跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳科仰
研究生(外文):CHEN, KE-YANG
論文名稱:篩選美白兼抗細胞氧化傷害功效植萃之研究
論文名稱(外文):Screen and study of dual functional plant extract with whitening and antioxidation.
指導教授:張聰民張聰民引用關係
指導教授(外文):CHANG, TSONG-MIN
口試委員:周怡真黃蕙君張聰民
口試委員(外文):CHOU, YI-CHENHUANG, HUEY-CHUNCHANG,TSONG-MIN
口試日期:2024-07-08
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品應用系碩士班
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:74
中文關鍵詞:植物萃取保養品B16F10美白抗氧化
外文關鍵詞:Plant extractsSkin care productsB16F10whiteningantioxidant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物萃取保養品向來備受全球關注,而近年來我們發現全球保養品市場正逐漸注重植物萃取物在美白、抗氧化和抗衰老等領域的重要性。因此,本論文旨在篩選與探究新穎植物萃取物在美白和抗氧化方面的潛力。選擇木立蘆薈、黑楊樹、海帶、薰衣草、牡丹、母菊和油橄欖等七種植物作為研究對象,因為每種植物都擁有獨特的性質,可能對美白和抗氧化產生不同程度的影響。透過研究這些植物,探討各種植物萃取可能的美白作用機制與緩解細胞氧化壓力的作用。
從國際保養品趨勢、經濟價值和皮膚護理的角度來看,本研究還探討了植物提取物在美白、抗氧化的應用,以及其在細胞模式的分子作用機制。在蕈菇酪胺酸酶的實驗中,海帶萃取有79%的酵素活性抑制率。在B16F10細胞黑色素含量測定分析中,與空白組比較,經過木立蘆薈、黑楊樹、海帶、薰衣草、牡丹、母菊和油橄欖處理的細胞中,黑色素含量分別為62.31%、57.97%、68.57%、53.88%、61.44%、76.12%、55.72%。在自由基清除力試驗中,DPPH的清除百分率分別如下:木立蘆薈17.35%、黑楊樹78.74%、海帶36.71%、薰衣草77.70%、牡丹77.06%、母菊84.20%和油橄欖81.24%。 緩解細胞內氧化壓力實驗結果顯示,細胞中ROS含量百分比黑楊樹為50.56%、海帶66.31%與薰衣草56.85%,在七種植萃當中表現較好的。同樣地,抗發炎實驗結果發現黑楊樹96.96%、海帶92.80%、薰衣草98.72%,三種植萃的抗發炎效果較為顯著。
進一步探討海帶、黑楊樹、薰衣草的美白機制,發現海帶萃取對於MITF、TPR-1、TPR-2等表現量的抑制效果,有劑量依賴性(dose-dependent effect),其美白機制可能是透過PKA/CREB路徑。另一方面,黑楊樹萃取則在濃度(0.055 mg/mL),表現出對MITF、TRP-1、TRP-2較明顯的抑制效果,其可能的分子作用機制,則是透過MAPK/ERK/p38/JNK為其最主要的細胞作用路徑。薰衣草萃取對於TRP-1、MC1R有顯著的抑制作用,而PKA/CREB and MAPK/ERK/p38/JNK則為其最主要的細胞作用路徑。本研究的結果建立功效性植物萃取的篩選評估模式,有助於推動植物萃取在化妝品產業的應用發展,以提升植物萃取潛在的化妝品產業經濟價值。

Plant extract skin care products have always attracted global attention. Recently, it was found that plant extracts exert whitening, antioxidant or anti-aging capacities and play important roles in the global skin care product market. Therefore, this thesis aims to screen and explore the potentials of novel plant extracts with dual functions in whitening and antioxidant. Seven plants, including Aloe arborescens、PopμLus nigra、Laminaria japonica、LavandμLa hybrida、Paeonia suffruticosa、Matricaria chamomilla as well as Olea europaea were selected as research subjects because each plant has unique properties and exhibit various whitening and antioxidants characteristics. By studying these plants, we investigate the possible whitening mechanisms and the effects of various plant extracts on relieving cellular oxidative stress.
