型 19
2.1 統御方程式 19
2.2 雷諾平均納維-斯托克斯方程(RANS) 20
2.3 SST k-w紊流模型 22
第三章 研究方法 26
3.1 NASA TP-1803 27
3.1.1 TP-1803計算流域與網格 27
3.1.2 TP-1803邊界條件 28
3.2 F-16 29
3.2.1 F-16計算流域與網格 31
3.2.2 F-16邊界條件 32
3.2.3運算公式 33
第四章 分析結果與討論 34
4.1 NASA TP-1803網格獨立性測試與驗證結果 34
4.2 分析軟體參數設定及模擬結果 36
4.2.1 F-16分析軟體參數設定 36
4.2.2 F-16模擬結果 38
4.2.2.1 流場現象 38
4.2.2.2 氣動力數據探討比較 43
4.3 小結 48
第五章 結論與未來展望 49
參考文獻 52
圖目錄
圖1.1(a)F-16為圓弧形機首(b)F-35菱形機首 1
圖1.2、六個自由度運動示意圖 2
圖1.3、俯仰力矩變化示意圖(a)平衡位置(b)上仰(c)下俯 3
圖1.4、F-35A戰機飛行展示航線 4
圖1.5、TP-1803加裝邊條升力係數增加 5
圖1.6、前機身流場隨攻角變化的情況 5
圖1.7、F-18 HARV前機身裝置可變控制面及ANSER天線罩 6
圖1.8、F-18 HARV實際飛行測試情況 7
圖1.9、不同環境、測試方式及配置下,偏航力矩係數的變化 7
圖1.10、前機身噴氣控制系統概念示意圖 8
圖1.11、前機身模型的側向力係數與攻角的關係 9
圖1.12、前機身渦流可視化(64°) 10
圖1.13、F-5型機機首基本構型(左)、鯊魚型(右) 11
圖1.14、安裝鯊魚鼻的F-5型機 11
圖1.15、F-5型機機首產生渦流不對稱現象(攻角40°) 12
圖1.16、鯊魚型機首對方向穩定性的影響 12
圖1.17、攻角對偏航力矩係數分析圖 13
圖1.18、風洞實驗 14
圖1.19、風洞實驗流場現象 14
圖1.20、風洞實驗結果 15
圖1.21、以CFD模擬各不同機首形狀 16
圖1.22、兩種不同機首形狀模型及壓力分佈圖 17
圖3.1、NASA TP-1803三視圖 26
圖3.2、參考來自NASA Technical Paper 1803基礎模型 27
圖3.3、TP-1803計算流域 28
圖3.4、邊界條件示意圖 29
圖3.5、F-16模型圖(a)F-16上視圖(b)F-16等角視圖(c)F-16前視圖(d)F-16側視圖 30
圖3.6、計算流域示意圖 31
圖3.7、邊界條件示意圖 32
圖4.1、升力係數對攻角網格獨立性測試 34
圖4.2、阻力係數對升力係數網格獨立性測試 35
圖4.3、俯仰力矩係數對升力係數網格獨立性測試 35
圖4.4、原始模型於不同攻角之流線圖及渦度 39
圖4.5、菱形機首(55°)模型於不同攻角之流線圖及渦度 40
圖4.6、菱形機首(60°)模型於不同攻角之流線圖及渦度 41
圖4.7、菱形機首(65°)模型於不同攻角之流線圖及渦度 42
圖4.8、四種模型攻角與升力係數曲線圖 44
圖4.9、四種模型攻角與阻力係數曲線圖 45
圖4.10、四種模型攻角與升、阻力係數比曲線圖 45
圖4.11、四種模型攻角與俯仰力矩係數曲線圖 46
圖4.12、四種模型攻角與側向力係數曲線圖 46
圖4.13、四種模型攻角與滾轉力矩係數曲線圖 47
圖4.14、四種模型攻角與偏航力矩係數曲線圖 47
表目錄
表3.1、F-16外型參數 29
表3.2、模擬環境與飛行狀態 31
表4.1、四種模型配置簡述說明對照表 37
【1】The Warzone, (2024)。Our First Look At An Armed-Up Block 70 F-16 Viper。2024年5月27日,檢自 https://www.twz.com/air/our-first-look-at-an-armed-up-block-70-f-16-viper
【2】The Warzone, (2024)。Singapore Adds F-35As To Expand Its Stealth Fighter Fleet。2024年5月27日,檢自 https://www.twz.com/air/singapore-adds-f-35as-to-expand-its-stealth-fighter-fleet
【3】John D. Anderson Jr. (2014), “Introduction to Flight, 8th ed., McGraw-Hill Education. ” University of Maryland, 597-609.
