跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彥期
研究生(外文):Wang, Yen-Chi
論文名稱:旅館業管理者資料應用專業知能之初探
論文名稱(外文):Exploring the Data Application Competency for Managers in Hotel Industry
指導教授:江郁智江郁智引用關係
指導教授(外文):Chiang, Yu-Chih
口試委員:許軒許孟鈞
口試委員(外文):Hsu, HsuanHsu, Meng-Jun
口試日期:2024-06-29
學位類別:碩士
校院名稱:輔仁大學
系所名稱:餐旅管理學系碩士班
學門:民生學門
學類:餐旅服務學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:58
中文關鍵詞:資料應用旅館業管理專業知能
外文關鍵詞:Data ApplicationHotel ManagementProfessional Competence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討旅館業管理者所需的資料應用專業知能。隨著數據科技的快速發
展,數據科技對各產業的影響日益顯著也展現市場預測其強大影響力。隨著消費者行
為的變化及數位科技的進步,透過數據分析進行市場行銷決策已成為旅館業的重要趨
勢,旅館業管理者的能力對提升企業競爭力至關重要。
然而,目前資料分析在旅館業的應用尚未成熟,旅館業管理者的能力將會影響在
營銷決策中的應用。因此,本研究深入探討旅館業管理者所需的資料應用專業知識與
技能,為業界提供具體的培訓方向和資源整合建議,以提升旅館業管理者的專業能力
和市場競爭力,研究方法包括文獻回顧和深度訪談,通過分析文獻和專家訪談,探討
旅館業管理者專業知能及資料應用能力的應用,並提出具體的研究結論和建議。本研
究期望能為旅館業管理者提供實質性建議,培育旅館業主管在旅館產業和資料應用的
結合下提升專業發展和企業效益。
This study aims to explore the data applications required by hotel industry managers. With the rapid development of data technology, its impact on various industries is becoming increasingly significant, demonstrating its powerful influence on market forecasting. As consumer behavior changes and digital technology advances, using big data analysis for market marketing decisions has become an important trend in the hotel industry, making the capabilities of hotel industry managers crucial for enhancing corporate competitiveness.
However, the application of big data analysis in the hotel industry is still immature, and the capabilities of hotel industry managers will affect its use in marketing decisions. Therefore, this study delves into the specific data analysis knowledge and skills needed by hotel industry managers, providing concrete training
directions and resource integration suggestions to enhance the professional capabilities and market competitiveness of hotel industry managers. The research methods include literature review and in-depth interviews, analyzing existing
literature and expert interviews to explore the application of big data analysis capabilities and the expertise required for hotel industry managers. The study also proposes specific conclusions and recommendations. This study aims to provide practical recommendations for hotel industry managers, enhancing the training of hotel supervisors by integrating the hotel industry and the data applications, thereby promoting professional development and improving business performance.
目錄i
第一章 緒論1
第一節 研究背景 1
第二節 研究動機與目的 3
第三節 研究流程 4
第二章 文獻探討 6
第一節 旅館業組織結構 6
第二節 旅館業管理者專業知能 13
第三節 資料分析能力相關研究 17
第四節 資料分析應用於旅館業相關研究 21
第三章 研究方法 24
第一節 研究設計 24
一、研究參與者之界定 26
第三節 資料蒐集與分析 28
第四章 研究結果 32
第一節 資料應用專業知能之知識 32
第二節 資料應用專業知能之技能 37
第三節 職場競爭力 41
第四節 困難與挑戰 45
第五章 結論與建議 46
第一節 研究結論 46
第二節 研究限制與建議 49
第三節 研究貢獻 50
參考文獻 51
附錄一、職能級別表與基準範例 55
表目錄iii
表2-1-1 109-111旅宿業人才供需推估表 9
表2-1-2 旅館後台ERP系統 10
表2-1-3休閒渡假旅館績效指標 11
表2-2 職能數據分析需求與層級對應彙整表 16
表2-3-1資料分析能力相關專業知能與內涵彙整表 17
表2-3-2餐旅領域資料應用能力構面與內涵 19
表2-4 資料科學應用相關文獻彙整表 23
表3-1 受訪者資料 26
表4-1-1 資料應用知識主題精緻化 36
表4-1-2 資料應用知識主題的目的、意義與範圍 36
表4-2-1 資料應用技能主題精緻化 40
表4-2-2 資料應用技能主題的目的、意義與範圍 40
表4-3-1 職場競爭力主題精緻化 44
表4-3-2 職場競爭力主題的目的、意義與範圍 44
圖目錄iv
圖1-4 研究流程圖 5
參考文獻
Ali, F., Kim, E. K., & Kim, Y. G. (2015). Type-2 fuzzy ontology-based opinion
mining and information extraction: A proposal to automate the hotel
reservation system. Applied Intelligence, 42(3), 481–500.
https://doi.org/10.1007/s10489-014-0609-y
Ayankoya, K., Calitz, A., & Greyling, J. (2014). Intrinsic relations between data
science, big data, business analytics and datafication. ACM International
Conference Proceeding Series, 28-September-2014, 192–198.
