跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇香菱
研究生(外文):SU, XIANG-LING
論文名稱:球型紅桿菌對水耕芝麻葉產量、抗氧化能力與營養素含量之影響
論文名稱(外文):Effects of rhodobacter sphaeroides on the yield, antioxidant capacity and nutrient contents of hydroponic-grown arugula
指導教授:蔡蕙芸
指導教授(外文):TSAI, HUI-YUN
口試委員:葉耀宗胡淳怡
口試委員(外文):YEH, YAO-TSUNGHU, CHUN-YI
口試日期:2024-01-19
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:保健營養系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:78
中文關鍵詞:水耕栽培光合菌芝麻葉產量營養素抗氧化能力
外文關鍵詞:Hydroponic cultivationPhotoautotrophic bacteriaSesame leavesYieldNutrientsAntioxidant capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
芝麻葉 (Arugula) 屬十字花科的蔬菜,營養價值極高,具有葉黃素、β-胡蘿蔔素、維生素A、維生素C、維生素K、葉酸和多種礦物質以及膳食纖維的天然來源。芝麻葉具有強化身體解毒機能的硫代葡萄糖苷,也富含相當高的抗氧化活性,能夠提高人體ORAC(Oxygen radical absorbance capacity)氧化自由基清除能力。光合細菌廣泛分佈於水田、河川、海洋和土壤中的一大類微生物,為革蘭氏陰性細菌。近年來應用在水產養殖業及農業上,以微生物作為植物肥料,可幫助植物吸收養分以及維持健康並且能減少農化產品的使用,因此也被視為一種對生態環境友善的施肥方式。本研究目的旨在評估透過水耕栽培方式添加光合菌微生物hodobacter sphaeroides(ATCC17023) 作為生物性肥料對十字花科的裂葉芝麻葉產量 (鮮乾重)、營養素含量、抗氧化能力之影響。根據實驗結果顯示,在水耕芝麻葉中,光合細菌的共培養不僅提升芝麻葉產量 (p<0.05),且相較於未添加光合菌的組別顯著增加其根重、生長重量、地上重和葉片數 (p<0.05)。在DPPH自由基清除能力試驗中,芝麻葉水萃物在1.25、2.5、5μg/mL的濃度下,皆可顯著增加的自由基清除能力,隨著劑量的提高抗氧化活性呈現上升的趨勢,且光合菌添加組效果顯著優於未添加組 (p<0.05)。此外,在總抗氧化能力TEAC試驗中,光合菌與芝麻葉的共培養亦顯著增加芝麻葉的總抗氧化能力 (p<0.05)。綜合以上結果得知,R.sphaeroides光合菌潛力菌株可利用做為水耕栽培系統上的微生物肥料,達到增加作物產量與增加抗氧化活性之效果。
Sesame leaves (Arugula), belonging to the Brassicaceae family, are highly nutritious vegetables rich in lutein, β-carotene, vitamin A, vitamin C, vitamin K, folic acid, various minerals, and dietary fiber. Sesame leaves contain glucosinolates that enhance the body's detoxification capabilities and are also high in antioxidant activity, contributing to improved ORAC (oxygen radical absorbance capacity) in the human body. Photoautotrophic bacteria, a widespread type of microorganism found in paddy fields, rivers, oceans, and soil, are Gram-negative bacteria. In recent years, they have been applied in aquaculture and agriculture as microbial fertilizers to help plants absorb nutrients, maintain health, and reduce the use of chemical products, making them an environmentally friendly fertilization method.
This study aims to assess the impact of adding the photosynthetic bacterium Rhodobacter sphaeroides (ATCC17023) through hydroponic cultivation as a biofertilizer on the yield (fresh and dry weight), nutrient content, and antioxidant capacity of Brassicaceae, specifically split-leaved sesame leaves. The experimental results indicate that co-cultivation with photoautotrophic bacteria not only significantly increases the yield of sesame leaves in hydroponics (p<0.05) but also significantly increases root weight, total weight, above-ground weight, and leaf number compared to the group without the addition of photoautotrophic bacteria (p<0.05).In the DPPH free radical scavenging test, sesame leaf extracts at concentrations of 1.25, 2.5, and 5μg/mL significantly increased free radical scavenging capacity, showing an upward trend in antioxidant activity with increasing dosage. Moreover, the group with added photoautotrophic bacteria exhibited significantly better results than the group without (p<0.05). Additionally, in the total antioxidant capacity TEAC test, co-cultivation of photoautotrophic bacteria with sesame leaves also significantly increased the total antioxidant capacity of sesame leaves (p<0.05).In summary, the photosynthetic bacterium strain ATCC17023 shows potential as a microbial fertilizer in hydroponic cultivation systems, leading to increased crop yield and enhanced antioxidant activity.