From the perspective of international skin care product trends, economic value and skin care products, this study also explores the application of plant extracts in whitening and antioxidants, as well as their molecular mechanism of action in cellular model. In experiments on mushroom tyrosinase, Laminaria japonica extract had a 79% inhibition rate on enzyme activity. In the analysis of melanin content of B16F10 cells, compared with the blank group, the melanin content of cells treated with Aloe arborescens, Populus nigra, Laminaria japonica, Lavandula hybrida, Paeonia suffruticosa, Matricaria chamomilla and Olea europaea were 62.31%, 57.97%, 68.57%, 53.88%, 61.44%, 76.12%, 55.72% respectively. In the free radical scavenging experiments, the DPPH scavenging percentages were as follows: Aloe arborescens, 17.35%; Populus nigra, 78.74%; Laminaria japonica, 36.71%; Lavandula hybrida, 77.70%; Paeonia suffruticosa, 77.06%; Matricaria chamomilla, 84.20% and Olea europaea, 81.24%. The experimental results of alleviating intracellular oxidative stress showed that the ROS content in cells was 50.56% for Populus nigra, 66.31% for Laminaria japonica and 56.85% for Lavandula hybrida, which performed better among the seven plant extracts. Similarly, the anti-inflammatory test results indicated that exerted significant anti-inflammatory effects including three extracts, Populus nigra 96.96%, Laminaria japonica 92.80% and Lavandula hybrida 98.72%, were significant.
To elucidate the possible whitening mechanisms of Laminaria japonica, Populus nigra, and Lavandula hybrida, it was found that Laminaria japonica extract has a dose-dependent inhibitory effects on the protein levels of MITF, TPR-1, TPR-2, etc. The whitening mechanism of Laminaria japonica may be through the PKA/CREB signaling pathway. On the other hand, Populus nigra extract showed a significant inhibitory effect on MITF, TRP-1, and TRP-2 at a concentration of 55ug/mL. Its possible molecular action mechanism is through MAPK/ERK/p38/JNK signaling pathway. Lavandula hybrida extract has a significant inhibitory effect on protein levels of TRP-1 and MC1R, and its main cellular action pathways PKA/CREB and MAPK/ERK/p38/JNK pathways. The results of this study establish a screening and evaluation model for functional plant extracts, which will help promote the application and development of plant extracts in the cosmetics industry and enhance the potential economic value of plant extracts in the cosmetics industry.

目錄
致謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
壹、前言介紹 1
貳、材料與方法 16
一、 實驗藥品與器材 16
二、 實驗方法 22
參、結果與分析討論 31
一、 植物萃取液對蕈菇酪胺酸酶活性影響 31
二、 植物萃取液對 B16F10細胞黑色素含量影響 32
三、 植物萃取對之DPPH自由基清除能力 33
四、 植物萃取總酚含量測試 34
五、 海帶萃取液對黑色素合成相關蛋白質表現量之影響 35
六、 海帶萃取液對黑色素合成訊息路徑相關蛋白質表現量之影響 36
七、 薰衣草萃取液對黑色素合成相關蛋白質表現量之影響 37
八、 薰衣草植物萃取液對黑色素合成訊息路徑相關蛋白質表現量之影響 37
九、 黑楊樹萃取液對黑色素合成相關蛋白質表現量之影響 38
十、 黑楊樹植物萃取液對黑色素合成訊息路徑相關蛋白質表現量之影響 39
十一、抗老化分析(氧化壓力傷害實驗) 39
十二、抗發炎實驗 41
肆、討論 42
伍、結論 48
陸、參考文獻 50
柒、結果圖 55


圖目錄
圖一、植物萃取液對蘑菇酪胺酸酶活性影響 55
圖二、植物萃取液對 B16F10細胞黑色素含量影響 56
圖三、DPPH 自由基清除率測定 57
圖四、總酚含量測定分析 58
圖五、海帶萃取液對黑色素合成相關蛋白質表現量 59
圖六、海帶萃取液抑制黑色素合成蛋白質表現量濃度比較表 60
圖七、海帶萃取液對黑色素合成訊息路徑相關蛋白質表現量 61
圖八、海帶萃取液對黑色素合成訊息路徑蛋白質表現量濃度比較表 62
圖九、薰衣草萃取液對黑色素合成相關蛋白質表現量 63
圖十、薰衣草萃取液抑制黑色素合成蛋白質表現量濃度比較表 64
圖十一、薰衣草萃取液對黑色素合成訊息路徑相關蛋白質表現量 65
圖十二、薰衣草萃取液對黑色素合成訊息路徑蛋白質表現量濃度比較表 66
圖十三、黑楊樹萃取液對黑色素合成相關蛋白質表現量 67
圖十四、黑楊樹萃取液對黑色素合成相關蛋白質含量比較表 68
圖十五、黑楊樹萃取液對黑色素合成訊息路徑相關蛋白質表現量 69
圖十六、黑楊樹萃取液對黑色素合成訊息路徑蛋白質表現量濃度比較圖 70
圖十七、氧化壓力傷害實驗 71
圖十八、海帶萃取液美白作用機制圖 72
圖十九、薰衣草萃取液美白作用機制圖 73
圖二十、黑楊樹萃取液美白作用機制圖 74


