跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許博閔
研究生(外文):HSU, PO-MIN
論文名稱:比較積層製造鈦合金與鈷鉻合金以電弧焊接 牙科修補之研究
論文名稱(外文):Comparative study on additive manufacturing of titanium alloy and cobalt-chromium alloy in dental repair using arc welding
指導教授:藍鼎勛
指導教授(外文):LAN, TING-HSUN
口試委員:陳永崇龔榮章陳人豪
口試委員(外文):CHEN, YONG-CHONGGONG, RONG-ZHANGCHEN, REN-HAO
口試日期:2024-01-11
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:牙醫學系碩士在職專班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:102
中文關鍵詞:鈦合金鈷鉻合金雙重冠電弧焊接
外文關鍵詞:Titanium AlloyCobalt-Chromium AlloyDouble CrownArc Welding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:
雙重冠系統的出現為義齒修復帶來了新的解決方案,特點在於其包含外冠和內冠的設計。這種設計不僅保護義齒,還提高了其穩定性,避免了傳統義齒使用的牙鉤,從而提供更佳的美觀效果和延長壽命。雙重冠系統主要依靠外冠與內冠的摩擦力固定,這要求非常精確的製造和配合。牙科技術的進步,特別是積層製造技術在鈦合金和鈷鉻合金製造方面的應用,為義齒修復提供了更高品質的治療選項。積層製造技術能夠優化合金的微觀結構和焊接特性,特別是在電弧焊接技術上。適當的焊接參數和策略在口腔內複雜環境下至關重要。本研究通過比較鈦合金和鈷鉻合金在不同焊接參數下的性能,旨在為活動式假牙修復提供創新方案和新發現。
材料及方法:
本研究使用積層製造技術製造鈦合金與鈷鉻合金試片。並探討不同厚度(0.5mm、0.7mm、1.0mm)和焊接功率(15W、20W、25W、30W、35W)對焊接效果的影響,進行了多樣化的焊接組合,每種組合皆製作3個樣本。再經由拉伸測試找出最強斷裂強度之焊接參數。根據最佳焊接功率的結果,將三種厚度之鈦合金與鈷鉻合金試片浸泡於去離子水、白醋、茶、清潔劑和可樂等不同液體中,每種液體各浸泡3片,分別浸泡5天和30天。通過雷射光學顯微鏡觀察焊接後之表面形貌與量測浸泡試驗後之表面粗糙度和拉伸測試,從而比較浸泡試驗對材料性質的影響。實驗數據使用SPSS軟體進行統計分析與比較。
結果:
鈦合金在不同功率焊接後,0.5mm厚度試片之降伏強度由15W之70.53MPa增加至30W之140.18MPa;厚度0.7mm之降伏強度由15W之104.93MPa提升至30W之239.26MPa;1.0mm厚度試片之降伏強度則從15W之115.60MPa變大為30W之330.51MPa。厚度為0.5mm之鈷鉻合金焊接後,降伏強度由15W之159.44MPa增加至30W之340.38MPa;厚度0.7mm時,降伏強度從15W之210.95MPa增大為30W之543.35MPa;1.0mm厚度之試片,其降伏強度由15W之323.56MPa上升到30W之567.35MPa。顯示鈦合金與鈷鉻合金之降伏強度皆隨功率而變大,在功率30W與1.0mm厚度焊接參數下之鈦合金和鈷鉻合金可得最大的降伏強度。統計結果顯示30W與其他功率具有顯著性差異(P<0.05),且厚度對降伏強度的影響亦有顯著性差異(P<0.05)。在任何焊接組別中,鈷鉻合金之降伏強度皆優於鈦合金,表示其更適合電弧焊接。
浸泡試驗結果顯示,無論是何種厚度之鈦合金或鈷鉻合金試片,浸泡的液體種類、浸泡時間對於試片之重量變化、表面粗糙度變化及浸泡後之拉伸應力,皆未有統計上之顯著差異性(P>0.05)。
結論:
電弧焊接在鈦合金、鈷鉻合金的牙科應用中,其焊接特性及其在口腔環境下的行為均受到廣泛關注。首先,對於鈦合金,其電弧焊接度呈現較低的趨勢,這與該材料的微結構及在焊接過程中的冷卻速率息息相關。儘管鈦合金因其卓越的生物相容性和輕量化特性在多個領域中被視為首選材料,但在焊接領域的應用仍需特別謹慎。尤其是在牙科焊接結構的應用中,選擇合適的製程和參數是確保其強度和耐用性的關鍵。
鈷鉻合金在電弧焊接後展現了良好的強度,且其焊接熔融池位移表現也相對出色。這些特性使鈷鉻合金成為牙科修補中的有力候選者,並在本研究限制下,發現電弧焊接功率在30W、試片厚度為1.0 mm條件下,可得到最強的拉伸強度。為了進一步優化這一材料的焊接品質,研究者可以考慮在不同的焊接參數和環境下進行更多的實驗探索。

Objectives:
The advent of the double-crown system offers a new solution for denture restoration, characterized by its inclusion of an outer and an inner crown. This design not only protects the denture but also enhances its stability, avoiding the use of clasps typical in traditional dentures, thereby offering improved aesthetics and extended lifespan. The double-crown system mainly relies on the friction between the outer and inner crowns for attachment, necessitating precise manufacturing and fitting. Advances in dental technology, particularly in the application of additive manufacturing techniques in the production of materials like titanium and cobalt-chrome alloys, have provided higher quality treatment options for denture restoration. Additive manufacturing optimizes the microstructure and welding characteristics of these alloys, especially in electric arc welding. The selection of optimal welding parameters and strategies is crucial in the complex chemical and physical environment of the oral cavity. This study aims to bring innovation and discovery to the restoration of removable dentures by comparing the performance of titanium and cobalt-chrome alloys under different welding parameters.
