跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/13 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱馨霈
研究生(外文):CHIU,HSIN-PEI
論文名稱:檸檬烯對HaCat細胞和DNCB誘導的BALB/c小鼠異位性皮膚炎的影響
論文名稱(外文):Effects of limonene on HaCat cells and DNCB-induced atopic dermatitis in BALB/c mice
指導教授:洪啓峯
指導教授(外文):HUNG, CHI-FENG
口試委員:方嘉佑王素珍
口試日期:2024-06-20
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生物醫學暨藥學研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:81
中文關鍵詞:檸檬烯異位性皮膚炎角質細胞
外文關鍵詞:MAPKNF-κBJAK/STATlimoneneatopic dermatitiskeratinocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
異位性皮膚炎 (Atopic dermatitis, AD)是一種慢性且持續性的發炎性皮膚疾病,伴有瘙癢和發紅等症狀。AD可發生於任何年齡,與患者的生活品質密切相關,且患病率正持續增加,因此已成為嚴重的健康問題。緩解瘙癢被認為是AD的一種治療方法,使用類固醇治療會產生皮膚屏障變薄等副作用。因此需要進行更多的研究來開發更安全的治療方法。檸檬烯 (limonene)是一種天然存在的單環單萜,廣泛用於食品、化妝品及藥品中。存在於柑橘類果皮油中,是柑橘皮中最主要也是最有生物活性的化合物。在許多研究中發現,檸檬烯具有包括抗氧化、抗糖尿病、抗癌、抗發炎、免疫調節、抗纖維化、抗基因毒性等作用。因此,本篇研究的目的為針對其抗發炎潛力,探討檸檬烯對於異位性皮膚炎是否有治療效果。透過體外試驗,我們發現檸檬烯可以抑制由TNF-α/IFN-γ刺激人類角質細胞 (HaCat)所誘導的細胞激素 (cytokines)及化學趨化因子 (chemokines)之表現,並降低MAPK、NF-κB及JAK/STAT路徑的活化。在體內試驗中,利用二硝基氯苯 (2,4-dinitrochlorobenzene, DNCB)誘導異位性皮膚炎之小鼠模型,發現檸檬烯可減輕DNCB誘導的皮膚屏障損傷及搔癢反應,也可降低經皮水分散失、紅斑、耳朵厚度等生理參數。除此之外,這些作用和抗發炎有關,因為檸檬烯降低了DNCB增加的促發炎細胞激素的mRNA表現量。本篇研究證明了檸檬烯的抗發炎效果對於異位性皮膚炎具有治療的潛力。
Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disorder characterized by itching and redness. AD can occur at any age, is closely related to the quality of life of patients, and the prevalence rate is continuously increasing, so it has become a serious health problem. Relief of itching is considered as a treatment for AD. Treatment with steroids has side effects such as thinning of the skin barrier. Therefore, more research is needed to develop safer treatments. Limonene is a naturally occurring monocyclic monoterpene widely used in food, cosmetics and pharmaceuticals. It is present in citrus peel oil and is the main and most active compound in citrus peel. In many studies, limonene has been found to have various biological activities, including anti-oxidative, anti-diabetic, anti-cancer, anti-inflammatory, immunomodulatory, anti-fibrotic, and anti-genotoxic effects. As a result, the purpose of this study is to explore whether limonene has a therapeutic effect on atopic dermatitis based on its anti-inflammatory potential. Through in vitro studies, we found that limonene can inhibit the expression of cytokines and chemokines induced by TNF-α/IFN-γ stimulation of human keratinocytes (HaCat), and reduce the phosphorylation of MAPK, NF-κB and JAK/STAT signaling pathway. In vivo studies, we used a mouse model of atopic dermatitis induced by dinitrochlorobenzene (2,4-dinitrochlorobenzene, DNCB). The results show that limonene can reduce DNCB-induced skin barrier damage and itching response, and can also reduce physiological parameters such as trans-epidermal water loss (TEWL), erythema and ear thickness. In addition, limonene can also reduce the mRNA expression of pro-inflammatory cytokines induced by DNCB. In this study, we demonstrated that the anti-inflammatory effect of limonene has therapeutic potential in atopic dermatitis.