Atwi-Ghaddar, S., Zerwette, L., Destandau, E., & Lesellier, E. (2023). Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier. Molecules, 28(14). https://doi.org/10.3390/molecules28145485
Briante, R., Patumi, M., Terenziani, S., Bismuto, E., Febbraio, F., & Nucci, R. (2002). Olea europaea L. leaf extract and derivatives: Antioxidant properties
[Article]. Journal of Agricultural and Food Chemistry, 50(17), 4934-4940, Article Unsp jf025540p. https://doi.org/10.1021/jf025540p
Choi, H., Yoon, J.-H., Youn, K., & Jun, M. (2022). Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomedicine & Pharmacotherapy, 147, 112651. https://doi.org/https://doi.org/10.1016/j.biopha.2022.112651
Choi, J. S., Moon, W. S., Choi, J. N., Do, K. H., Moon, S. H., Cho, K. K., Han, C. J., & Choi, I. S. (2013). Effects of seaweed Laminaria japonica extracts on skin moisturizing activity in vivo [Article]. Journal of Cosmetic Science, 64(3), 193-205. ://WOS:000209377400004
Costa, E. F., Magalhães, W. V., & Di Stasi, L. C. (2022). Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules, 27(21). https://doi.org/10.3390/molecules27217518
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/molecules15107313
Di Luccia, B., Manzo, N., Vivo, M., Galano, E., Amoresano, A., Crescenzi, E., Pollice, A., Tudisco, R., Infascelli, F., & Calabrò, V. (2013). A biochemical and cellular approach to explore the antiproliferative and prodifferentiative activity of Aloe arborescens leaf extract. Phytother Res, 27(12), 1819-1828. https://doi.org/10.1002/ptr.4939
Dobros, N., Zawada, K. D., & Paradowska, K. (2022). Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules, 28(1). https://doi.org/10.3390/molecules28010256
Ekiert, H., Klimek-Szczykutowicz, M., & Szopa, A. (2022). Paeonia × suffruticosa (Moutan Peony)-A Review of the Chemical Composition, Traditional and Professional Use in Medicine, Position in Cosmetics Industries, and Biotechnological Studies. Plants (Basel), 11(23). https://doi.org/10.3390/plants11233379
Gawel-Beben, K., Czech, K., Strzepek-Gomolka, M., Czop, M., Szczepanik, M., Lichtarska, A., & Kukula-Koch, W. (2022). Assessment of Cucurbita spp. Peel Extracts as Potential Sources of Active Substances for Skin Care and Dermatology [Article]. Molecules, 27(21), 19, Article 7618. https://doi.org/10.3390/molecules27217618
Grigore, A., Vulturescu, V., Neagu, G., Ungureanu, P., Panteli, M., & Rasit, I. (2022). Antioxidant-Anti-Inflammatory Evaluation of a Polyherbal Formula
[Article]. Pharmaceuticals, 15(2), 16, Article 114. https://doi.org/10.3390/ph15020114
Hegazy, A. K., Mohamed, A. A., Ali, S. I., Alghamdi, N. M., Abdel-Rahman, A. M., & Al-Sobeai, S. (2019). Chemical ingredients and antioxidant activities of underutilized wild fruits. Heliyon, 5(6), e01874. https://doi.org/10.1016/j.heliyon.2019.e01874
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 97(10), 2499-2574. https://doi.org/10.1007/s00204-023-03562-9
Kim, D. H., Shin, D. W., & Lim, B. O. (2023). Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules, 28(7). https://doi.org/10.3390/molecules28072981
Kim, N. H., & Lee, A. Y. (2023). Oxidative Stress Induces Skin Pigmentation in Melasma by Inhibiting Hedgehog Signaling. Antioxidants (Basel), 12(11). https://doi.org/10.3390/antiox12111969
Kim, T., Kang, J. K., & Hyun, C. G. (2023). 6-Methylcoumarin Promotes Melanogenesis through the PKA/CREB, MAPK, AKT/PI3K, and GSK3β/β-Catenin Signaling Pathways. Molecules, 28(11). https://doi.org/10.3390/molecules28114551