https://doi.org/10.1145/2664591.2664619
Ban, H.-J., & Kim, H.-S. (2019). Semantic Network Analysis of Hotel Package
through the Big Data. Culinary Science & Hospitality Research, 25(2), 110–
119. https://doi.org/10.20878/cshr.2019.25.2.014
Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2015, May 11). An overview of big
data opportunities, applications and tools. 2015 Intelligent Systems and
Computer Vision, ISCV 2015. https://doi.org/10.1109/ISACV.2015.7105553
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2), 77–101.
https://doi.org/10.1191/1478088706qp063oa
Buhalis, D., & Foerste, M.--K. (2015). SoCoMo Marketing for Travel and Tourism.
Journal of Destination Marketing & Management, 4(3), 151–161.
Buhalis, D., & Leung, R. (2018). Smart hospitality—Interconnectivity and
interoperability towards an ecosystem. International Journal of Hospitality
Management, 71, 41–50. https://doi.org/10.1016/j.ijhm.2017.11.011
CrowdFlower. (2015). Data science. https://visit.figure-eight.com/2015-datascientist-report
Dallemand, J. (2019). Why is marriott the big data analytics leader in hospitality?.
https://d3.harvard.edu/platform-digit/submission/marriott-data-drivencustomer-experience-for-decades-at-scale%EF%BF%BC/
Dhar, V. (2012). Data Science and Prediction. http://hdl.handle.net/2451/31553
Egan, D., & Haynes, N. C. (2019). Manager perceptions of big data reliability in
hotel revenue management decision making. International Journal of Quality
and Reliability Management, 36(1), 25–39. https://doi.org/10.1108/IJQRM02-2018-0056
Giglio, S., Pantano, E., Bilotta, E., & Melewar, T. C. (2020). Branding luxury
hotels: Evidence from the analysis of consumers’ “big” visual data on
TripAdvisor. Journal of Business Research, 119, 495–501.
https://doi.org/10.1016/j.jbusres.2019.10.053
Gozde, T., Ram, G., & Emrah, O. (2021). Big Data and Business Intelligence in
Hospitality and Tourism. In Hospitality and Tourism Information Technology.
USF M3 Publishing, LLC. https://doi.org/10.5038/9781732127593
Gupta, K., Gauba, T., & Jain, S. (2017). Big Data In Hospitality Industry: A survey
IRJET Journal Big Data In Hospitality Industry: A survey. International
Research Journal of Engineering and Technology. www.irjet.net
Harvey, R. J. (1991). Job analysis.
Himesh, S., Prakasa Rao, E. V. S., Gouda, K. C., Ramesh, K. V., Rakesh, V.,
Mohapatra, G. N., Kantha Rao, B., Sahoo, S. K., & Ajilesh, P. (2018). Digital
revolution and Big Data: A new revolution in agriculture. CAB Reviews:
Perspectives in Agriculture, Veterinary Science, Nutrition and Natural
Resources, 13. https://doi.org/10.1079/PAVSNNR201813021
Ismail, N. Amie., & Abidin, W. Zainal. (2016). Data scientist skills. IOSR Journal
of Mobile Computing & Application, 03(04), 52–61.
https://doi.org/10.9790/0050-03045261
Ivanov, S., & Berezina, K. (2017). Adoption of robots and service automation by
tourism and hospitality companies. Revista Turismo & Desenvolvimento,
27(28), 1501–1517. http://www.h-n-h.jp/en/
Liliyaa, Hogaboam., Renzhii, Cao., & Leongg, Chan. (2022). Applied Innovation
and Technology Management Applied Artificial Intelligence in Business
Concepts and Cases. Applied Innovation and Technology Management , 213–
229. https://link.springer.com/bookseries/16548
Mariani, M., & Borghi, M. (2021). Are environmental-related online reviews more
helpful? A big data analytics approach. International Journal of Contemporary
Hospitality Management, 33(6), 2065–2090. https://doi.org/10.1108/IJCHM06-2020-0548
Mark Lynn. (2013). Big Data Management Must Interpret and Apply Data to Gain
the Competitive Advantage. www.hvs.com
Mcclelland, D. C. (1973). Testing for Competence Rather Than for “Intelligence.”
Murphy, J., Gretzel, U., & Hofacker, C. (n.d.). Service Robots in Hospitality and
Tourism: Investigating Anthropomorphism.
Nietyksza. (2015a). Towards a thriving data-driven economy. Official Journal of
the European Union, C 242, 23 July 2015.
Nietyksza. (2015b). Towards a thriving data-driven economy. Official Journal of
the European Union, C 242, 23 July 2015.