Material and methods:
This study utilized additive manufacturing technology to fabricate titanium and cobalt-chromium alloy specimens. It explored the effects of different thicknesses (0.5mm, 0.7mm, 1.0mm) and welding powers (15W, 20W, 25W, 30W, 35W) on the welding outcome, conducting a variety of welding combinations, with three samples produced for each combination.
Tensile testing was then used to identify the welding parameters that yielded the strongest fracture strength. Based on the results of the optimal welding power, specimens of the three thicknesses of titanium and cobalt-chromium alloys were immersed in different liquids such as deionized water, white vinegar, tea, cleaner, and cola. Three specimens were immersed in each liquid, for periods of 5 days and 30 days, respectively.
The surface morphology of the welded specimens was observed using a laser optical microscope, and the surface roughness after the immersion tests was measured. The specimens post-immersion were then subjected to tensile testing to compare the effects of the immersion tests on material performance.
The experimental data were statistically analyzed and compared using SPSS software.
Result:
After welding at different powers, the yield stress of 0.5mm thick titanium alloy specimens increased from 70.53 MPa at 15W to 140.18 MPa at 30W; for 0.7mm thick specimens, the yield stress rose from 104.93 MPa at 15W to 239.26 MPa at 30W; and for 1.0mm thick specimens, it increased from 115.60 MPa at 15W to 330.51 MPa at 30W. In the case of cobalt-chromium alloys with a thickness of 0.5mm, the yield stress increased from 159.44 MPa at 15W to 340.38 MPa at 30W; for a thickness of 0.7mm, it increased from 210.95 MPa at 15W to 543.35 MPa at 30W; and for 1.0mm thick specimens, the yield stress went up from 323.56 MPa at 15W to 567.35 MPa at 30W. This shows that the yield stress of both titanium and cobalt-chromium alloys increases with power, and the maximum yield stress for both alloys is achieved at 30W power and 1.0mm thickness welding parameters. Statistical results show that 30W is significantly different from other powers (P<0.05), and thickness also significantly affects the yield stress (P<0.05). In all welding groups, the yield stress of cobalt-chromium alloy is superior to that of titanium alloy, indicating its greater suitability for arc welding. The immersion test results reveal that for both titanium and cobalt-chromium alloys, regardless of the specimen thickness, the type of immersion liquid, the duration of immersion, and the changes in weight, surface roughness, and tensile stress after immersion show no significant statistical differences (P>0.05).