Lee, H. R., Jung, J. M., Seo, J. Y., Chang, S. E., & Song, Y. (2021). Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. J Ginseng Res, 45(5), 555-564. https://doi.org/10.1016/j.jgr.2020.11.003
Lee, K. S., Cho, E., Weon, J. B., Park, D., Fréchet, M., Chajra, H., & Jung, E. (2020). Inhibition of UVB-Induced Inflammation by Laminaria japonica Extract via Regulation of nc886-PKR Pathway. Nutrients, 12(7). https://doi.org/10.3390/nu12071958
Li, J., Jiang, S., Huang, C., & Yang, X. (2022). Atraric Acid Ameliorates Hyperpigmentation through the Downregulation of the PKA/CREB/MITF Signaling Pathway. Int J Mol Sci, 23(24). https://doi.org/10.3390/ijms232415952
Li, T. T., Liao, Z. Q., Chen, M. Y., Liu, D. L., Zhang, S. B., Lin, L., Zheng, H. H., Liao, Q. F., Xie, Z. Y., & Song, F. Y. (2018). Simultaneous qualitative and quantitative determination of compounds in Aloe arborescens Mill using liquid chromatography with ion trap time-of-flight mass spectrometry and diode array detectors [Review]. Separation Science Plus, 1(10), 640-649. https://doi.org/10.1002/sscp.201700048
Lin, D., Wang, S. H., Song, T. Y., Hsieh, C. W., & Tsai, M. S. (2019). Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells [Article]. Journal of Cosmetic Dermatology, 18(6), 1921-1929. https://doi.org/10.1111/jocd.12902
Liu, B., Xie, Y., & Wu, Z. (2020). Astragaloside IV Enhances Melanogenesis via the AhR-Dependent AKT/GSK-3β/β-Catenin Pathway in Normal Human Epidermal Melanocytes. Evid Based Complement Alternat Med, 2020, 8838656. https://doi.org/10.1155/2020/8838656
Liu, H.-M., Tang, W., Wang, X.-Y., Jiang, J.-J., Zhang, Y., Liu, Q.-L., & Wang, W. (2023). Experimental and theoretical studies on inhibition against tyrosinase activity and melanin biosynthesis by antioxidant ergothioneine. Biochemical and Biophysical Research Communications, 682, 163-173. https://doi.org/https://doi.org/10.1016/j.bbrc.2023.10.007
López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., Balboa, E. M., Falqué, E., & Domínguez, H. (2021). Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs, 19(10). https://doi.org/10.3390/md19100552
Luo, L., Yu, X., Zeng, H., Hu, Y., Jiang, L., Huang, J., Fu, C., Chen, J., & Zeng, Q. (2023). Fraxin inhibits melanogenesis by suppressing the ERK/MAPK pathway and antagonizes oxidative stress by activating the NRF2 pathway. Heliyon, 9(8), e18929. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e18929
Maack, A., & Pegard, A. (2016). Populus nigra (Salicaceae) absolute rich in phenolic acids, phenylpropanoïds and flavonoids as a new potent tyrosinase inhibitor. Fitoterapia, 111, 95-101. https://doi.org/10.1016/j.fitote.2016.04.001
Maliehe, T. S., Nqotheni, M. I., Shandu, J. S., Selepe, T. N., Masoko, P., & Pooe, O. J. (2023). Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill [Article]. Plants-Basel, 12(4), 12, Article 869. https://doi.org/10.3390/plants12040869
Manconi, M., Caddeo, C., Nacher, A., Diez-Sales, O., Peris, J. E., Ferrer, E. E., Fadda, A. M., & Manca, M. L. (2019). Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection. Colloids Surf B Biointerfaces, 184, 110504. https://doi.org/10.1016/j.colsurfb.2019.110504
Mikayoulou, M., Mayr, F., Temml, V., Pandian, A., Vermaak, I., Chen, W., Komane, B., Stuppner, H., & Viljoen, A. (2021). Anti-tyrosinase activity of South African Aloe species and isolated compounds plicataloside and aloesin. Fitoterapia, 150, 104828. https://doi.org/https://doi.org/10.1016/j.fitote.2021.104828
