跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奕辰
研究生(外文):LIN, I-CHEN
論文名稱:酵素輔助萃取方法對絲瓜中機能性成分含量及抗氧化活性之影響
論文名稱(外文):Effect of different enzyme assisted extraction methods on contents of functional components and antioxidant activities in Luffa cylindrica
指導教授:高彩華
指導教授(外文):KAO, TSAI-HUA
口試委員:高彩華劉滿海許博揚
口試委員(外文):KAO, TSAI-HUALIU, MAN-HAIHSU, BO-YANG
口試日期:2023-10-07
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:112
中文關鍵詞:圓筒絲瓜酵素輔助萃取酚酸抗氧化活性
外文關鍵詞:Luffa cylindricaenzyme assisted extractionphenolic acidsantioxidant activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酵素輔助萃取(Enzyme assisted extraction)做為新穎的綠色萃取技術,應用於各種工業或是取代傳統溶劑萃取以獲得機能性成分。圓筒絲瓜(Luffa cylindriac)在台灣被廣泛耕種,並成為國民日常飲食中常見的食用蔬菜,許多文獻指出絲瓜富含多種機能性成分,包含酚酸、類黃酮、齊墩果酸及葫蘆素等,並具有良好的抗氧化活性,然而鮮少有研究探討酵素輔助萃取對絲瓜中機能性成分含量及抗氧化活性之影響。因此本研究旨在探討是使用不同商業酵素進行酵素輔助萃取能否提升絲瓜中機能性成分並評估其最佳劑量,在純化後探討酵素輔助萃取對酚酸含量的影響及其抗氧化活性。結果顯示,三種商業酵素在工作劑量5% (w/w)下進行酵素輔助萃取時能獲得最高的總酚及總類黃酮含量且顯著高於水萃取組,又以使用FoodProⓇ 30L的組別顯著高於其他酵素,分別得到總酚3.39±0.26 mg GAE/g以及總類黃酮0.36±0.00 mg QE/g。掃描式電子顯微鏡的結果顯示經FoodProⓇ CBL處理後,絲瓜纖維結構被破壞。傅立葉轉換紅外線吸收光譜儀的結果顯示,纖維素酶透過破壞纖維素中的C=O及C-O-C等官能基達到水解的效果。純化後以使用5% (w/w) FoodProⓇ CBL的組別能獲得最高的對-香豆酸(p-coumaric acid)及阿魏酸(ferulic acid),分別為11.85±0.42 mg/g purified extract及11.96±0.38 mg/g purified extract,然而與純化水萃取物相比沒有檢測到咖啡酸。在抗氧化活性的部分,純化液中以使用5% (w/w) FoodProⓇ CBL的組別具有最佳的抗氧化活性,分別為67.4% DPPH自由基清除能力、125.47 µM TE/mL TECA值以及215.74 µM TE/mL FRAP還原能力。上述結果表示酵素輔助萃取能有效提升絲瓜果肉萃取物中的機能性成分含量並做為具有潛力的抗氧化劑來源。
Enzyme assisted extraction (EAE) is a novel green extraction technology that is used in various industries or to replace traditional solvent extraction to obtain functional components. Luffa cylindrica is widely cultivated in Taiwan and has become a common edible vegetable in the daily diet of the people. Previous studies reported that luffa is rich in various functional components, including phenolic acids, flavonoids, oleanolic acid, and cucurbitacin, and has significant antioxidant activity. However, few studies have been investigated on the effect of EAE on Luffa cylindrica. Therefore, this study aimed to investigate EAE with different commercial enzymes on the functional components in luffa and evaluate the optimal dose, and investigate the effect of EAE on the phenolic acid content and the antioxidant activity of luffa after purification. The results showed that the highest total phenolics and total flavonoids content were obtained when the three commercial enzymes were subjected to EAE at a working dose of 5% (w/w), which was significantly higher than the water extraction group, and the group using FoodProⓇ 30L was significantly higher than the others enzyme, with total phenolics 3.39±0.26 mg GAE/g and total flavonoids of 0.36±0.00 mg QE/g, respectively. SEM results showed that the structure of luffa fibers was damaged after treatment with FoodProⓇ CBL, and FTIR results showed that cellulase hydrolyzed cellulose by destroying its functional groups such as C=O and C-O-C. After purification, the highest p-coumaric acid and ferulic acid were obtained in the group using 5% (w/w) FoodProⓇ CBL, 11.85±0.42 mg/g purified extract and 11.96±0.38 g/g mg/g purified extract, respectively. However, there is no caffeic acid was detected compared to the purified water extract. In the result of antioxidant activity, the best antioxidant activity was observed in the purified extract which used 5% (w/w) FoodProⓇ CBL with 67.4% DPPH free radical scavenging effect, 125.47 µM TE/mL TECA value and 215.74 µM TE/mL FRAP reducing power. These results indicate that enzyme assisted extraction was shown to be effective in increasing the functional contents in luffa pulp extract and as a potential source of antioxidants.