Conclusion:
Arc welding in the application of titanium and cobalt-chromium alloys in dentistry has garnered widespread attention for its welding characteristics and behavior in the oral environment. Firstly, for titanium alloys, the degree of arc welding tends to be lower, which is closely related to the material's microstructure and the cooling rate during the welding process. Despite titanium alloys being preferred in various fields for their excellent biocompatibility and lightweight characteristics, special caution is still needed in their application in the welding field. Particularly in dental welding structures, choosing the appropriate process and parameters is key to ensuring their strength and durability.
Cobalt-chromium alloys have shown good strength after arc welding, and their weld pool displacement performance is also relatively impressive. These characteristics make cobalt-chromium alloys a strong candidate in dental restorations. Under the constraints of this study, it was found that the strongest tensile strength can be achieved with an arc welding power of 30W and a specimen thickness of 1.0 mm. To further optimize the welding quality of this material, researchers might consider conducting more experiments under different welding parameters and environments.

摘要 II
Abstract V
致謝 IX

第一章、前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章、文獻回顧 4
2.1 雙重冠概論 4
2.2 電弧焊接概論 7
2.3 基層製造鈦合金和鈷鉻合金概論 9
2.4 電弧焊接鈦合金和鈷鉻合金概論 12
第三章、材料與方法 14
3.1 材料的選用 14
3.2 實驗設計 15
3.3 試片備製 16
3.4 電弧焊接之焊接過程 17
3.5 浸泡實驗 18
3.6 機械性質測試 19
3.7 表面粗糙度分析 20
第四章、研究結果 21
4.1 焊接功率拉伸實驗 21
4.2 重量實驗 23
4.3 表面粗糙度實驗 24
4.4 浸泡實驗拉伸實驗 25
第五章、討論 26
5.1 不同功率電弧焊接強度變化 27
5.2 不同液體對試片重量改變之影響 29
5.3 不同液體對試片表面粗糙度變化之影響 31
5.4 不同液體對試片的強度變化之影響 32
5.5 研究限制與未來研究方向 33
第六章、結論 35
參考文獻 37
表目錄

表 1、EOS鈦合金成分表 51
表 2、鈷鉻合金成分表 52
表 3、鈦合金在不同功率焊接下之降伏強度分析 53
表 4、鈦合金強度統計分析結果 54
表 5、鈷鉻合金在不同功率焊接下之降伏強度分析 55
表 6、鈷鉻合金強度統計分析結果 56
表 7、鈦合金浸泡實驗5天後之重量量測結果 57
表 8、鈦合金浸泡實驗30天後之重量量測結果 58
表 9、鈦合金重量統計分析結果 59
表 10、鈷鉻合金浸泡實驗5天後之重量量測結果 60
表 11、鈷鉻合金浸泡實驗30天後之重量量測結果 61
表 12、鈷鉻合金重量統計分析結果 62
表 13、鈦合金試片浸泡5天和30天後之表面粗糙值 63
表 14、鈷鉻合金試片浸泡5天和30天後之表面粗糙值 64
表 15、鈦合金粗糙度統計分析結果 65
表 16、鈷鉻合金粗糙度統計分析結果 66
表 17、鈦合金試片浸泡5天和30天之拉伸降伏強度 67
表 18、鈦合金浸泡後之降伏強度統計分析結果 68
表 19、鈷鉻合金試片浸泡5天和30天之拉伸降伏強度 69
表 20、鈷鉻合金浸泡後之降伏強度統計分析結果 70
圖目錄

圖 1、EOS TiAl6V4金屬粉末圖 71
圖 2、Hoganas鈷鉻合金金屬粉末圖 71
圖 3、最佳焊接功率實驗流程圖 72
圖 4、浸泡實驗流程圖 72
圖 5、ITRI AM100 3D列印設備 73
圖 6、CNC 線鋸機 73
圖 7、試片尺寸圖 74
圖 8、創浦雷射切割機 75
圖 9、焊接輔助治具 75
圖 10、設定功率,進行電弧焊接示意圖 76
圖 11、焊接後的試片尺寸圖 76
圖 12、浸泡試驗用之純水、綠茶 白醋、可樂和假牙清潔劑 77
圖 13、實驗室用微量天平 78
圖 14、本實驗所使用之拉力測試機 78
圖 15、雷射光學顯微鏡 79
圖 16、三種厚度之鈦合金和鈷鉻合金在不同焊接功率之降伏強度 80
圖 17、鈦合金之拉伸測試圖 81
圖 18、鈷鉻合金之拉伸測試圖 82
圖 19、鈦合金在不同厚度及液體重量分析圖 83
圖 20、鈷鉻合金在不同厚度及液體重量分析圖 84
圖 21、鈦合金表面粗糙度觀察圖 85
圖 22、鈷鉻合金表面粗糙度觀察圖 86
圖 23、鈦合金和鈷鉻合金表面粗糙度分析圖 87
圖 24、鈦合金浸泡實驗降伏強度分析圖 88
圖 25、鈷鉻合金浸泡實驗降伏強度分析圖 89

1.Hugoson, A.; Koch, G.; Gothberg, C.; Helkimo, A.N.; Lundin, S.A.; Norderyd, O.; Sjodin, B.; Sondell, K. Oral health of individuals aged 3–80 years in Jonkoping, Sweden during 30 years (1973–2003). II. Review of clinical and radiographic findings. Swedish Dental Journal 2005, 29, 139–155.