【4】尖端科技軍事雜誌社, (2023)。巴黎航展F-35飛行展示路線全解析!打破你的刻版印象。2017年4月10日,檢自 https://www.dtmdatabase.com/news.aspx?id=508
【5】Lamar, J., & Frink, N. (1981), “Experimental and Analytical Study of The Longitudinal Aerodynamic Characteristics of Analytically and Empirically Designed Strake-Wing Configurations at Subcritical Speeds” NASA Latzgley Research Center Hampton, VA. US.
【6】Casey Fagley, John Farnsworth, Chris Porter, Jurgen Seidel, Thomas McLaughlin, Jinik Lee and Eunseok Lee. (2013), “Open-Loop Dynamics of the Asymmetric Votex Wake behind a von Karman Ogive at High Incidence”, International Journal of Flow Control 5(1):59-78.
【7】Cornelius Driver. (2013), “WIND-TUNNEL INVESTIGATION AT A MACE NUMBER OF 2.01 OF FOREBODY STRAKES FOR IMPROVING DIRECTIONAL STABILITY OF SUPERSONIC AIRCRAFT”, NASA Latzgley Research Center Hampton, VA. US.
【8】David F. Fisher, Daniel G. Murri and Wendy R Lanser. (1996), “Effect of Actuated Forebody Strakes on the Forebody Aerodynamics of the NASA F-18 HARV”, NASA Technical Memorandum 4774. US.
【9】Scott M. Murman, Yehia M. Rizk, Russell M. Cummings and Lewis B. Schiff. (1999), “Computational investigation of slot blowing for fuselage forebody flow control”, Aircraft Design 2(1999), 45-63.
【10】Takashi Matsuno, Hiromitsu Kawazoe, Robert C. Nelson, Thomas C. Corke. (2008), “FOREBODY VORTEX CONTROL ON HIGH PERFORMANCE AIRCRAFT USING PWMCONTROLLED PLASMA ACTUATORS”, 26th Congress of International Council of the Aeronautical Sciences, USA.
【11】William A. Moore, Gary E. Erickson, Dale T. Lorincz and Andrew M. Skiw. (1979), “Effects of Forebody, Wing and Wing-Body-LEX Flowfields on High Angle of Attack Aerodynamics”, SAE International, Vol. 88, Section 4: 790860–791108, pp. 3801-3825.
【12】Patrick CHAMPIGNY, Sébastien DECK, Pascal DENIS and SoniaMAGNIANT. (2006), “Numerical Simulation of Forebody Vortices at High Angle of Attack and their Control Using Innovative Systems”, Defense Technical Information Center, USA.
【13】S. Lim, S D Kim and D J Song. (2015), “The influence of Chine nose shapes on a slender body flight vehicle at high angles of attack”, Proceedings of the Institution of Mechanical Engineering, Part G:Journal of Aerospace Engineering, Volume 226, Issue 2.
【14】Matthew J. O’Rourke, John N. Ralston, Stefan J. Kloc and Kevin J. Langan. (2015), “Development of a Conformal Pneumatic Forebody Control For Next-Generation Fighters”, AIAA Paper 96-0786.
【15】Reynolds, O. (1895), "On The Dynamical Theory of Incompressible Viscous Fluids and The Determination of The Criterion." Proceedings of the Royal Society London. A, Volume 186, pp. 123-164. doi: 10.1098/rsta.1895.0004.
【16】Kleinstreuer, C. (1997), "Engineering Fluid Dynamics: An Interdisciplinary Systems Approach." Cambridge University Press. ISBN 978-0-52-101917-0.
【17】Menter, F. (1994), “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Volume 32(8), pp. 1598-1605.
【18】Mike C. Fox and Dana K. Forrest. (1993), “Supersonic Aerodynamic Characteristics of an Advanced F-16 Derivative Aircraft Configuration”, NASA Technical Papper 3355. US.
【19】1976 standard Atmosphere Calculator, (1999). Retrieved from http://www.digitaldutch.com/atmoscalc/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top