吳昭其。1987。台灣的蔬菜二。渡假出版有限公司。台北市,台灣。P77。
何敏杏。2021。NC乙醇萃取物對脂多糖誘導之RAW264.7巨噬細胞的抗發炎效果。輔仁大學食品科學系碩士論文。新北市。台灣。宋紹菱。2021。LC萃取液改善高脂飲食誘導小鼠非酒精性脂肪肝病之效果。輔仁大學食品科學系碩士論文。新北市。台灣。李耀昌、陳慶曰。2005。高解析傅立葉轉換紅外光譜顯微術之原理與應用。科儀新知,149,20-28。新竹市。台灣。
黃文雄。1998。儀器總覽─材料分析儀器。行政院國家科學委員會精密儀器發展中心。新竹市。台灣。
黃郡瑋。2011。絲瓜機能性成分分析暨其抗氧化及抗發炎之研究。輔仁大學食品科學系碩士論文。新北市。台灣。農業部。2009。絲瓜分類。https://kmweb.moa.gov.tw/subject/subject.php?id=24750。
戴順發、黃祥益。2006。絲瓜雜交一代新品種─高雄2號(秋綠)簡介。農政與農情,163,75-78。
Abirami, M. S., Indhumathy, R., Devi, G. S., Kumar, D. S., Sudarvoli, M., & Nandini, R. (2011). Evaluation of the wound healing and antiinflammatory activity of whole plant of Luffa cylindrica (Linn) in rats. Pharmacologyonline, 3, 281-285.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877.
Akther, F., Rahman, A., Proma, J. J., Kabir, Z., Paul, P. K., & Rahmatullah, M. (2014). Methanolic extract of Luffa cylindrica fruits show anti hyperglycemic potential in Swiss Albino mice. Advances in Natural and Applied Sciences, 8, 62-65.
Al-Snafi, A. E. (2019). Constituents and pharmacology of Luffa cylindrica-A review. IOSR Journal of Pharmacy, 9(9), 68-79.
Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315.
Ayeleso, T. B., Matumba, M. G., & Mukwevho, E. (2017). Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1915.
Azeez, M. A., Bello, O. S., & Adedeji, A. O. (2013). Traditional and medicinal uses of Luffa cylindrica: a review. Journal of Medicinal Plants Studies, 1(5), 102-111.
Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. Rsc Advances, 5(35), 27540-27557.
Balakrishnan, N., & Sharma, A. (2013). Preliminary phytochemical and pharmacological activities of Luffa cylindrica L. fruit. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 113-116.
Barrett, A. J., & McDonald, J. K. (1986). Nomenclature: protease, proteinase and peptidase. Biochemical Journal, 237(3), 935.
Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agricultural and Food Chemistry, 54(5), 1680-1686.
Borghi, S. M., Mizokami, S. S., Pinho-Ribeiro, F. A., Fattori, V., Crespigio, J., Clemente-Napimoga, J. T., Napimoga, M. H., Pitol, D. L., Issa, J. P. M., Fukada, S. Y., Casagrande, R., & Verri Jr, W. A. (2018). The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. The Journal of Nutritional Biochemistry, 53, 81-95.
Brito, B., & Vaillant, F. (2012). Enzymatic liquefaction of cell-walls from kent and tommy atkins mango fruits. International Journal of Food Science and Nutrition Engineering, 2, 76-84.
Cameron, D. K., & Wang, Y. J. (2006). Application of protease and high‐intensity ultrasound in corn starch isolation from degermed corn flour. Cereal Chemistry, 83(5), 505-509.
Campos, F. M., Couto, J. A., Figueiredo, A. R., Tóth, I. V., Rangel, A. O., & Hogg, T. A. (2009). Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. International Journal of Food Microbiology, 135(2), 144-151.
Cao, Y., & Tan, H. (2002). Effects of cellulase on the modification of cellulose. Carbohydrate Research, 337(14), 1291-1296.
Cattel, L., Balliano, G., Caputo, O., & Viola, F. (1981). Biosynthesis of cucurbitacins in Bryonia dioica seedlings. Planta Medica, 41(04), 328-336.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3).
Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A., & Qiu, S. X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports, 22(3), 386-399.
Chou, L. H., Liu, H. L., & Kao, T. H. (2016). Effect of micronization process on the functional component content and anti-inflammatory activity of Luffa cylindrical peel. Journal of Functional Foods, 27, 150-159.
Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11(7), 254-262.
Clifford, M. (2001). Appendix 1: A nomenclature for phenols with special reference to tea. Critical Reviews in Food Science and Nutrition, 41(5), 393.
da Rocha Galucio, N. C., de Araújo Moysés, D., Pina, J. R. S., Marinho, P. S. B., Júnior, P. C. G., Cruz, J. N., Vale, V.V., Khayat A.S., & do Rosario Marinho, A. M. (2022). Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. Arabian Journal of Chemistry, 15(2), 103589.
Dai, S., Wang, C., Zhao, X., Ma, C., Fu, K., Liu, Y., Peng, C & Li, Y. (2022). Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacological Research, 106587.
De Oliveira, N. C., Sarmento, M. S., Nunes, E. A., Porto, C. M., Rosa, D. P., Bona, S. R., Rodrigues, G., Marroni, N. P., Pereira, P., Picada, J. N., Ferraz, A. B. F., Thiesen F. V., & Da Silva, J. (2012). Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food and Chemical Toxicology, 50(5), 1208-1214.
Du, Q., Xu, Y., Li, L., Zhao, Y., Jerz, G., & Winterhalter, P. (2006). Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem. Journal of Agricultural and Food Chemistry, 54(12), 4186-4190.
Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774.
Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutrition Research Reviews, 13(1), 79-106.
Ebrahimzadeh, M. A., Nabavi, S. M., & Nabavi, S. F. (2009). Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. Pakistan Journal of Biological Sciences: PJBS, 12(12), 934-938.
El-Gengaihi, S. O. U. A. D., Abd El-Hamid, S. R., & Kamel, A. M. (2009). Anti-inflammatory effect of some cucurbitaceous plants. Herba polonica, 55(4), 119-126.
Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73(2), 627-650.
Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do-Valle, R. M., & Spinelli, A. (2001). Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Report, 6(4), 243-250.
García-Carreño, F. L. (1992). Protease inhibition in theory and practice. Biotechnology Education, 3(4), 145-150.
Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813-8826.
Gil, M. I., Ferreres, F., & Tomás-Barberán, F. A. (1999). Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. Journal of Agricultural and Food Chemistry, 47(6), 2213-2217.
Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231-258.
Guo, Z., Lin, D., Guo, J., Zhang, Y., & Zheng, B. (2017). In vitro antioxidant activity and in vivo anti-fatigue effect of sea horse (Hippocampus) peptides. Molecules, 22(3), 482.
Harada, O., Lysenko, E. D., & Preston, K. R. (2000). Effects of commercial hydrolytic enzyme additives on Canadian short process bread properties and processing characteristics. Cereal Chemistry, 77(1), 70-76.
Haralampidis, K., Trojanowska, M., & Osbourn, A. E. (2002). Biosynthesis of triterpenoid saponins in plants. History and Trends in Bioprocessing and Biotransformation, 31-49.
Hazra, M., KunduSen, S., Bhattacharya, S., Haldar, P. K., Gupta, M., & Mazumder, U. K. (2011). Evaluation of hypoglycemic and antihyperglycemic effects of Luffa cylindrica fruit extract in rats. Journal of Advanced Pharmacy Education & Research, 2, 138-46.
Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584.
Herrera, T., Navarro del Hierro, J., Fornari, T., Reglero, G., & Martin, D. (2019). Acid hydrolysis of saponin‐rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin‐rich extracts and other bioactive compounds. Journal of the Science of Food and Agriculture, 99(6), 3157-3167.
Hider, R. C., Liu, Z. D., & Khodr, H. H. (2001). Metal chelation of polyphenols. Methods in Enzymology, 335, 190-203. Academic Press.
Hou, W., Li, Y., Zhang, Q., Wei, X., Peng, A., Chen, L., & Wei, Y. (2009). Triterpene acids isolated from Lagerstroemia speciosa leaves as α‐glucosidase inhibitors. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(5), 614-618.
Hour, T. C., Liang, Y. C., Chu, I. S., & Lin, J. K. (1999). Inhibition of eleven mutagens by various tea extracts, (-)epigallocatechin-3-gallate, gallic acid and caffeine. Food and Chemical Toxicology, 37(6), 569-579.
Inze, D., & Van Montagu, M. (1995). Oxidative stress in plants. Current Opinion in Biotechnology, 6(2), 153-158.