誌謝 i
摘 要 iv
Abstract v
目 錄 vii
表 目 錄 viii
圖 目 錄 ix
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 4
第四節 研究方法與研究假說 6
第二章 文獻探討 7
第一節 光合菌-球形紅桿菌(Rhodobacter sphaeroides) 7
第二節 微生物肥料 10
第三節 水耕栽培與水耕蔬菜 12
第四節 抗氧化能力 13
第五節 芝麻葉營養素 14
第三章 研究方法 18
第一節 研究流程 18
第二節 研究架構與假說 21
第三節 實驗設計與嚴謹度 22
第四章 材料與方法 25
第一節 實驗材料與儀器設備 25
第二節 實驗方法 30
第三節 資料分析方法 36
第五章 結果 44
第一節 實驗植株每日PH、EC、溫度監測統計 44
第二節 光合菌對水耕芝麻葉之葉片數產量之影響 50
第三節 光合菌對水耕芝麻葉之生長重量之影響 52
第四節 光合菌對水耕芝麻葉之地上重/根重產量之影響 54
第五節 水耕芝麻葉採收後總產量分析 56
第六節 光合菌對水耕芝麻葉自由基清除能力之效果 57
第七節 光合菌對水耕芝麻葉不總抗氧化能力之效果 59
第八節 水耕芝麻葉之營養素含量分析 61
第六章 討論 66
第七章 結論 71
第八章 參考文獻 72

丁正蓉,2023,芝麻葉於傳統土耕水耕以及魚菜生態農法種植之分析與品評,私立銘傳大學,碩士論文,桃園市。
尤婉緹,2014,施用微生物肥料在不同因子下對於植物及斜紋夜蛾生長之影響,國立中興大學,博士論文,桃園市。
王秋菊,2006,“光合細菌在植物上的應用現況及展望”, 黑龍江八一農墾大學學報,5期,頁25~29,2月。
何星瑩,2020,農民共學機制的建構與運作-以光合菌農民共學社群的發展為例,國立成功大學,碩士論文,台南市。
吳小平,呂川冰,陳鋒,2004,“光合細菌在種植業上的應用研究”,江西農業大學學報,2期。
沈馨仙、郭旻奇、張思平、鍾佳玲、楊榮季,2010,“抗氧化劑及常見之抗氧化活性評估方法”,繼續教育,26期,頁132~137。
許書華、羅凱軍、方煒、盧虎生、劉啟德,2015,“利用光合菌微生物肥料降低水耕葉菜類中的硝酸鹽含量”,作物、環境與生物資訊,12期,頁30~41。
陳俊位,2017,微生物製劑在設施蔬菜栽培之應用實務,臺中區農業改良場。
陳柏宇,2022,農業用微生物製劑創新創業發展之研究,國立臺灣大學,碩士論文,台北市。
陳榮秀,2005,中草藥化粧品中抗氧化能力之有效性評估,嘉南藥理科技大學化粧品科技研究所,CNIC-01 子計畫(3)。
黃威特、曾景漢、許書華、牟家緯、黃筑甯、李昆達、盧虎生、劉啟德,2013,“自台灣本土分離篩選的固氮菌與光合菌對小白菜生長促進的效果”,植物病理學會刊,22卷,1期,頁31~44。
楊秋中,2014,“微生物肥料在作物生長的作用機制”,農業生物資材產業發展研討會專刊,59-68。
路家文,2005,花豆水耕栽培技術之改良對二點葉蟎(Tetranychus urticae Koch)產量及二點葉蟎危害對花豆多酚氧化酵素活性之影響,國立中興大學昆蟲學系碩士論文,台中市。
劉熙、廖本裕,2004,無土蔬菜栽培,五洲出版社。
蔡蕙芸,2007,龍眼花水翠物對高果糖誘發代謝症候群大鼠之影響,國立台灣大學生物資源暨農學院食品科技研究所,碩士論文,台北市。
蕭淯文,2012,淡水與土壤環境中的新種細菌之鑑定與分類,國立高雄海洋科技大學,碩士論文,高雄市。
羅定棋,張永輝,陳一龍,梁鷹,2008,“光合菌肥在煙草上的應用研究”,瀘州科技, 4期。

Adesemoye A. O., Torbert H.A. & Kloepper J.W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol., Vol.58, pp.921-929.
Agarwal Ankur, Prakash Om, Sahay Devi, Kumar Pradeep & Bala Madhu (2019). Hydroponics (Soil-Less Cultivation): A Space Effective and Water Efficient Technology for Sustainable Agriculture. International Journal of Agriculture, 1(1).