目錄
第一章 緒論 1
第二章 文獻回顧 2
第一節 皮膚結構 2
第二節 皮膚炎及其病生理分子作用機轉 6
第三節 常見異位性皮膚炎的治療方式 11
第四節 檸檬烯 (limonene) 13
第三章 研究目的 22
第四章 實驗材料與儀器 24
第一節、材料、試劑與藥品 24
第二節、儀器設備 27
第五章 研究方法 28
第一節 體外試驗 (In vitro experiment) 28
第二節 體內試驗 (In vivo experiments) 32
第六章 實驗結果 38
第一節 體外試驗 (In vitro experiment) 38
第二節 體內試驗 (In vivo experiment) 40
第七章 實驗討論 44
第八章 實驗結論 50
第九章 參考文獻 72


1.Xia, T., et al., Network Pharmacology Integrated with Transcriptomics Analysis Reveals Ermiao Wan Alleviates Atopic Dermatitis via Suppressing MAPK and Activating the EGFR/AKT Signaling. Drug Des Devel Ther, 2022. 16: p. 4325-4341.
2.Flohr, C. and J. Mann, New insights into the epidemiology of childhood atopic dermatitis. Allergy, 2014. 69(1): p. 3-16.
3.Avena-Woods, C., Overview of atopic dermatitis. Am J Manag Care, 2017. 23(8 Suppl): p. S115-s123.
4.Moudgil, K.D. and S.H. Venkatesha, The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci, 2022. 24(1): p.95.
5.Fore, J., A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage, 2006. 52(9): p. 24-35.
6.Ibrahim, A.A.E., et al., Functions of the Skin, in Atlas of Dermatology, Dermatopathology and Venereology, B. Smoller and N. Bagherani, Editors. 2020, Springer International Publishing: Cham. p. 1-11.
7.Zaidi, Z. and S.W. Lanigan, Skin: Structure and Function, in Dermatology in Clinical Practice, S.W. Lanigan and Z. Zaidi, Editors. 2010, Springer London: London. p. 1-15.
8.Hsu, Y.C., L. Li, and E. Fuchs, Emerging interactions between skin stem cells and their niches. Nat Med, 2014. 20(8): p. 847-56.
9.Candi, E., R. Schmidt, and G. Melino, The cornified envelope: a model of cell death in the skin. Nature Reviews Molecular Cell Biology, 2005. 6(4): p. 328-340.
10.Chamcheu, J.C., et al., Fisetin, a 3,7,3',4'-Tetrahydroxyflavone Inhibits the PI3K/Akt/mTOR and MAPK Pathways and Ameliorates Psoriasis Pathology in 2D and 3D Organotypic Human Inflammatory Skin Models. Cells, 2019. 8(9): p.1089.
11.Menon, G.K., G.W. Cleary, and M.E. Lane, The structure and function of the stratum corneum. International Journal of Pharmaceutics, 2012. 435(1): p. 3-9.
12.Bryant, R.A. and D.P. Nix, Acute and Chronic Wounds: Current Management Concepts. 2007: Mosby Elsevier.
13.Wong, R., et al., The dynamic anatomy and patterning of skin. Experimental Dermatology, 2016. 25(2): p. 92-98.

14.Yousef H, Alhajj M, Fakoya AO, et al. Anatomy, Skin (Integument), Epidermis. [Updated 2024 Jun 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470464/
15.Nguyen, A.V. and A.M. Soulika, The Dynamics of the Skin's Immune System. Int J Mol Sci, 2019. 20(8): p.1811.
16.Woodley, D.T., Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing. Dermatol Clin, 2017. 35(1): p. 95-100.
17.Rippa, A.L., E.P. Kalabusheva, and E.A. Vorotelyak, Regeneration of Dermis: Scarring and Cells Involved. Cells, 2019. 8(6): p.607.
18.Shirshin, E.A., et al., Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci Rep, 2017. 7(1): p. 1171.
19.Driskell, R.R., et al., Defining dermal adipose tissue. Exp Dermatol, 2014. 23(9): p. 629-31.
20.Nutten, S., Atopic Dermatitis: Global Epidemiology and Risk Factors. Annals of Nutrition and Metabolism, 2015. 66(Suppl. 1): p. 8-16.