Iqbal, M., & Zafar, S. I. (1993). The use of fibrous network of matured dried fruit of Luffa aegyptica as immobilizing agent. Biotechnology techniques, 7(1), 15-18.
Iwashina, T. (2000). The structure and distribution of the flavonoids in plants. Journal of Plant Research, 113(3), 287.
Jiang, P. L., Chien, M. Y., Sheu, M. T., Huang, Y. Y., Chen, M. H., Su, C. H., & Liu, D. Z. (2014). Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes. BioMed Research International, 2014.
Kanwal, W., Syed, A. W., Salman, A., & Mohtasheem, H. M. (2013). Antiemetic and anti-inflammaotry activity of fruit peel of Luffa cylindrica (L.) Roem. Journal of Ethnobiology and Traditional Medicine, 118, 258-63.
Kao, T. H., Huang, C. W., & Chen, B. H. (2012). Functional components in Luffa cylindrica and their effects on anti-inflammation of macrophage cells. Food Chemistry, 135(2), 386-395.
Kawale, R., Bajpai, N., & Mangtani, N. (2020). A review on cosmeceutical perspective of luffa cylindrica. World Journal of Pharmaceutical Research, 9(8), 407-422.
Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48, 412-422.
Khan, M. T., Ejaz, U., & Sohail, M. (2020). Evaluation of Factors Affecting Saccharification of Sugarcane Bagasse Using Cellulase Preparation from a Thermophilic Strain of Brevibacillus sp. Current Microbiology, 77, 2422-2429.
Kiliç, I., & Yeşiloğlu, Y. (2013). Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 719-724.
Kiokias, S., Varzakas, T., & Oreopoulou, V. (2008). In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Critical Reviews in Food Science and Nutrition, 48(1), 78-93.
Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351.
Kuddus, M., & Aguilar, C. N. (Eds.). (2021). Value-Addition in Food Products and Processing Through Enzyme Technology. Academic Press.
Krygier, K., Sosulski, F., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. Journal of Agricultural and Food Chemistry, 30(2), 330-334.
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.
Kupchan, S. M., Smith, R. M., Aynehchi, Y., & Maruyama, M. (1970). Tumor inhibitors. LVI. Cucurbitacins O, P, and Q, the cytotoxic principles of Brandegea bigelovii. The Journal of Organic Chemistry, 35(9), 2891-2894.
Lin, Y., Kotakeyama, Y., Li, J., Pan, Y., Matsuura, A., Ohya, Y., Yoshida, M., Xiang, L., & Qi, J. (2019). Cucurbitacin B exerts antiaging effects in yeast by regulating autophagy and oxidative stress. Oxidative Medicine and Cellular Longevity, 2019.
Maamoun, A. A., El-Akkad, R. H., & Farag, M. A. (2021). Mapping metabolome changes in Luffa aegyptiaca Mill fruits at different maturation stages via MS-based metabolomics and chemometrics. Journal of Advanced Research, 29, 179-189.
Mathew, S., & Abraham, T. E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94(4), 520-528.
Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 52, 5790-5798.
McDonald, A. G., & Tipton, K. F. (2023). Enzyme nomenclature and classification: The state of the art. The FEBS journal, 290(9), 2214-2231.
Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043.
Moreno, J., Gonzales, M., Zúñiga, P., Petzold, G., Mella, K., & Munoz, O. (2016). Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innovative Food Science & Emerging Technologies, 36, 112-119.
Mudnic, I., Modun, D., Rastija, V., Vukovic, J., Brizic, I., Katalinic, V., Kozina, B., Medic-Saric, M., & Boban, M. (2010). Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chemistry, 119(3), 1205-1210.
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.
Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054
Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309-330.
Ogbonna, J. C., Tomiyama, S., & Tanaka, H. (1996). Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochemistry, 31(8), 737-744.
Orhan, F., Gulluce, M., Ozkan, H., & Alpsoy, L. (2013). Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chemistry, 141(1), 366-372.
Patel, S. B., & Ghane, S. G. (2021). Phyto-constituents profiling of Luffa echinata and in vitro assessment of antioxidant, anti-diabetic, anticancer and anti-acetylcholine esterase activities. Saudi Journal of Biological Sciences, 28(7), 3835-3846.