第一章、緒言 1
第二章、文獻回顧 3
一、圓筒絲瓜簡介 3
(一) 生長分佈 3
(二) 基本成分 3
(三) 植化素 4
(四) 生理活性及應用 5
1 抗氧化活性 5
2 抗發炎活性 5
3 抗高血糖活性 6
4 創傷癒合活性 7
5 固定化載體 7
二、酚類簡介 7
(一) 基本結構 8
(二) 酚酸 8
1 基本結構與分佈 8
2 生理活性 9
(三) 類黃酮 11
1 基本結構及分佈 11
2 生理活性 11
(四) 抗氧化機制 12
1 酚酸 13
2 類黃酮 13
三、皂苷簡介 14
(一) 基本結構 14
(二) 生物合成途徑 15
(三) 齊墩果酸 15
1 基本結構與分佈 15
2 生理活性 15
(四) 葫蘆素 17
1 基本結構與分佈 17
2 生物合成途徑 17
3 生理活性 17
(五) 抗氧化機制 18
四、水解酵素簡介 19
(一) 酵素的分類 19
(二) 纖維素酶 20
1 纖維素酶的種類 20
2 纖維素酶的應用 21
(三) 蛋白酶 21
1 蛋白酶的種類 21
2 蛋白酶的應用 22
五、抗氧化系統簡介 23
(一) 自由基與活性氧的危害 23
(二) 酵素性系統 23
(三) 非酵素性系統 24
(四) 抗氧化活性分析 24
第三章、材料與方法 25
一、研究架構 25
二、材料與儀器 26
(一) 原料 26
(二) 化學試藥 26
(三) 商業酵素 27
(四) 儀器設備 27
三、實驗方法 30
(一) 酵素輔助萃取最適條件之評估 30
1 不同萃取條件之絲瓜萃取液製備 30
2 絲瓜萃取液機能性成分分析 31
3 酵素處理前後絲瓜之物化性質變化 33
(二) 絲瓜萃取液之純化及機能性成分分析 34
1 萃取液製備 34
2 皂苷之純化與分析 34
3 酚酸之純化與分析 36
(三) 絲瓜純化液之抗氧化活性分析 39
1 DPPH 自由基清除能力 39
2 TEAC 值 40
3 FRAP 還原能力 41
4 亞鐵離子螯合能力 42
(四) 統計分析 42
第四章、結果與討論 43
一、酵素輔助萃取最適條件之評估 43
(一) 不同酵素劑量對絲瓜萃取液中機能性成分之影響 43
1 以CBL 評估酵素使用劑量 43
2 酵素種類與劑量對萃取液中總酚及總類黃酮含量之影響 44
(二) 不同酵素處理後絲瓜果肉之物化性質變化 45
1 表面結構檢測 45
2 表面官能基檢測 46
(三) 酵素輔助萃取之最適酵素種類及工作劑量歸納 47
二、絲瓜萃取液之純化及機能性成分分析 47
(一) 皂苷之檢測 47
1 HPLC 等度沖提之皂苷分析條件評估 48
2 等度沖提條件下之皂苷鑑定結果 48
3 HPLC 梯度沖提之葫蘆素B 分析條件評估 49
4 梯度沖提條件下之葫蘆素B 鑑定結果 50
5 討論 50
(二) 酚酸之檢測 51
1 酸化對純化結果之影響 51
2 分配次數對純化結果之影響 52
3 酚酸之UPLC-DAD 鑑定結果 52
4 酚酸成分之定量 54
5 討論 54
(三) 總酚及總類黃酮之檢測 55
(四) 純化後機能性成分含量與物化性質變化之歸納 56
三、絲瓜純化液之抗氧化活性分析 56
(一) DPPH 自由基清除能力 57
(二) TECA 值 58
(三) FRAP 鐵離子還原抗氧化能力 60
(四) 亞鐵離子螯合能力 61
第五章、結論 63
第六章、參考文獻 102
吳昭其。1987。台灣的蔬菜二。渡假出版有限公司。台北市,台灣。P77。
何敏杏。2021。NC乙醇萃取物對脂多糖誘導之RAW264.7巨噬細胞的抗發炎效果。輔仁大學食品科學系碩士論文。新北市。台灣。
宋紹菱。2021。LC萃取液改善高脂飲食誘導小鼠非酒精性脂肪肝病之效果。輔仁大學食品科學系碩士論文。新北市。台灣。
李耀昌、陳慶曰。2005。高解析傅立葉轉換紅外光譜顯微術之原理與應用。科儀新知,149,20-28。新竹市。台灣。
黃文雄。1998。儀器總覽─材料分析儀器。行政院國家科學委員會精密儀器發展中心。新竹市。台灣。
黃郡瑋。2011。絲瓜機能性成分分析暨其抗氧化及抗發炎之研究。輔仁大學食品科學系碩士論文。新北市。台灣。
農業部。2009。絲瓜分類。https://kmweb.moa.gov.tw/subject/subject.php?id=24750。
戴順發、黃祥益。2006。絲瓜雜交一代新品種─高雄2號(秋綠)簡介。農政與農情,163,75-78。
Abirami, M. S., Indhumathy, R., Devi, G. S., Kumar, D. S., Sudarvoli, M., & Nandini, R. (2011). Evaluation of the wound healing and antiinflammatory activity of whole plant of Luffa cylindrica (Linn) in rats. Pharmacologyonline, 3, 281-285.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877.
Akther, F., Rahman, A., Proma, J. J., Kabir, Z., Paul, P. K., & Rahmatullah, M. (2014). Methanolic extract of Luffa cylindrica fruits show anti hyperglycemic potential in Swiss Albino mice. Advances in Natural and Applied Sciences, 8, 62-65.
Al-Snafi, A. E. (2019). Constituents and pharmacology of Luffa cylindrica-A review. IOSR Journal of Pharmacy, 9(9), 68-79.
Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315.
Ayeleso, T. B., Matumba, M. G., & Mukwevho, E. (2017). Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1915.
Azeez, M. A., Bello, O. S., & Adedeji, A. O. (2013). Traditional and medicinal uses of Luffa cylindrica: a review. Journal of Medicinal Plants Studies, 1(5), 102-111.
Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. Rsc Advances, 5(35), 27540-27557.
Balakrishnan, N., & Sharma, A. (2013). Preliminary phytochemical and pharmacological activities of Luffa cylindrica L. fruit. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 113-116.
Barrett, A. J., & McDonald, J. K. (1986). Nomenclature: protease, proteinase and peptidase. Biochemical Journal, 237(3), 935.
Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agricultural and Food Chemistry, 54(5), 1680-1686.
Borghi, S. M., Mizokami, S. S., Pinho-Ribeiro, F. A., Fattori, V., Crespigio, J., Clemente-Napimoga, J. T., Napimoga, M. H., Pitol, D. L., Issa, J. P. M., Fukada, S. Y., Casagrande, R., & Verri Jr, W. A. (2018). The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. The Journal of Nutritional Biochemistry, 53, 81-95.
Brito, B., & Vaillant, F. (2012). Enzymatic liquefaction of cell-walls from kent and tommy atkins mango fruits. International Journal of Food Science and Nutrition Engineering, 2, 76-84.
Cameron, D. K., & Wang, Y. J. (2006). Application of protease and high‐intensity ultrasound in corn starch isolation from degermed corn flour. Cereal Chemistry, 83(5), 505-509.
Campos, F. M., Couto, J. A., Figueiredo, A. R., Tóth, I. V., Rangel, A. O., & Hogg, T. A. (2009). Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. International Journal of Food Microbiology, 135(2), 144-151.
Cao, Y., & Tan, H. (2002). Effects of cellulase on the modification of cellulose. Carbohydrate Research, 337(14), 1291-1296.
Cattel, L., Balliano, G., Caputo, O., & Viola, F. (1981). Biosynthesis of cucurbitacins in Bryonia dioica seedlings. Planta Medica, 41(04), 328-336.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3).
Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A., & Qiu, S. X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports, 22(3), 386-399.
Chou, L. H., Liu, H. L., & Kao, T. H. (2016). Effect of micronization process on the functional component content and anti-inflammatory activity of Luffa cylindrical peel. Journal of Functional Foods, 27, 150-159.
Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11(7), 254-262.
Clifford, M. (2001). Appendix 1: A nomenclature for phenols with special reference to tea. Critical Reviews in Food Science and Nutrition, 41(5), 393.
da Rocha Galucio, N. C., de Araújo Moysés, D., Pina, J. R. S., Marinho, P. S. B., Júnior, P. C. G., Cruz, J. N., Vale, V.V., Khayat A.S., & do Rosario Marinho, A. M. (2022). Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. Arabian Journal of Chemistry, 15(2), 103589.
Dai, S., Wang, C., Zhao, X., Ma, C., Fu, K., Liu, Y., Peng, C & Li, Y. (2022). Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacological Research, 106587.
De Oliveira, N. C., Sarmento, M. S., Nunes, E. A., Porto, C. M., Rosa, D. P., Bona, S. R., Rodrigues, G., Marroni, N. P., Pereira, P., Picada, J. N., Ferraz, A. B. F., Thiesen F. V., & Da Silva, J. (2012). Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food and Chemical Toxicology, 50(5), 1208-1214.
Du, Q., Xu, Y., Li, L., Zhao, Y., Jerz, G., & Winterhalter, P. (2006). Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem. Journal of Agricultural and Food Chemistry, 54(12), 4186-4190.
Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774.
Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutrition Research Reviews, 13(1), 79-106.
Ebrahimzadeh, M. A., Nabavi, S. M., & Nabavi, S. F. (2009). Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. Pakistan Journal of Biological Sciences: PJBS, 12(12), 934-938.
El-Gengaihi, S. O. U. A. D., Abd El-Hamid, S. R., & Kamel, A. M. (2009). Anti-inflammatory effect of some cucurbitaceous plants. Herba polonica, 55(4), 119-126.
Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73(2), 627-650.
Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do-Valle, R. M., & Spinelli, A. (2001). Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Report, 6(4), 243-250.
García-Carreño, F. L. (1992). Protease inhibition in theory and practice. Biotechnology Education, 3(4), 145-150.
Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813-8826.
Gil, M. I., Ferreres, F., & Tomás-Barberán, F. A. (1999). Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. Journal of Agricultural and Food Chemistry, 47(6), 2213-2217.
Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231-258.
Guo, Z., Lin, D., Guo, J., Zhang, Y., & Zheng, B. (2017). In vitro antioxidant activity and in vivo anti-fatigue effect of sea horse (Hippocampus) peptides. Molecules, 22(3), 482.
Harada, O., Lysenko, E. D., & Preston, K. R. (2000). Effects of commercial hydrolytic enzyme additives on Canadian short process bread properties and processing characteristics. Cereal Chemistry, 77(1), 70-76.
Haralampidis, K., Trojanowska, M., & Osbourn, A. E. (2002). Biosynthesis of triterpenoid saponins in plants. History and Trends in Bioprocessing and Biotransformation, 31-49.
Hazra, M., KunduSen, S., Bhattacharya, S., Haldar, P. K., Gupta, M., & Mazumder, U. K. (2011). Evaluation of hypoglycemic and antihyperglycemic effects of Luffa cylindrica fruit extract in rats. Journal of Advanced Pharmacy Education & Research, 2, 138-46.
Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584.
Herrera, T., Navarro del Hierro, J., Fornari, T., Reglero, G., & Martin, D. (2019). Acid hydrolysis of saponin‐rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin‐rich extracts and other bioactive compounds. Journal of the Science of Food and Agriculture, 99(6), 3157-3167.
Hider, R. C., Liu, Z. D., & Khodr, H. H. (2001). Metal chelation of polyphenols. Methods in Enzymology, 335, 190-203. Academic Press.
Hou, W., Li, Y., Zhang, Q., Wei, X., Peng, A., Chen, L., & Wei, Y. (2009). Triterpene acids isolated from Lagerstroemia speciosa leaves as α‐glucosidase inhibitors. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(5), 614-618.
Hour, T. C., Liang, Y. C., Chu, I. S., & Lin, J. K. (1999). Inhibition of eleven mutagens by various tea extracts, (-)epigallocatechin-3-gallate, gallic acid and caffeine. Food and Chemical Toxicology, 37(6), 569-579.
Inze, D., & Van Montagu, M. (1995). Oxidative stress in plants. Current Opinion in Biotechnology, 6(2), 153-158.