2.Moldovan, O.; Rudolph, H.; Luthardt, R.G. Biological complications of removable dental prostheses in the moderately reduced dentition: A systematic literature review. Clinical oral investigations 2018, 22, 2439–2461.
3.Preshaw, P.M.; Walls, A.W.; Jakubovics, N.S.; Moynihan, P.J.; Jepson, N.J.; Loewy, Z. Association of removable partial denture use with oral and systemic health. Journal of dentistry. 2011, 39, 711–719.
4.Korber, K.H. Cone crowns—A physically defined telescopic system. Deutsche zahnärztliche Zeitschrift. 1968, 23, 619–630.
5.Arnold, C.; Hey, J.; Setz, J.M.; Boeckler, A.F.; Schweyen, R. Retention force of removable partial dentures with different double crowns. Clinical oral investigations. 2018, 22, 1641–1649.
6.Strasding M, Abou-Ayash S, Laziok T, Doerken S, Kohal R-J, Patzelt SBM. Non-Precious Metal Alloy Double Crown-Retained Removable Partial Dentures: A Cross-Sectional In Vivo Investigation. Materials 2022, 15, 6137.
7.Bojko, Ł.; Ryniewicz, A.M.; Ryniewicz, W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials 2022, 15, 3497.
8.Rykiss, L.; Haddad, B. Triceram on Titanium: A New Frontier in Restorative Dentistry. Oral Health 2012, 102, 94.

9.Ryniewicz W, Bojko Ł, Ryniewicz AM. The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies. Materials 2022, 15, 5835.
10.Hong, M.-H.; Min, B.K.; Lee, D.-H.; Kwon, T.-Y. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. The Journal of prosthetic dentistry 2019, 122, 475–481.
11.Kara, R. Comparison of marginal and internal fit of different CAD/CAM copings. International Journal of Dental Science 2020, 8, 105–111.
12.Langer, A. Telescope retainers and their clinical application. Journal of Prosthetic Dentistry 1980, 44, 516–522.
13.Knezović Zlatarić, D.; Čelebić, A.; Valentić-Peruzović, M. The effect of removable partial dentures on periodontal health of abutment and non-abutment teeth. Journal of Periodontology 2002, 73, 137–144.
14.Lee W-T, Chen Y-C. Digitally Fabricated Dentures for Full Mouth Rehabilitation with Zirconia, Polyetheretherketone and Selective Laser Melted Ti-6Al-4V Material. International Journal of Environmental Research and Public Health. 2022,195, 3021.
15.Hakkoum, M.A.; Wazir, G. Telescopic Denture. The Open Dentistry Journal 2018, 12, 246.
16.Wöstmann, B.; Balkenhol, M.; Weber, A.; Ferger, P.; Rehmann, P. Long-term analysis of telescopic crown retained removable partial dentures: Survival and need for maintenance. Journal of dentistry 2007, 35, 939–945.
17.Ohkawa, S.; Okane, H.; Nagasawa, T.; Tsuru, H. Changes in retention of various telescope crown assemblies over long-term use. The Journal of prosthetic dentistry 1990, 64, 153–158.
