|
1.Abedinia, O., & Amjady, N. (2016). Short‐term load forecast of electrical power system by radial basis function neural network and new stochastic search algorithm. International Transactions on Electrical Energy Systems, 26(7), 1511-1525. 2.Abeysingha, A. A. K. U., Sritharan, A. S., Valluvan, R., Ahilan, K., & Jayasinghe, D. H. G. A. E. (2021). Electricity load/demand forecasting in sri lanka using deep learning techniques. In 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS) (pp. 293-298). IEEE. 3.Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. 4.Bao, W., Li, Q., Xin, L., & Qu, K. (2016). Hyperspectral unmixing algorithm based on nonnegative matrix factorization. In 2016 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 6982-6985). IEEE. 5.Braun, M. R., Altan, H., & Beck, S. B. M. (2014). Using regression analysis to predict the future energy consumption of a supermarket in the UK. Applied Energy, 130, 305-313. 6.Chatfield, C. (1993). Calculating interval forecasts. Journal of Business & Economic Statistics, 11(2), 121-135. 7.Chen, S., Yang, X., & Li, X. (2022). Research on RF-NMF dimension reduction and CS-LSTM optimized by self-attention mechanism based on sales forecast. In 2022 International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI) (pp. 261-272). IEEE. 8.Chou, J. S., Truong, D. N., & Le, T. L. (2020). Interval forecasting of financial time series by accelerated particle swarm-optimized multi-output machine learning system. IEEE Access, 8, 14798-14808. 9.Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 841-862. 10.Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. doi:10.1162/neco_a_01111 11.Da Silva, A. A., & Moulin, L. S. (2000). Confidence intervals for neural network based short-term load forecasting. IEEE Transactions on Power Systems, 15(4), 1191-1196. 12.Ding, Y., Pang, C., Wei, L., Wang, E., Zhao, C., Gao, Q., ... & Li, B. (2024). Short-Term Load Forecasting Method Based on Autoencoder and LSTNet Models. In 2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA) (pp. 1057-1062). IEEE. 13.Dol, M., & Geetha, A. (2021). A learning transition from machine learning to deep learning: A survey. In 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI) (pp. 89-94). IEEE. 14.Du, G., Zhou, L., Fang, Y., & Yang, M. (2018). Time Series Clustering via NMF in Networks. In 2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 87-92). IEEE. 15.Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512-517. 16.Falcao, G., Alexandre, L. A., Marques, J., Frazão, X., & Maria, J. (2017). On the evaluation of energy-efficient deep learning using stacked autoencoders on mobile GPUs. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 270-273). IEEE. 17.Fumo, N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, 31, 53-60. 18.Gaid, M. L., Yousuf, H., Salloum, S. A., & Shaalan, K. (2021). Implementing sequence to sequence neural networks using C#. Net. In The International Conference on Artificial Intelligence and Computer Vision (pp. 742-753). Cham: Springer International Publishing. 19.Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, pp. 189-194). IEEE. 20.Ghimire, S., Nguyen-Huy, T., AL-Musaylh, M. S., Deo, R. C., Casillas-Pérez, D., & Salcedo-Sanz, S. (2023). A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction. Energy, 275, 127430. 21.Gligorić, Z., Savić, S. Š., Grujić, A., Negovanović, M., & Musić, O. (2018). Short-term electricity price forecasting model using interval-valued autoregressive process. Energies, 11(7), 1911. 22.Guo, Q., Feng, Y., Sun, X., & Zhang, L. (2017). Power demand forecasting and application based on SVR. Procedia Computer Science, 122, 269-275. 23.Hajek, P., Prochazka, O., & Froelich, W. (2018). Interval-valued intuitionistic fuzzy cognitive maps for stock index forecasting. In 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) (pp. 1-7). IEEE. 24.Hiba, C., Tarek, K. M., & Belkacem, C. (2020). Stacked Denoising Autoencoder network for short-term prediction of electrical Algerian load. In 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT) (Vol. 1, pp. 189-194). IEEE. 25.Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. 26.Hsu, H. L., & Wu, B. (2008). Evaluating forecasting performance for interval data. Computers & Mathematics with Applications, 56(9), 2155-2163. doi: 10.1016/j.camwa.2008.03.042 27.Hu, H., Wang, L., Peng, L., & Zeng, Y. R. (2020). Effective energy consumption forecasting using enhanced bagged echo state network. Energy, 193, 116778. 28.Hu, Z., Cai, J., Wang, Z., & Qin, F. (2022). Minimum Sample Size Estimation Method of Electromagnetic Effect Test Based on Confidence Interval. In 2022 IEEE 5th International Conference on Electronics Technology (ICET) (pp. 249-254). IEEE. 29.Irankhah, A., Rezazadeh, S., Moghaddam, M. H. Y., & Ershadi-Nasab, S. (2021). Hybrid deep learning method based on lstm-autoencoder network for household short-term load forecasting. In 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-6). IEEE. 30.Kale, R. V., & Pohekar, S. D. (2013). Long-range forecasting of electricity demand and supply for Maharashtra. In 2013 International Conference on Renewable Energy and Sustainable Energy (ICRESE) (pp. 5-8). IEEE. 31.Kaneko, N., Iwabuchi, K., Kato, K., Watari, D., Zhao, D., Taniguchi, I., ... & Onoye, T. (2022, October). An Evaluation of Electricity Demand Forecasting Models for Smart Energy Management Systems. In 2022 19th International SoC Design Conference (ISOCC) (pp. 195-196). IEEE. 32.Kang, T., Lim, D. Y., Tayara, H., & Chong, K. T. (2020). Forecasting of power demands using deep learning. Applied Sciences, 10(20), 7241. 33.Khashei, M., Montazeri, M. A., & Bijari, M. (2015). Comparison of four interval ARIMA-base time series methods for exchange rate forecasting. International Journal of Mathematical Sciences and Computing, 1(1), 21-34. 34.Kim, J. H., Wong, K., Athanasopoulos, G., & Liu, S. (2011). Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27(3), 887-901. 35.Konstantinou, T., Savvopoulos, N., & Hatziargyriou, N. (2021). Scenario Based Probabilistic Energy Demand Forecasting using Autoencoders and Gaussian Mixture Models. In 2021 International Conference on Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE 36.Kumar, R., Aggarwal, R. K., & Sharma, J. D. (2013). Energy analysis of a building using artificial neural network: A review. Energy and Buildings, 65, 352-358. 37.Kumru, M., & Kumru, P. Y. (2015). Calendar-based short-term forecasting of daily average electricity demand. In 2015 International Conference on Industrial Engineering and Operations Management (IEOM) (pp. 1-5). IEEE. 38.Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791. 39.Li, C., Guo, Q., Shao, L., Li, J., & Wu, H. (2022a). Research on short-term load forecasting based on optimized gru neural network. Electronics, 11(22), 3834. 40.Li, H., Li, P., Zhang, Y., Zu, W., & Zheng, Y. (2022b). Research on electricity demand forecasting based on LSTM-SVR. In 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI) (pp. 233-239). IEEE. 41.Li, X., & Tyagi, A. (2023). Block-Active ADMM to Minimize NMF with Bregman Divergences. Sensors, 23(16), 7229. 42.Li, X., Bao, C., & Cui, Z. (2021). An NMF-based MMSE Approach for Single Channel Speech Enhancement Using Densely Connected Convolutional Network. In 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 1-5). IEEE. 43.Liu, F., Cai, M., Wang, L., & Lu, Y. (2019). An ensemble model based on adaptive noise reducer and over-fitting prevention LSTM for multivariate time series forecasting. IEEE Access, 7, 26102-26115. 44.Liu, G., Xiao, F., Lin, C. T., & Cao, Z. (2020). A fuzzy interval time-series energy and financial forecasting model using network-based multiple time-frequency spaces and the induced-ordered weighted averaging aggregation operation. IEEE Transactions on Fuzzy Systems, 28(11), 2677-2690. 45.Ma, C., Liang, L., Chen, Y., & Zhang, Q. (2020). Feature Extraction for Fault Diagnosis of Machine based on Kernel Nonnegative Matrix Factorization. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 1412-1416). IEEE. 46.Ma, Z., Prljaca, Z., & Jørgensen, B. N. (2016). The international electricity market infrastructure-insight from the nordic electricity market. In 2016 13th International Conference on the European Energy Market (EEM) (pp. 1-5). IEEE. 47.Maciel, L. (2023). A trading strategy based on BitCoin high and low prices: the role of an evolving fuzzy model for interval-valued time series forecasting. In 2023 IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1-6). IEEE. 48.Maciel, L., Gomide, F., & Ballini, R. (2015). Evolving possibilistic fuzzy modeling for financial interval time series forecasting. In 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC) (pp. 1-6). IEEE. 49.Maia, A. L. S., de Carvalho, F. D. A., & Ludermir, T. B. (2008). Forecasting models for interval-valued time series. Neurocomputing, 71(16-18), 3344-3352. 50.Mansouri, N., & Lachiri, Z. (2020). Laughter synthesis: A comparison between Variational autoencoder and Autoencoder. In 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 1-6). IEEE. 51.Mardira, L., Saha, T. K., & Eghbal, M. (2014). Investigating impacts of battery energy storage systems on electricity demand profile. In 2014 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-5). IEEE. 52.Mei, J., De Castro, Y., Goude, Y., Azaïs, J. M., & Hébrail, G. (2018). Nonnegative matrix factorization with side information for time series recovery and prediction. IEEE Transactions on Knowledge and Data Engineering, 31(3), 493-506. 53.Mei, X., Xu, C., Liu, L., & Yang, Y. (2015). Learning part-based dictionaries by NMF for crude oil market prediction. In 2015 4th International Conference on Computer Science and Network Technology (ICCSNT) (Vol. 1, pp. 624-628). IEEE. 54.Mezaache, H., & Bouzgou, H. (2018). Auto-encoder with neural networks for wind speed forecasting. In 2018 International Conference on Communications and Electrical Engineering (ICCEE) (pp. 1-5). IEEE. 55.Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Machine learning: An artificial intelligence approach. Springer Science & Business Media. 56.Mo, R., Pei, Y., Venkatarayalu, N., Nathaniel, P., Premkumar, A. B., & Sun, S. (2021). An unsupervised TCN-based outlier detection for time series with seasonality and trend. In 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS) (pp. 1-5). IEEE. 57.Morita, H., Kase, T., Tamura, Y., & Iwamoto, S. (1996). Interval prediction of annual maximum demand using grey dynamic model. International Journal of Electrical Power & Energy Systems, 18(7), 409-413. 58.Mutinda, F., Nakashima, A., Takeuchi, K., Sasaki, Y., & Onizuka, M. (2019). Time series link prediction using nmf. Journal of Information Processing, 27, 752-761. 59.Najafi, A., Homaee, O., Golshan, M., Jasinski, M., & Leonowicz, Z. (2023). Application of extreme learning machine-autoencoder to medium term electricity price forecasting. IEEE Transactions on Industry Applications. 60.Nasrabadi, N. M. (2007). Pattern recognition and machine learning. Journal of Electronic Imaging, 16(4), 049901. 61.Pekaslan, D., Wagner, C., Garibaldi, J. M., Marin, L. G., & Sáez, D. (2020). Uncertainty-aware forecasting of renewable energy sources. In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 240-246). IEEE. 62.Rana, M., Koprinska, I., & Agelidis, V. G. (2015). 2D-interval forecasts for solar power production. Solar Energy, 122, 191-203. 63.Rimal, R., Brannon, M., Wang, Y., & Yang, X. (2022). Comparative study of machine learning and deep learning methods on ASD classification. arXiv preprint arXiv:2209.08601. 64.Roque, A. M. S., Maté, C., Arroyo, J., & Sarabia, Á. (2007). iMLP: Applying multi-layer perceptrons to interval-valued data. Neural Processing Letters, 25, 157-169. 65.Sang, S., & Li, L. (2024). A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism. Mathematics, 12(7), 945. 66.Singh, S., & Tripathi, M. M. (2021). A Comparative Analysis of Extreme Gradient Boosting Technique with Long Short-Term Memory and Layered Recurrent Neural Network for Electricity Demand Forecas. In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 297-302). IEEE. 67.Son, H., & Kim, C. (2020). A deep learning approach to forecasting monthly demand for residential–sector electricity. Sustainability, 12(8), 3103. 