21.Berke, R., A. Singh, and M. Guralnick, Atopic dermatitis: an overview. Am Fam Physician, 2012. 86(1): p. 35-42.
22.Yang, G., et al., Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int J Mol Sci, 2020. 21(8): p.2867.
23.Sroka-Tomaszewska, J. and M. Trzeciak, Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J Mol Sci, 2021. 22(8): p.4130.
24.Borgia, F., et al., Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules, 2021. 11(12): p.1843.
25.Huang, I.H., et al., JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front Immunol, 2022. 13: p. 1068260.
26.Usatine, R.P. and M. Riojas, Diagnosis and management of contact dermatitis. Am Fam Physician, 2010. 82(3): p. 249-55.
27.Sebastiani, S., et al., The role of chemokines in allergic contact dermatitis. Arch Dermatol Res, 2002. 293(11): p. 552-9.
28.Novak-Bilić, G., et al., Irritant And Allergic Contact Dermatitis - Skin Lesion Characteristic. Acta Clin Croat, 2018. 57(4): p. 713-720.
29.Humeau, M., K. Boniface, and C. Bodet, Cytokine-Mediated Crosstalk Between Keratinocytes and T Cells in Atopic Dermatitis. Front Immunol, 2022. 13: p. 801579.
30.Brandt, E.B. and U. Sivaprasad, Th2 Cytokines and Atopic Dermatitis. J Clin Cell Immunol, 2011. 2(3): p.110.
31.Luo, J., et al., The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators Inflamm, 2023. 2023: p. 7697699.
32.Yu, L. and L. Li, Potential biomarkers of atopic dermatitis. Front Med (Lausanne), 2022. 9: p. 1028694.
33.Nakahara, T., et al., Basics and recent advances in the pathophysiology of atopic dermatitis. The Journal of Dermatology, 2021. 48(2): p. 130-139.
34.Yang, H., et al., Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci, 2022. 23(17): p.9935.
35.Smith, P., et al., Developing a JAK Inhibitor for Targeted Local Delivery: Ruxolitinib Cream. Pharmaceutics, 2021. 13(7): p.1044.
36.Li, Y., et al., Kaempferol modulates IFN-γ induced JAK-STAT signaling pathway and ameliorates imiquimod-induced psoriasis-like skin lesions. International Immunopharmacology, 2023. 114: p. 109585.
37.Li, G., et al., (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules, 2022. 27(13): p.3985.
38.Jayasinghe, A.M.K., et al., 3-Bromo-4,5-dihydroxybenzaldehyde Isolated from Polysiphonia morrowii Suppresses TNF-α/IFN-γ-Stimulated Inflammation and Deterioration of Skin Barrier in HaCaT Keratinocytes. Mar Drugs, 2022. 20(9): p.563.
39.Lee, H., et al., Skullcapflavone II Suppresses TNF-α/IFN-γ-Induced TARC, MDC, and CTSS Production in HaCaT Cells. Int J Mol Sci, 2021. 22(12): p.6428.
40.Yang, C.C., et al., Effect of Neferine on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. Int J Mol Sci, 2021. 22(15): p.8237.
41.Huang, W.C., et al., Topical Spilanthol Inhibits MAPK Signaling and Ameliorates Allergic Inflammation in DNCB-Induced Atopic Dermatitis in Mice. Int J Mol Sci, 2019. 20(10): p.2490.
42.Wang, Y., et al., Inhibitory Effect of Bisdemethoxycurcumin on DNCB-Induced Atopic Dermatitis in Mice. Molecules, 2022. 28(1): p.293.
43.Park, C.H., et al., Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci, 2020. 21(13): p.4620.
44.Pua, L.J.W., et al., Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Int J Mol Sci, 2022. 23(3): p.1108.


45.Kumar, S., J. Boehm, and J.C. Lee, p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Reviews Drug Discovery, 2003. 2(9): p. 717-726.
46.Kim, E.K. and E.-J. Choi, Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2010. 1802(4): p. 396-405.
47.Johnson, G.L. and R. Lapadat, Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science, 2002. 298(5600): p. 1911-1912.
48.Guo, Y.J., et al., ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med, 2020. 19(3): p. 1997-2007.
49.Arbabi, S. and R.V. Maier, Mitogen-activated protein kinases. Critical Care Medicine, 2002. 30(1): p. S74-S79.