O’Neil, C. , & Schutt, R. (2014). Doing data science. Choice Reviews Online,
51(12), 51-6803-51–6803. https://doi.org/10.5860/CHOICE.51-6803
Parapanos, D., & Michopoulou, E. (2022). How to Design Hotel Gamified
Applications Effectively: Understanding the Motives of Users as Hotel
Visitors. In Information and Communication Technologies in Tourism 2022
(pp. 463–472). Springer International Publishing. https://doi.org/10.1007/978-
3-030-94751-4_43
Raj, M., & Seamans, R. (2018). Artificial Intelligence, Labor, Productivity, and the
Need for Firm-Level Data. In The Economics of Artificial Intelligence: An
Agenda, Publisher, 978–978.
Sahlberg, P. (2006). Education reform for raising economic competitiveness.
Journal of Educational Change, 7(4), 259–287.
https://doi.org/10.1007/s10833-005-4884-6
Samara, D., Magnisalis, I., & Peristeras, V. (2020). Artificial intelligence and big
data in tourism: a systematic literature review. In Journal of Hospitality and
Tourism Technology (Vol. 11, Issue 2, pp. 343–367). Emerald Group Holdings
Ltd. https://doi.org/10.1108/JHTT-12-2018-0118
Tseng, S.-Y., & Huang, S. (2017). The Application of Big Data on the Impact
between Workplace Educational Training and Employees’ Background-in case
of Hotel Industry. Journal of Yuda University of Science and Technology, 35–50.
Tussyadiah, I. P., Zach, F. J., & Wang, J. (2020). Do travelers trust intelligent
service robots? Annals of Tourism Research, 81.
https://doi.org/10.1016/j.annals.2020.102886
Vecchio, P. Del, Mele, G., Ndou, V., & Secundo, G. (2018). Creating value from
Social Big Data: Implications for Smart Tourism Destinations. Information
Processing and Management, 54(5), 847–860.
https://doi.org/10.1016/j.ipm.2017.10.006
Viaene, S. (2013). Data scientists aren’t domain experts. In IT Professional (Vol.
15, Issue 6, pp. 12–17). https://doi.org/10.1109/MITP.2013.93
Wang, D., Xiang, Z., Law, R., & Ki, T. P. (2016). Assessing Hotel-Related
Smartphone Apps Using Online Reviews. Journal of Hospitality Marketing
and Management, 25(3), 291–313.
https://doi.org/10.1080/19368623.2015.1012282
Watanabe, N. M., Shapiro, S., & Drayer, J. (2021). Big data and analytics in sport
management. Journal of Sport Management, 35(3), 197–202.
https://doi.org/10.1123/JSM.2021-0067
Webb, T., & Legg, M. (2021). The Emerging Need for Hospitality Students with
Analytical Skills. Journal of Hospitality and Tourism Research, 45(5), 892–
894. https://doi.org/10.1177/10963480211020560
Xia, H., Vu, H. Q., Law, R., & Li, G. (2020). Evaluation of hotel brand
competitiveness based on hotel features ratings. International Journal of
Hospitality Management, 86. https://doi.org/10.1016/j.ijhm.2019.102366
Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2010). Services Marketing
Strategy. In Wiley International Encyclopedia of Marketing. John Wiley &
Sons, Ltd. https://doi.org/10.1002/9781444316568.wiem01055
Zong, Y., Dai, Y. Y., & Xue, B. (2022). Hospitality Curriculum Reform with the
Integration of Big Data Technology for Bachelor Program in China Mainland
and Taiwan: Exploration of the Stakeholders’ Perspectives. In Technology
Application in Tourism in Asia: Innovations, Theories and Practices (pp. 201–
217). Springer International Publishing. https://doi.org/10.1007/978-981-16-
5461-9_12
交通部觀光局. (2020). 109-111 年 重點產業人才供需調查及推估結果 摘
錄 旅宿業 辦理機關:交通部觀光局.
吳啟誠, & 張瓊云. (2020). 主題分析在教育研究上的應用. In 吳啟誠, & 張瓊云. (2020). 主題分析在教育研究上的應用. 特殊教育發展期刊,(69), 29-42.
國家發展委員會. (2020). 產業人力供需資訊網-職業別人力需求推估.
林金定, 嚴嘉楓, & 陳美花. (2005). 質性研究方法:訪談模式與實施步驟
分析. 身心障礙研究季刊, 3(2), 122–136.
鄭健雄, & 林士彥. (2009). 以平衡計分卡觀點探討休閒渡假旅館績效指標應用模糊層級分析法. 品質學報, 16(6).
陳韋辰. (2021). 旅館業產業調查報告. 台灣趨勢研究.
高淑清. (2001). 在美華人留學生太太的生活世界:詮釋與反思. 本土心理
學研究, 16, 225–285.
李慶芳(2012年9月13日)。在跨域研究與個人質性修煉的反思,不用數字的研究,質性
資料分析五步曲。取自http://reswithoutnumbers.blogspot.tw/2012/09/blog-post.html
陳韋辰。(2021)。旅館業產業調查報告。台灣趨勢研究。
取自https://www.twtrend.com/trend-detail/hotel-trend01/
勞動部勞動力發展署職能發展應用平台。(n.d.)。
取自 https://icap.wda.gov.tw/ap/index.php
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top