18.Widbom, T.; Löfquist, L.; Widbom, C.; Söderfeldt, B.; Kronström, M. Tooth-Supported Telescopic Crown--Retained Dentures: An up to 9-Year Retrospective Clinical Follow-Up Study. The International journal of prosthodontics 2004, 17, 29–34.
19.Beuer, F.; Edelhoff, D.; Gernet, W.; Naumann, M. Parameters affecting retentive force of electroformed double-crown systems. Clinical oral investigations 2010, 14, 129–135.
20.Behr, M.; Hofmann, E.; Rosentritt, M.; Lang, R.; Handel, G. Technical failure rates of double crown-retained removable partial dentures. Clin. Oral Investig. 2000, 4, 87–90.
21.Güngör, M.A.; Artunc, C.; Sonugelen, M. Parameters affecting retentive force of conus crowns. Journal of oral rehabilitation 2004, 31, 271–277.
22.Langer, A. Telescope retainers for removable partial dentures. The Journal of prosthetic dentistry 1981, 45, 37–43.
23.Stock V, Schmidlin PR, Merk S, Wagner C, Roos M, Eichberger M, Stawarczyk B. PEEK Primary Crowns with Cobalt-Chromium, Zirconia and Galvanic Secondary Crowns with Different Tapers—A Comparison of Retention Forces. Materials. 2016, 9, 187.
24.Papalexopoulos, D.; Samartzi, T.-K.; Sarafianou, A. A Thorough Analysis of the Endocrown Restoration: A Literature Review. The journal of contemporary dental practice 2021, 22, 422–426.
25.Gulec, L.; Ulusoy, N. Effect of Endocrown Restorations with Different CAD/CAM Materials: 3D Finite Element and Weibull Analyses. BioMed research international 2017, 2017, 5638683.
26.Elagra, D.M.E. Endocrown Preparation: Review. International Journal of Applied Dental Sciences 2019, 5, 253–256.
27.Qamar Z, Alghamdi AMS, Haydarah NKB, Balateef AA, Alamoudi AA, Abumismar MA, Mathur A, Minervini G. In Vitro Evaluation of Lithium Disilicate Endocrowns and Post and Core Crowns—A Systematic Review. Journal of Functional Biomaterials 2023, 14, 276.
28.Savencu, C.E.; Şerban, C.; Porojan, L. Adaptability Evaluation of Metal-Ceramic Crowns Obtained by Additive and Subtractive Technologies. Applied Sciences 2020, 10, 5563.
29.Avetisyan, A.; Markaryan, M.; Rokaya, D.; Tovani-Palone, M.R.; Zafar, M.S.; Khurshid, Z.; Vardanyan, A.; Heboyan, A. Characteristics of Periodontal Tissues in Prosthetic Treatment with Fixed Dental Prostheses. Molecules : a journal of synthetic chemistry and natural product chemistry. Molecules : Journal of synthetic chemistry and natural product chemistry 2021, 26, 1331.
30.Dimofte A-R, Gheorghe DN, Popescu DM, Mitruț I, Mărășescu PC, Manolea HO, Boldeanu MV, Şurlin P. Expression of C Reactive Protein in Gingival Crevicular Fluid of Patients with Periodontitis Wearing Metal-Ceramic Dental Crowns. Applied Sciences. 2023, 13, 10993.
31.Moretti, L.A.; Barros, R.R.; Costa, P.P.; Oliveira, F.S.; Ribeiro, F.J.; Novaes, A.B., Jr.; Palioto, D.B. The influence of restorations and prosthetic crowns finishing lines on inflammatory levels after non-surgical periodontal therapy. Journal of the International Academy of Periodontology 2011, 13, 65–72.
32.Bestard, G.A.; Sampaio, R.C.; Vargas, J.A.R.; Alfaro, S.C.A. Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes. Sensors 2018, 18, 962.
33.Lancaster, J.F. The Physics of Welding; Pergamon Press: Oxford, UK 1984.

34.Xiao L, Fan D, Huang J, Tashiro S, Tanaka M. 3D Numerical Study of External Axial Magnetic Field-Controlled High-Current GMAW Metal Transfer Behavior. Materials 2020, 13, 5792.