50.Soares-Silva, M., et al., The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol, 2016. 7: p. 183.
51.Wagner, E.F. and Á.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer, 2009. 9(8): p. 537-549.
52.Takuathung, M.N., et al., Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomedicine & Pharmacotherapy, 2021. 143: p. 112229.
53.Kim, H.J., et al., Terminalia chebula Retz. extract ameliorates the symptoms of atopic dermatitis by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-ĸB signaling in vitro. Phytomedicine, 2022. 104: p. 154318.
54.Tak, P.P. and G.S. Firestein, NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001. 107(1): p. 7-11.
55.Liu, T., et al., NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2017. 2(1): p. 17023.
56.Taniguchi, K. and M. Karin, NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 2018. 18(5): p. 309-324.
57.Das, P., et al., Keratinocytes: An Enigmatic Factor in Atopic Dermatitis. Cells, 2022. 11(10): p.1683.
58.Kim, S.Y., et al., Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants (Basel), 2021. 10(12): p.1941.
59.Nakashima, C., S. Yanagihara, and A. Otsuka, Innovation in the treatment of atopic dermatitis: Emerging topical and oral Janus kinase inhibitors. Allergology International, 2022. 71(1): p. 40-46.
60.Bao, L., H. Zhang, and L.S. Chan, The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. Jakstat, 2013. 2(3): p. e24137.
61.Tsiogka, A., et al., The JAK/STAT Pathway and Its Selective Inhibition in the Treatment of Atopic Dermatitis: A Systematic Review. J Clin Med, 2022. 11(15): p.4431.
62.Yang, J.H., et al., Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes. BMC Complement Altern Med, 2016. 16(1): p. 347.
63.Sung, Y.-Y., Y.S. Kim, and H.K. Kim, Illicium verum extract inhibits TNF-α- and IFN-γ-induced expression of chemokines and cytokines in human keratinocytes. Journal of Ethnopharmacology, 2012. 144(1): p. 182-189.
64.Jin, W., et al., Topical Application of JAK1/JAK2 Inhibitor Momelotinib Exhibits Significant Anti-Inflammatory Responses in DNCB-Induced Atopic Dermatitis Model Mice. Int J Mol Sci, 2018. 19(12): p.3973.
65.Wang, L., et al., Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg Chem, 2022. 119: p. 105538.
66.Eichenfield, L.F., et al., Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol, 2014. 71(1): p. 116-32.
67.Fishbein, A.B., et al., Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. J Allergy Clin Immunol Pract, 2020. 8(1): p. 91-101.
68.Kim, K., Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin. Biomol Ther (Seoul), 2012. 20(6): p. 506-12.
69.Hoare, C., A. Li Wan Po, and H. Williams, Systematic review of treatments for atopic eczema. Health Technol Assess, 2000. 4(37): p. 1-191.
70.Chovatiya, R. and A.S. Paller, JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol, 2021. 148(4): p. 927-940.
71.Newman, D.J., Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem, 2008. 51(9): p. 2589-99.

72.Wojtunik-Kulesza, K.A., et al., Natural Monoterpenes: Much More than Only a Scent. Chem Biodivers, 2019. 16(12): p. e1900434.
73.Kozioł, A., et al., An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev Med Chem, 2014. 14(14): p. 1156-68.
74.Klimek-Szczykutowicz, M., A. Szopa, and H. Ekiert, Citrus limon (Lemon) Phenomenon-A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants (Basel), 2020. 9(1): p.119.
75.Eddin, L.B., et al., Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules, 2021. 26(15): p.4345.
76.Anandakumar, P., S. Kamaraj, and M.K. Vanitha, D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 2021. 45(1): p. e13566.
77.Sun, J., D-Limonene: safety and clinical applications. Altern Med Rev, 2007. 12(3): p. 259-64.
78.Younis, N.S., D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition. The Korean Journal of Physiology & Pharmacology, 2020. 24(3): p. 259-266.
79.AlSaffar, R.M., et al., D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl(4)-induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep, 2022. 27(1): p. 92-99.
80.Yu, L., J. Yan, and Z. Sun, D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol Med Rep, 2017. 15(4): p. 2339-2346.