Monmai, C., Kim, J. S., Chin, J. H., Lee, S., & Baek, S. H. (2023). Inhibitory Effects of Polyphenol- and Flavonoid-Enriched Rice Seed Extract on Melanogenesis in Melan-a Cells via MAPK Signaling-Mediated MITF Downregulation. Int J Mol Sci, 24(14). https://doi.org/10.3390/ijms241411841
Moon, S. Y., Akter, K. M., Ahn, M. J., Kim, K. D., Yoo, J., Lee, J. H., Lee, J. H., & Hwangbo, C. (2022). Fraxinol Stimulates Melanogenesis in B16F10 Mouse Melanoma Cells through CREB/MITF Signaling. Molecules, 27(5). https://doi.org/10.3390/molecules27051549
Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci, 22(7). https://doi.org/10.3390/ijms22073380
Myo, H., & Khat-Udomkiri, N. (2022). Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason Sonochem, 89, 106127. https://doi.org/10.1016/j.ultsonch.2022.106127
Pourzand, C., Albieri-Borges, A., & Raczek, N. N. (2022). Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel), 11(3). https://doi.org/10.3390/antiox11030471
Robu, S., Aprotosoaie, A. C., Miron, A., Cioanca, O., Stanescu, U., & Hancianu, M. (2012). In vitro antioxidant activity of ethanolic extracts from some Lavandula species cultivated in Romania [Article]. Farmacia, 60(3), 394-401. ://WOS:000305657700011
Royer, M., Prado, M., García-Pérez, M. E., Diouf, P. N., & Stevanovic, T. (2013). Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition, 1(4), 158-167. https://doi.org/https://doi.org/10.1016/j.phanu.2013.05.001
Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C., & Wu, Y. J. (2013). Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci, 14(10), 20443-20458. https://doi.org/10.3390/ijms141020443
Suphasomboon, T., & Vassanadumrongdee, S. (2022). Toward sustainable consumption of green cosmetics and personal care products: The role of perceived value and ethical concern. Sustainable Production and Consumption, 33, 230-243. https://doi.org/https://doi.org/10.1016/j.spc.2022.07.004
Tawfeek, N., Fikry, E., Mahdi, I., Ochieng, M. A., Bakrim, W. B., Taarji, N., Mahmoud, M. F., & Sobeh, M. (2023). Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules, 28(3). https://doi.org/10.3390/molecules28031036
Vogel, P., Machado, I. K., Garavaglia, J., Zani, V. T., de Souza, D., & Dal Bosco, S. M. (2015). Polyphenols benefits of olive leaf (Olea europaea L) to human health [Article]. Nutricion Hospitalaria, 31(3), 1427-1433. https://doi.org/10.3305/nh.2015.31.3.8400
Wołosiak, R., Drużyńska, B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E., & Pakosz, P. (2021). Verification of the Conditions for Determination of Antioxidant Activity by ABTS and DPPH Assays-A Practical Approach. Molecules, 27(1). https://doi.org/10.3390/molecules27010050
Yang, D., Chen, H., Wei, H., Liu, A., Wei, D.-X., & Chen, J. (2024). Hydrogel wound dressings containing bioactive compounds originated from traditional Chinese herbs: A review. Smart Materials in Medicine, 5(1), 153-165. https://doi.org/https://doi.org/10.1016/j.smaim.2023.10.004
Yuan, Y., Zhang, J., Fan, J., Clark, J., Shen, P., Li, Y., & Zhang, C. (2018). Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International, 113, 288-297. https://doi.org/https://doi.org/10.1016/j.foodres.2018.07.021
Zhao, Y., Sun, Y. N., Lee, M. J., Kim, Y. H., Lee, W., Kim, K. H., Kim, K. T., & Kang, J. S. (2016). Identification and discrimination of three common Aloe species by high performance liquid chromatography–tandem mass spectrometry coupled with multivariate analysis. Journal of Chromatography B, 1031, 163-171. https://doi.org/https://doi.org/10.1016/j.jchromb.2016.07.036


電子全文 電子全文(網際網路公開日期:20260811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top