Agte, V. (2000). Potential of traditionally cooked green leafy vege tables as natural sources for supplementation of eight micronutrients in vegetarian diets. Journal of Food Composition and Analysis, 13(6), 885-891.
Aidan Connolly (2023). Are Microbes The Future Of Fertilizer ? Forbes. Retrieved from https://www.forbes.com/sites/forbestechcouncil/ 2023/04/24/are-microbes-the-future-of-fertilizer/
Aizawa Shin-Ichi. (2014). Rhodobacter sphaeroides-A Resourceful Little Bug, Encyclopedia of Biological Chemistry (Third Edition).
AlShrouf, A. (2017). Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. American Scientific Research Journal for Engineering, Technology, and Sciences, 27(1), 247-55. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2543
Atlas Scientific. (2023). Nutrient Solution For Hydroponics–The Ultimate Guide. Pinterest, Retrieved from https://www.pinterest.com/pin/ 798403840218699851/.
Connolly EL., Sim M. & Travica N. (2021). Glucosinolates from cruciferous vegetables and their potential role in chronic disease: investigating the preclinical and clinical evidence. Front Pharmacol, 2021(12), 767-975.
Fageria, N.K & Baligar, V.C. (2005). Enhancing Nitrogen Use Efficiency in Crop Plants. Advances in Agronomy, 88, 97-185.
Gautam Kamini, Sirohi Chhavi, N. Singh Raju, Thakur Yourmila, Jatav Surendra Singh, Rana Kiran, Chitara Manoj, Meena Rajendra Prasad, Singh Ashish Kumar & Parihar Manoj. (2021). Microbial biofertilizer: Types, applications, and current challenges for sustainable agricultural production. Biofertilizers, 1, 3-19.
Gerald F. & Combs, JR. (1992). The Vitamins Fundamental Aspects in Nutrition and Health. Academic Press, 181.
Gray EJ & Smith DL. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395-412.
Gupta Sajal, Finelli Renata, Agarwal Ashok & Henkel Ralf. (2020). Total antioxidant capacity—Relevance, methods and clinical implications. Andrologia, 53(2), 13264.
Han Ximei, Liu Ling, Gong Huiyu, Luo Linpin, Han Yaru, Fan Jiawen, Xu Chenfei, Yue Tianli, Wang Jianlong & Zhang Wentao. (2022). Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food. Food Chemistry, 371(1), 131115.
Heaney R.P., Weaver C.M., Hinders S.M., Martin B. & Packard P.T. (1993). Absorbability of Calcium from Brassica Vegetables: Broccoli, Bok Choy, and Kale. Journal of Food Science, 58(6), 1378-1380.
Hewitt, E. J. (1966). Sand and water culture method used in the study of plant nutrient. Commonwealth Agricultural Bureaux.
Hirel Bertrand. (2011). Improving Nitrogen Use Efficiency in Crops for Sustainable. Agriculture Sustainability, 3(9), 1452-1485.
Hunter, C. N., Daldal F., Thurnauer M. C. & Beatty, J. T. (2009). The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Vol. 28.
Hussain, A. (2014). A review on the science of growing crops without soil (soilless culture)a novel alternative for growing crops. International Journal of Agriculture and Crop Sciences, 7(11), 833.
Jaafar, N.S. & Jaafar I.S. (2019). Eruca sativa Linn.: Pharmacognostical and pharmacological properties and pharmaceutical preparations. Asian J Pharm Asian J Pharm Clin Res, Clin Res, 12(3), 39-45.
James Ducker. (2022). The Impacts of a Growing Population on Agriculture. AZO Life Sciences.
Jin, H., Zhao, Y., Lei, X., Xue G., Tang Y., & He, Y. (2011). Presented at the Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). International Conference , 19-20 .
Knop W. (1865). Quantitative Untersuchungen über die Ernährungsprozesse der Pflanzen. Landwirtsch, 7, 93-107.
Kobayashi. (2004). Waste Remediation and Treatment Using Anoxygenic Phototrophic Bacteria. Anoxygenic Photosynthetic Bacteria,2, 1269-1282.
Lee S-S, Oh TJ, Kim J, Kim J-B & Lee H-S. (2009). Bacteriocin from purple nonsulfur phototrophic bacteria, Rhodobacter capsulatus. J. Bacteriol, 39, 269-276.
Lee SW, Ahn IP, Sim SY, Lee SY, Seo MW, Kim Sn, Park SY, Lee YH & Kang SC. (2010). Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. European Journal of Plant Pathology, 126(1), 1-11.