81.Ahmad, S.B., et al., Antifibrotic effects of D-limonene (5(1-methyl-4-[1-methylethenyl]) cyclohexane) in CCl4 induced liver toxicity in Wistar rats. Environmental Toxicology, 2018. 33(3): p. 361-369.
82.Lu, X.G., et al., Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J Gastroenterol, 2004. 10(14): p. 2140-4.
83.Kumar, K.J.S., M.G. Vani, and S.-Y. Wang, Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. Environmental Toxicology, 2022. 37(12): p. 2897-2909.


84.Bacanlı, M., et al., d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 2017. 110: p. 434-442.
85.Lappas, C.M. and N.T. Lappas, d-Limonene modulates T lymphocyte activity and viability. Cellular Immunology, 2012. 279(1): p. 30-41.
86.Del Toro-Arreola, S., et al., Effect of d-limonene on immune response in BALB/c mice with lymphoma. International Immunopharmacology, 2005. 5(5): p. 829-838.
87.Zhang, E.Y., A.Y. Chen, and B.T. Zhu, Mechanism of dinitrochlorobenzene-induced dermatitis in mice: role of specific antibodies in pathogenesis. PLoS One, 2009. 4(11): p. e7703.
88.Riedl, R., et al., Establishment and Characterization of Mild Atopic Dermatitis in the DNCB-Induced Mouse Model. Int J Mol Sci, 2023. 24(15): p.12325.
89.Oh, J.H., et al., Purpurin suppresses atopic dermatitis via TNF-α/IFN-γ-induced inflammation in HaCaT cells. Int J Immunopathol Pharmacol, 2022. 36: p. 3946320221111135.
90.An, H.J., et al., Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br J Pharmacol, 2018. 175(23): p. 4310-4324.
91.Furue, M., Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci, 2020. 21(15): p.5382.
92.Bernard, F.X., et al., Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis. J Allergy (Cairo), 2012. 2012: p. 718725.
93.Hulshof, L., et al., Role of Microbial Modulation in Management of Atopic Dermatitis in Children. Nutrients, 2017. 9(8): p.854.
94.Kapur, S., W. Watson, and S. Carr, Atopic dermatitis. Allergy Asthma Clin Immunol, 2018. 14(Suppl 2): p. 52.
95.Kaufman, B.P., E. Guttman-Yassky, and A.F. Alexis, Atopic dermatitis in diverse racial and ethnic groups—Variations in epidemiology, genetics, clinical presentation and treatment. Experimental Dermatology, 2018. 27(4): p. 340-357.
96.Eichenfield, L.F., et al., Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol, 2014. 70(2): p. 338-51.

97.Silverberg, J.I., et al., Pain Is a Common and Burdensome Symptom of Atopic Dermatitis in United States Adults. The Journal of Allergy and Clinical Immunology: In Practice, 2019. 7(8): p. 2699-2706.e7.
98.Brunner, P.M., E. Guttman-Yassky, and D.Y. Leung, The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol, 2017. 139(4s): p. s65-s76.
99.Upadhyay, P.R., et al., Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review. Cells, 2023. 12(24): p.2793.
100.Han, E.J., et al., (-)-Loliolide Isolated from Sargassum horneri Suppressed Oxidative Stress and Inflammation by Activating Nrf2/HO-1 Signaling in IFN-γ/TNF-α-Stimulated HaCaT Keratinocytes. Antioxidants (Basel), 2021. 10(6): p.856.
101.Alves, Q.L. and D.F. Silva, D-Limonene: A Promising Molecule with Bradycardic and Antiarrhythmic Potential. Arq Bras Cardiol, 2019. 113(5): p. 933-934.
102.Igimi, H., T. Hisatsugu, and M. Nishimura, The use of d-limonene preparation as a dissolving agent of gallstones. Am J Dig Dis, 1976. 21(11): p. 926-39.
103.Chebet, J.J., et al., Effect of d-limonene and its derivatives on breast cancer in human trials: a scoping review and narrative synthesis. BMC Cancer, 2021. 21(1): p. 902.
104.Liao, J.T., et al., D-Limonene Promotes Anti-Obesity in 3T3-L1 Adipocytes and High-Calorie Diet-Induced Obese Rats by Activating the AMPK Signaling Pathway. Nutrients, 2023. 15(2): p.267.
