|
Agresti, A. (2002). Categorical data analysis (2nd ed.). New Jersey: John Wiley & Sons, Inc. Ahmad, S., Ramli, N. M., & Midi, H. (2012, December 3-4). Outlier detec-tion in logistic regression and its application in medical data analysis [Conference presentation]. 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER) (pp. 503-507). IEEE., Kota Kinabalu, Malaysia. Atkinson, A. C. (1981). Two graphical displays for outlying and influential observations in regression. Biometrika, 68(1), 13-20. Atkinson, A. C. (1986). Masking unmasked. Biometrika, 73(3), 533-541. Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). Chich-ester: John Wiley & Sons, Inc. Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. New Jersey: John Wiley & Sons, Inc. Billor, N., Hadi, A. S., & Velleman, P. F. (2000). BACON: blocked adaptive computationally efficient outlier nominators. Computational statistics & data analysis, 34(3), 279-298. Brown, B. W. (1980). Prediction analysis for binary data. In R. G. Miller, B. Efron, B. W. Brown, & L. E. Moses (Eds.), Biostatistics casebook (pp. 3-18). New York: John Wiley & Sons. Chatterjee, S., & Hadi, A. S. (1986). Influential observations, high leverage points, and outliers in linear regression. Statistical Science, 1(3), 379-393. Christensen, R. (1997). Log-linear models and logistic regression (2nd ed.). New York: Springer. Cook R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15-18. Cook R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall. Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 48(2), 133-155. Coskun, B., & Alpu, O. (2019). Diagnostics of multiple group influential observations for logistic regression models. Journal of Statistical Computation and Simulation, 89(16), 3118-3136. Cox, D. R. & Snell, E. J. (1989). Analysis of Binary Data (2nd ed.). London: Chapman and Hall/CRC. Cragg, J. G., & Uhler, R. S. (1970). The demand for automobiles. The Ca-nadian Journal of Economics / Revue canadienne d'Economique, 3(3), 386-406. Davies P., Imon A. H. M. R., & Ali M. M. (2004). A conditional expectation method for improved residual estimation and outlier identification in linear regression. International Journal of Statistical Sciences, Special issue, 191-208. Elihimas Júnior, U. F., Couto, J. P., Pereira, W., Barros de Oliveira Sá, M. P., Tenório de França, E. E., Aguiar, F. C., et al. (2020). Logistic regression model in a machine learning application to predict elderly kidney transplant recipients with worse renal function one year after kidney transplant: elderly KTbot. Journal of Aging Research, 2020. Ghosh, S. (2022). Deletion diagnostics in logistic regression. Journal of Applied Statistics, 1(1), 1-13. Gordian, M. E., Haneuse, S., & Wakefield, J. (2006). An investigation of the association between traffic exposure and the diagnosis of asthma in children. Journal of Exposure Science & Environmental Epidemiology, 16(1), 49-55. Hadi, A. S. (1992). A new measure of overall potential influence in linear regression. Computational Statistics & Data Analysis, 14(1), 1-27. Hilbe, J. M. (2009). Logistic regression models. New York: Chapman and Hall/CRC. Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22, 85-126. Imon, A. R., & Hadi, A. S. (2008). Identification of multiple outliers in lo-gistic regression. Communications in Statistics-Theory and Methods, 37(11), 1697-1709. Imon, A. R., & Hadi, A. S. (2013). Identification of multiple high leverage points in logistic regression. Journal of Applied Statistics, 40(12), 2601-2616. Jennings, D. E. (1986). Outliers and residual distributions in logistic re-gression. Journal of the American Statistical Association, 81(396), 987-990. Joshi, M. V. (2002). Learning classifier models for predicting rare phe-nomena. Unpublished doctoral dissertation, University of Minnesota, Twin Cities, Minnesota. Maddala, G. S. (1983). Limited dependent and qualitative variables in economics. New York: Cambridge Press. McFadden, D. (1974) Conditional Logit Analysis of Qualitative Choice Behavior. In Zarembka P. (Ed.), Frontiers in Econometrics (pp. 105-142). New York: Academic Press. Menard, S. (2002). Applied logistic regression analysis (2nd ed.). Thousand Oaks, CA: Sage Publications. Midi, H., & Ariffin, S. B. (2013). Modified standardized pearson residual for the identification of outliers in logistic regression model. Journal of Applied Sciences, 13(6), 828-836. Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. Nurunnabi, A. A. M. (2008). Robust diagnostic deletion techniques in linear and logistic regression. Unpublished doctoral dissertation, University of Rajshahi, Motihar, Rajshahi. Nurunnabi, A. A. M., & Nasser, M. (2011). Outlier diagnostics in logistic regression: a supervised learning technique. In 2009 International Conference on Medicine Learning and Computing IPCSIT (Vol. 3, pp. 90-95). Nurunnabi, A. A. M., Nasser, M., & Imon, A. H. M. R. (2016). Identification and classification of multiple outliers, high leverage points and influ-ential observations in linear regression. Journal of Applied Statistics, 43(3), 509-525. Nurunnabi, A. A. M., Rahmatullah Imon, A. H. M., & Nasser, M. (2010). Identification of multiple influential observations in logistic regression. Journal of Applied Statistics, 37(10), 1605-1624. Pregibon, D. (1981). Logistic regression diagnostics. The Annals of Statis-tics, 9(4), 705-724. Quenouille, M. H. (1956). Notes on Bias in Estimation. Biometrika, 43(3/4), 353-360. Rahmatullah Imon, A. H. M. (2005). Identifying multiple influential obser-vations in linear regression. Journal of Applied statistics, 32(9), 929-946. Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American statistical association, 79(388), 871-880. Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier de-tection. New York: John Wiley & Sons, Inc. Ryan, T. P. (1997). Modern regression methods (1st ed.). New York: John Wiley & Sons, Inc. Sarkar, S. K., Midi, H., & Rana, S. (2011). Detection of outliers and influ-ential observations in binary logistic regression: An empirical study. Journal of Applied Sciences, 11(1), 26-35. Smith, T. J., & McKenna, C. M. (2013). A comparison of logistic regression pseudo R2 indices. Multiple Linear Regression Viewpoints, 39(2), 17-26. Retrieved from http://www.glmj.org/archives/articles/Smith_v39n2.pdf Tsai, J. R. & Hsiao S. W. (2022, submitted). Detection of influential obser-vations based on a linear regression model with measurement errors. Weiss, G. M., & Provost, F. (2003). Learning when training data are costly: The effect of class distribution on tree induction. Journal of artificial intelligence research, 19, 315-354. Zhang, Z. (2016). Residuals and regression diagnostics: focusing on logistic regression. Annals of Translational Medicine, 4(10).
|