Loach, P. A. (2000). Supramolecular complexes in photosynthetic bacteria, P Natl A, 97(10), 5016-5018.
Mandal Surajit De & Passari Ajit Kumar. (2021). Recent Advancement in Microbial Biotechnology. Academic Press.
Martínez Sánchez, A. (2008). A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. Journal of agricultural and food chemistry, 5656(7), 2330-2340.
Moses, T. , Mehrshahi, P. , Smith, A. G., & Goossens, A. (2017). Synthetic biology approaches for the production of plant metabolites in unicellular organisms. Journal of Experimental Botany, 68, 4057-4074.
Numan Muhammad, Bashir Samina, Khan Yasmin, Mumtaz Roqayya, Shinwari Zabta Khan, Khan Abdul Latif, Khan Ajmal & Al-Harrasi Ahmed. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res, 209, 21-32.
Oda Y., Wanders W., Huisman L. A., Meijer W. G., Gottschal J. C., & Forney L. J. (2002). Genotypic and Phenotypic Diversity within Species of Purple Nonsulfur Bacteria Isolated from Aquatic Sediments. Appl. Environ Microbiol, 68, 3467-3477.
Orsi Enrico, Beekwilder Jules, Eggink Gerrit, Kengen Servé W. M.& Weusthuis Ruud A. (2021). The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng, 118(2), 531–541.
Orsi Enrico, Folch P. L., Monje-López Vicente T., Fernhout Bas M, Turcato Alessandro, Kengen Servé W M, Eggink Gerrit & Weusthuis R. A. (2019). Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium. Journal of Industrial Microbiology and Biotechnology, 46(8), 1179-1190.
Packer Lester & Fuchs Jurgen. (1992). Vitamin E in Health and Disease, Marcel Dekker, Inc, New York.Basel, Hong Kong.
Packer Lester & Fuchs Jurgen. (1997). Vitamin C in Health and Disease, Marcel Dekker, Inc, New York, Basel, Hong Kong.
Perry L. & Metzger J. (1978). Medicinal plants of SE Asia: attributed properties and uses, The MIT Press: Cambridge, London, UK Massachusetts, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. Eur. J. Plant Pathol, 126, 1-11.
Podsędek Anna. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT - Food Science and Technology, 40(1), 1-11.
Resh, H.M. (2013). Hydroponic Food Production: a Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, CRC Press, Boca Raton, FL.
Reyes L. F., Villarreal J. E. & Cisneros-Zevallos Luis. (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry, 101(3), 1254-1262.
Sachs J. (1860). Berichte über die physiologische Tätigkeit an der Versuchsstation in Tharandt. IV, Vegetationsversuche mit Ausschluss des Bodens über, die Nährstoffe und sonstigen Ernährungsbedingungen von Mais, Bohnen und anderen Pflanzen. Landwirtsch, 2, 219-268.
Sathyanarayana Sowmya Ranganathapura, Gangadhar Warke Vishal, Badrinath Mahajan Girish., Ravindra Raut Manish. & Shriramrao Annapure Uday. (2022). Hydroponics: An Intensified Agriculture Practice to Improve Food Production. Reviews in Agriculatural Science, 10, 101-114.
Sharma N, Acharya S, Kumar K, Singh N & Chaurasia O.P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371.
Shinohara Makoto, Aoyama Chihiro, Fujiwara Kazuki, Watanabe Atsunori, Ohmori Hiromi, Uehara Yoichi & Takano Masao. (2010). Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Science and Plant Nutrition, 57(2), 190-203.
Su Anping, Chi Shuang, Li Ying, Tan Siyuan, Qiang Shan, Chen Zhi & Meng Yonghong. (2018). Metabolic Redesign of Rhodobacter sphaeroides for Lycopene Production, J Agric Food Chem, 66(23), 5879-5885.
Tani Kazutoshi, Nagashima Kenji V. P., Kanno Ryo, Kawamura Saki, Kikuchi Riku, Hall Malgorzata, Yu Long-Jiang, Kimura Yukihiro, Madigan Michael T., Mizoguchi Akira, Humbel Bruno M. & Wang-Otomo Zheng-Yu. (2021). A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nature Communications, 12.
Treftz, C. & Omaye, S.T. (2016). Hydroponics: potential for augmenting sustainable food production in non-arable regions. Nutrition & Food Science, 46 (5), 672-684.
U.S. Department of Agriculture. (2023). Arugula, FoodData Central.
Yuan H., Ge T., Chen C., O'Donnell A. G. & Wu, J. (2012). Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon. Applied and Environmental Microbiology, 78, 2328-2336.

電子全文 電子全文(網際網路公開日期:20290715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