105.Novak, N., et al., FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol, 2004. 113(5): p. 949-57.
106.Huang, S., et al., Association between IL-6 polymorphisms and Atopic Dermatitis in Chinese Han children. Front Pediatr, 2023. 11: p. 1156659.
107.Barker, J.N., et al., Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol, 1991. 139(4): p. 869-76.
108.Cambier, S., M. Gouwy, and P. Proost, The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol, 2023. 20(3): p. 217-251.
109.Bakker, D., et al., Biomarkers in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2023. 151(5): p. 1163-1168.

110.Lee, Y., et al., Inhibitory Effect of Centella asiatica Extract on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. Nutrients, 2020. 12(2): p.411.
111.Park, J.H., et al., Combretum quadrangulare Extract Attenuates Atopic Dermatitis-Like Skin Lesions through Modulation of MAPK Signaling in BALB/c Mice. Molecules, 2020. 25(8): p.2003.
112.Hommes, D.W., M.P. Peppelenbosch, and S.J. van Deventer, Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut, 2003. 52(1): p. 144-51.
113.Choi, S.I., et al., Eisenia bicyclis Extract Repairs UVB-Induced Skin Photoaging In Vitro and In Vivo: Photoprotective Effects. Mar Drugs, 2021. 19(12): p.693.
114.Giridharan, S. and M. Srinivasan, Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res, 2018. 11: p. 407-419.
115.Choi, J.H., et al., Impressic Acid Ameliorates Atopic Dermatitis-Like Skin Lesions by Inhibiting ERK1/2-Mediated Phosphorylation of NF-κB and STAT1. Int J Mol Sci, 2021. 22(5): p.2334.
116.Guttman-Yassky, E., et al., The role of Janus kinase signaling in the pathology of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2023. 152(6): p. 1394-1404.
117.Rajkumar, J., et al., The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacology and Physiology, 2023. 36(4): p. 174-185.
118.Virolainen, S.J., et al., Filaggrin loss-of-function variants are associated with atopic dermatitis phenotypes in a diverse, early-life prospective cohort. JCI Insight, 2024. 9(9): p.e178258.
119.Lee, G., et al., Anti-inflammatory effect and metabolic mechanism of BS012, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts, on atopic dermatitis in vivo and in vitro. Phytomedicine, 2023. 115: p. 154818.
120.Choi, E.J. and J.K. Choi, Extracts of Grifola frondosa inhibit the MAPK signaling pathways involved in keratinocyte inflammation and ameliorate atopic dermatitis. Nutr Res Pract, 2023. 17(6): p. 1056-1069.
121.Kim, S.H., G.S. Seong, and S.Y. Choung, Fermented Morinda citrifolia (Noni) Alleviates DNCB-Induced Atopic Dermatitis in NC/Nga Mice through Modulating Immune Balance and Skin Barrier Function. Nutrients, 2020. 12(1): p.249.
122.Bieber, T., Atopic dermatitis. Ann Dermatol, 2010. 22(2): p. 125-37.

123.Gittler, J.K., et al., Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol, 2012. 130(6): p. 1344-54.
124.Leung, D.Y., et al., New insights into atopic dermatitis. J Clin Invest, 2004. 113(5): p. 651-7.
125.Facheris, P., et al., The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol, 2023. 20(5): p. 448-474.
126.Ebina-Shibuya, R. and W.J. Leonard, Role of thymic stromal lymphopoietin in allergy and beyond. Nature Reviews Immunology, 2023. 23(1): p. 24-37.
127.Kim, H.J., et al., Anti-Inflammatory Effects of the LK5 Herbal Complex on LPS- and IL-4/IL-13-Stimulated HaCaT Cells and a DNCB-Induced Animal Model of Atopic Dermatitis in BALB/c Mice. Pharmaceutics, 2023. 16(1): p.40.
128.Misery, L., Therapeutic Perspectives in Atopic Dermatitis. Clinical Reviews in Allergy & Immunology, 2011. 41(3): p. 267-271.
129.Vieira, A.J., et al., Limonene: Aroma of innovation in health and disease. Chemico-Biological Interactions, 2018. 283: p. 97-106.

電子全文 電子全文(網際網路公開日期:20290620)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top