Peters, R. R., Saleh, T. F., Lora, M., Patry, C., de Brum-Fernandes, A. J., Farias, M. R., & Ribeiro-do-Valle, R. M. (1999). Anti-inflammatory effects of the products from Wilbrandia ebracteata on carrageenan-induced pleurisy in mice. Life Sciences, 64(26), 2429-2437.
Pollier, J., & Goossens, A. (2012). Oleanolic acid. Phytochemistry, 77, 10-15.
Price, K. R., Johnson, I. T., Fenwick, G. R., & Malinow, M. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. Critical Reviews in Food Science & Nutrition, 26(1), 27-135.
Ratnasari, N., Walters, M., & Tsopmo, A. (2017). Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon, 3(7).
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
Robbins, R. J. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887.
Saaby, L., Jäger, A. K., Moesby, L., Hansen, E. W., & Christensen, S. B. (2011). Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytotherapy Research, 25(2), 195-201.
Santos, J. S., Brizola, V. R. A., & Granato, D. (2017). High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chemistry, 214, 515-522.
Sharma, A., Tewari, R., Rana, S. S., Soni, R., & Soni, S. K. (2016). Cellulases: classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology, 179, 1346-1380.
Shibuya, M., Adachi, S., & Ebizuka, Y. (2004). Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron, 60(33), 6995-7003.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Siriwardhana, N., Kim, K. N., Lee, K. W., Kim, S. H., Ha, J. H., Song, C. B., Lee, J. B., & Jeon, Y. J. (2008). Optimisation of hydrophilic antioxidant extraction from Hizikiafusiformis by integrating treatments of enzymes, heat and pH control. International Journal of Food Science & Technology, 43(4), 587-596.
Somova, L. O., Nadar, A., Rammanan, P., & Shode, F. O. (2003). Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine, 10(2-3), 115-121.
Sørensen, A. D. M., Villeneuve, P., & Jacobsen, C. (2017). Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology, 119(6), 1600276.
Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268-3295.
Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832-844
Sun, A., Xu, X., Lin, J., Cui, X., & Xu, R. (2015). Neuroprotection by saponins. Phytotherapy Research, 29(2), 187-200.
Tanobe, V. O., Sydenstricker, T. H., Munaro, M., & Amico, S. C. (2005). A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing, 24(4), 474-482.
Tian, S., Shi, Y., Yu, Q., & Upur, H. (2010). Determination of oleanolic acid and ursolic acid contents in Ziziphora clinopodioides Lam. by HPLC method. Pharmacognosy Magazine, 6(22), 116.
Tong, H. H., Wu, H. B., Zheng, Y., Xi, J., Chow, A. H., & Chan, C. K. (2008). Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. International Journal of Pharmaceutics, 355(1-2), 195-202.
van Acker, S. A., de Groot, M. J., van den Berg, D. J., Tromp, M. N., Donné-Op den Kelder, G., van der Vijgh, W. J., & Bast, A. (1996). A quantum chemical explanation of the antioxidant activity of flavonoids. Chemical Research in Toxicology, 9(8), 1305-1312.
Vellapandian, C. (2022). Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Applied Biochemistry and Biotechnology, 194(9), 4018-4032.
Vierhuis, E., Servili, M., Baldioli, M., Schols, H. A., Voragen, A. G., & Montedoro. (2001). Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. Journal of Agricultural and Food Chemistry, 49(3), 1218-1223.
Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.
Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Science and Technology, 43(9), 1387-1393.
Wang, X., Ye, X. L., Liu, R., Chen, H. L., Bai, H., Liang, X., Zhang, X. D., Wang, Z., Li, W. L., & Hai, C. X. (2010). Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chemico-Biological Interactions, 184(3), 328-337.
Wina, E., Muetzel, S., & Becker, K. (2005). The impact of saponins or saponin-containing plant materials on ruminant production A Review. Journal of Agricultural and Food Chemistry, 53(21), 8093-8105.
Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173-1183.
Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60-69.
Yang, Z., Cao, L., Li, Y., Zhang, M., Zeng, F., & Yao, S. (2020). Effect of pH on hemicellulose extraction and physicochemical characteristics of solids during hydrothermal pretreatment of eucalyptus. BioResources, 15(3), 6627-6635.
Yadav, R., Yadav, B. S., & Yadav, R. B. (2017). Phenolic profile and antioxidant activity of thermally processed sponge gourd (Luffa cylindrica) as studied by using high performance thin layer chromatography (HPTLC). International Journal of Food Properties, 20(9), 2096-2112.