Iqbal, M., & Zafar, S. I. (1993). The use of fibrous network of matured dried fruit of Luffa aegyptica as immobilizing agent. Biotechnology techniques, 7(1), 15-18.
Iwashina, T. (2000). The structure and distribution of the flavonoids in plants. Journal of Plant Research, 113(3), 287.
Jiang, P. L., Chien, M. Y., Sheu, M. T., Huang, Y. Y., Chen, M. H., Su, C. H., & Liu, D. Z. (2014). Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes. BioMed Research International, 2014.
Kanwal, W., Syed, A. W., Salman, A., & Mohtasheem, H. M. (2013). Antiemetic and anti-inflammaotry activity of fruit peel of Luffa cylindrica (L.) Roem. Journal of Ethnobiology and Traditional Medicine, 118, 258-63.
Kao, T. H., Huang, C. W., & Chen, B. H. (2012). Functional components in Luffa cylindrica and their effects on anti-inflammation of macrophage cells. Food Chemistry, 135(2), 386-395.
Kawale, R., Bajpai, N., & Mangtani, N. (2020). A review on cosmeceutical perspective of luffa cylindrica. World Journal of Pharmaceutical Research, 9(8), 407-422.
Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48, 412-422.
Khan, M. T., Ejaz, U., & Sohail, M. (2020). Evaluation of Factors Affecting Saccharification of Sugarcane Bagasse Using Cellulase Preparation from a Thermophilic Strain of Brevibacillus sp. Current Microbiology, 77, 2422-2429.
Kiliç, I., & Yeşiloğlu, Y. (2013). Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 719-724.
Kiokias, S., Varzakas, T., & Oreopoulou, V. (2008). In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Critical Reviews in Food Science and Nutrition, 48(1), 78-93.
Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351.
Kuddus, M., & Aguilar, C. N. (Eds.). (2021). Value-Addition in Food Products and Processing Through Enzyme Technology. Academic Press.
Krygier, K., Sosulski, F., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. Journal of Agricultural and Food Chemistry, 30(2), 330-334.
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.
Kupchan, S. M., Smith, R. M., Aynehchi, Y., & Maruyama, M. (1970). Tumor inhibitors. LVI. Cucurbitacins O, P, and Q, the cytotoxic principles of Brandegea bigelovii. The Journal of Organic Chemistry, 35(9), 2891-2894.
Lin, Y., Kotakeyama, Y., Li, J., Pan, Y., Matsuura, A., Ohya, Y., Yoshida, M., Xiang, L., & Qi, J. (2019). Cucurbitacin B exerts antiaging effects in yeast by regulating autophagy and oxidative stress. Oxidative Medicine and Cellular Longevity, 2019.
Maamoun, A. A., El-Akkad, R. H., & Farag, M. A. (2021). Mapping metabolome changes in Luffa aegyptiaca Mill fruits at different maturation stages via MS-based metabolomics and chemometrics. Journal of Advanced Research, 29, 179-189.
Mathew, S., & Abraham, T. E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94(4), 520-528.
Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 52, 5790-5798.
McDonald, A. G., & Tipton, K. F. (2023). Enzyme nomenclature and classification: The state of the art. The FEBS journal, 290(9), 2214-2231.
Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043.
Moreno, J., Gonzales, M., Zúñiga, P., Petzold, G., Mella, K., & Munoz, O. (2016). Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innovative Food Science & Emerging Technologies, 36, 112-119.
Mudnic, I., Modun, D., Rastija, V., Vukovic, J., Brizic, I., Katalinic, V., Kozina, B., Medic-Saric, M., & Boban, M. (2010). Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chemistry, 119(3), 1205-1210.
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.
Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054
Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309-330.
Ogbonna, J. C., Tomiyama, S., & Tanaka, H. (1996). Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochemistry, 31(8), 737-744.
Orhan, F., Gulluce, M., Ozkan, H., & Alpsoy, L. (2013). Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chemistry, 141(1), 366-372.
Patel, S. B., & Ghane, S. G. (2021). Phyto-constituents profiling of Luffa echinata and in vitro assessment of antioxidant, anti-diabetic, anticancer and anti-acetylcholine esterase activities. Saudi Journal of Biological Sciences, 28(7), 3835-3846.
Peters, R. R., Saleh, T. F., Lora, M., Patry, C., de Brum-Fernandes, A. J., Farias, M. R., & Ribeiro-do-Valle, R. M. (1999). Anti-inflammatory effects of the products from Wilbrandia ebracteata on carrageenan-induced pleurisy in mice. Life Sciences, 64(26), 2429-2437.