68.Suresh, V., Aksan, F., Janik, P., Sikorski, T., & Revathi, B. S. (2022). Probabilistic LSTM-Autoencoder based hour-ahead solar power forecasting model for intra-day electricity market participation: A Polish case study. IEEE Access, 10, 110628-110638. 69.Wang, D., Zhang, R., & Zhao, L. (2022). A Multivariate Load Prediction Method of Integrated Energy Systems Based on MMoE-TCN. In 2022 7th International Conference on Power and Renewable Energy (ICPRE) (pp. 596-602). IEEE. 70.Wang, H., Wang, L., & Ma, L. (2021b). Anomaly detection of hydropower bearing based on convolutional neural network autoencoder. In 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET) (pp. 430-433). IEEE. 71.Wang, J., Tang, G., & Wang, Y. (2023). Application in Student Performance Prediction Using Graph Regularization Nonnegative Matrix Factorization. In 2023 10th International Conference on Dependable Systems and Their Applications (DSA) (pp. 816-820). IEEE. 72.Wang, S. (2023). Application of Nonnegative Matrix Factorization in Intelligent Patrol Inspection of Substations. In 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) (pp. 255-258). IEEE. 73.Wang, S., & Xu, X. (2006). Simplified building model for transient thermal performance estimation using GA-based parameter identification. International Journal of Thermal Sciences, 45(4), 419-432. 74.Wang, Y., Sun, S., Chen, X., Zeng, X., Kong, Y., Chen, J., ... & Wang, T. (2021a). Short-term load forecasting of industrial customers based on SVMD and XGBoost. International Journal of Electrical Power & Energy Systems, 129, 106830. 75.Xiaozhi, L., Yang, G., & Yinghua, Y. (2020). Fault Diagnosis Based on Batch-normalized Stacked Sparse Autoencoder. In 2020 39th Chinese Control Conference (CCC) (pp. 4141-4146). IEEE. 76.Xu, M., Dong, Y., Li, Z., Han, M., & Xing, T. (2018). A novel time series prediction model based on deep sparse autoencoder. In 2018 37th Chinese Control Conference (CCC) (pp. 1678-1682). IEEE. 77.Xu, Z., Kang, Y., Cao, Y., & Yue, L. (2018). Residual autoencoder-LSTM for city region vehicle emission pollution prediction. In 2018 IEEE 14th International Conference on Control and Automation (ICCA) (pp. 811-816). IEEE. 78.Yamada, K., & Mori, H. (2023). Practical Application of Deep Modified Autoencoder Technique to Electricity Price Forecasting. In 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG) (pp. 1-7). IEEE. 79.Yang, G., Du, S., Duan, Q., & Su, J. (2022). Short-term demand forecasting method in power markets based on the KSVM–TCN–GBRT. Computational Intelligence and Neuroscience, 2022. 80.Ye, Q., Chen, W., Zhu, L., Lin, H., Zhang, F., Tan, J., ... & Zhao, Y. (2023). Data-driven Approaches Predict Hourly Electricity Demand Profiles at Industry and City-level. In 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE) (pp. 905-910). IEEE. 81.Yuan, Y., Feng, Y., & Lu, X. (2015). Projection-based NMF for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2632-2643. 82.Zahedi, G., Azizi, S., Bahadori, A., Elkamel, A., & Alwi, S. R. W. (2013). Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province–Canada. Energy, 49, 323-328. 83.Zhang, H., Liang, Q., Wang, R., & Wu, Q. (2020). Stacked model with autoencoder for financial time series prediction. In 2020 15th International Conference on Computer Science & Education (ICCSE) (pp. 222-226). IEEE. 84.Zhang, Y., Jing, R., Zhang, X., Hu, R., Wang, N., Li, L., & Kang, Y. (2023a). A study on Short-Term Electricity Load Forecasting for Industrial Parks method using QPSO-TCN Based on Autoencoder. In 2023 2nd International Conference on Smart Grids and Energy Systems (SGES) (pp. 180-187). IEEE. 85.Zhang, Y., Mu, S., Chen, C., Pei, J., & Han, J. (2023b). Weekly Electricity Forecasting Method Based on Double-Layer lightGBM-GRU-IBES Algorithm. In 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA) (pp. 1784-1792). IEEE. 86.Zhu, J., Hu, W., Xu, X., Luo, S., Liu, H., Hu, C., ... & Huang, Q. (2022). The Research on the Construction of Confidence Interval Model for Solar, Hydropower and Load Demand. In 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES) (pp. 484-491). IEEE.
|