Pollier, J., & Goossens, A. (2012). Oleanolic acid. Phytochemistry, 77, 10-15.
Price, K. R., Johnson, I. T., Fenwick, G. R., & Malinow, M. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. Critical Reviews in Food Science & Nutrition, 26(1), 27-135.
Ratnasari, N., Walters, M., & Tsopmo, A. (2017). Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon, 3(7).
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
Robbins, R. J. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887.
Saaby, L., Jäger, A. K., Moesby, L., Hansen, E. W., & Christensen, S. B. (2011). Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytotherapy Research, 25(2), 195-201.
Santos, J. S., Brizola, V. R. A., & Granato, D. (2017). High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chemistry, 214, 515-522.
Sharma, A., Tewari, R., Rana, S. S., Soni, R., & Soni, S. K. (2016). Cellulases: classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology, 179, 1346-1380.
Shibuya, M., Adachi, S., & Ebizuka, Y. (2004). Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron, 60(33), 6995-7003.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Siriwardhana, N., Kim, K. N., Lee, K. W., Kim, S. H., Ha, J. H., Song, C. B., Lee, J. B., & Jeon, Y. J. (2008). Optimisation of hydrophilic antioxidant extraction from Hizikiafusiformis by integrating treatments of enzymes, heat and pH control. International Journal of Food Science & Technology, 43(4), 587-596.
Somova, L. O., Nadar, A., Rammanan, P., & Shode, F. O. (2003). Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine, 10(2-3), 115-121.
Sørensen, A. D. M., Villeneuve, P., & Jacobsen, C. (2017). Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology, 119(6), 1600276.
Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268-3295.
Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832-844
Sun, A., Xu, X., Lin, J., Cui, X., & Xu, R. (2015). Neuroprotection by saponins. Phytotherapy Research, 29(2), 187-200.
Tanobe, V. O., Sydenstricker, T. H., Munaro, M., & Amico, S. C. (2005). A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing, 24(4), 474-482.
Tian, S., Shi, Y., Yu, Q., & Upur, H. (2010). Determination of oleanolic acid and ursolic acid contents in Ziziphora clinopodioides Lam. by HPLC method. Pharmacognosy Magazine, 6(22), 116.
Tong, H. H., Wu, H. B., Zheng, Y., Xi, J., Chow, A. H., & Chan, C. K. (2008). Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. International Journal of Pharmaceutics, 355(1-2), 195-202.
van Acker, S. A., de Groot, M. J., van den Berg, D. J., Tromp, M. N., Donné-Op den Kelder, G., van der Vijgh, W. J., & Bast, A. (1996). A quantum chemical explanation of the antioxidant activity of flavonoids. Chemical Research in Toxicology, 9(8), 1305-1312.
Vellapandian, C. (2022). Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Applied Biochemistry and Biotechnology, 194(9), 4018-4032.
Vierhuis, E., Servili, M., Baldioli, M., Schols, H. A., Voragen, A. G., & Montedoro. (2001). Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. Journal of Agricultural and Food Chemistry, 49(3), 1218-1223.
Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.
Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Science and Technology, 43(9), 1387-1393.
Wang, X., Ye, X. L., Liu, R., Chen, H. L., Bai, H., Liang, X., Zhang, X. D., Wang, Z., Li, W. L., & Hai, C. X. (2010). Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chemico-Biological Interactions, 184(3), 328-337.
Wina, E., Muetzel, S., & Becker, K. (2005). The impact of saponins or saponin-containing plant materials on ruminant production A Review. Journal of Agricultural and Food Chemistry, 53(21), 8093-8105.
Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173-1183.
Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60-69.
Yang, Z., Cao, L., Li, Y., Zhang, M., Zeng, F., & Yao, S. (2020). Effect of pH on hemicellulose extraction and physicochemical characteristics of solids during hydrothermal pretreatment of eucalyptus. BioResources, 15(3), 6627-6635.
Yadav, R., Yadav, B. S., & Yadav, R. B. (2017). Phenolic profile and antioxidant activity of thermally processed sponge gourd (Luffa cylindrica) as studied by using high performance thin layer chromatography (HPTLC). International Journal of Food Properties, 20(9), 2096-2112.
電子全文 電子全文(網際網路公開日期:20281030)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