35.Bleck, W.; Moeller, E. (Eds.) Handbuch Stahl: Auswahl, Verarbeitung, Anwendung; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2017, p. 240.
36.Mvola, B.; Kah, P. Effects of Shielding gas Control: Welded Joint Properties in GMAW Process Optimization. The International Journal of Advanced Manufacturing Technology 2017, 88, 2369–2387.
37.Matthes, K.-J.; Schneider, W. (Eds.) Schweißtechnik: Schweißen Von metallischen Konstruktionswerkstoffen, 6th ed.; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2016.
38.ohse M, Trautmann M, Füssel U, Rose S. Influence of the CO2 Content in Shielding Gas on the Temperature of the Shielding Gas Nozzle during GMAW Welding. Journal of Manufacturing and Materials Processing 2020, 4, 113.
39.Fu, W.; Hu, S.; Yin, Y. Effect of Droplet Transition on Rapid Prototyping by P-MIG (in Chinese). International Journal of Mechanical Engineering Education 2009, 45, 95–99.
40.Sen, M.; Mukherjee, M.; Pal, T.K. Evaluation of Correlations between DP-GMAW Process Parameters and Bead Geometry. Welding Journal 2015, 94, 265–279.
41.Palani, P.K.; Murugan, N. Selection of Parameters of Pulsed Current Gas Metal Arc Welding. Journal of Materials Processing Technology 2006, 172, 1–10.
42.Zhai, P.; Xue, S.; Wang, J.; Tao, Y.; Chen, W.; Chen, T.; Ji, S. Comparative Study of Droplet Transfer Modes on Appearance, Microstructure, and Mechanical Properties of Weld during Pulsed GMAW. Metals 2020, 10, 611.

43.Zhou, K.; Yao, P. Overview of Recent Advances of Process Analysis and Quality Control in Resistance Spot Welding. Mechanical Systems and Signal Processing 2019, 124, 170–198.
44.Jia, Q.; Liu, L.; Guo, W.; Peng, Y.; Zou, G.; Tian, Z.; Zhou, Y.N. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel. Metals 2018, 8, 48.
45.Yao, P. Intelligent Control Strategies and Performance Evaluation of Integrated Double Wire Arc Welding Power Source. Ph.D. Thesis, South China University of Technology, Guangzhou, China, May 2012.
46.Yao P, Tang H, Zhou K, Lin H, Xu Z, Du X. Influence of Inclination of Welding Torch on Weld Bead during Pulsed-GMAW Process. Materials 2020, 13, 2652.
47.Wu, C.S.; Chen, M.A.; Li, S.K. Analysis of excited droplet oscillation and detachment in active control of metal transfer. Comput. Mater. Sci. 2004, 31, 147–154.
48.Kou, S.; Sun, D.K. Fluid flow and weld penetration in stationary arc welds. Metallurgical Transactions A 1985, 16, 203–213.
49.Park J-H, Kim S-H, Moon H-S, Kim M-H. Influence of Gravity on Molten Pool Behavior and Analysis of Microstructure on Various Welding Positions in Pulsed Gas Metal Arc Welding. Applied Sciences. 2019,9,4626.
50.Guokai, Z.; Chuansong, W.; Xinfeng, L. Single vision system for simultaneous observation of keyhole and weld pool in plasma arc welding. Journal of Materials Processing Technology2015, 215, 75–78.
51.Saeed, G.; Zhang, Y.M. Weld pool surface depth measurement using a calibrated camera and structured light. Measurement Science and Technology 2007, 18, 2570–2578.

52.Wu, C.S.; Zhong, L.M.; Gao, J.Q. Visualization of hump formation in high-speed gas metal arc welding. Measurement Science and Technology 2009, 20, 1–8.
53.Nagarajan, S.; Banerjee, P.; Chen, W.H. Control of the welding process using infrared sensors. in IEEE Transactions on Robotics and Automation 1992, 8, 86–93.
54.Amin, M. Pulse Current Parameters for Arc Stability and Controlled Metal Transfer in Arc Welding. Metal Constr 1983, 15, 272–278.
55.Rajasekaran, S. Weld Bead Characteristics in Pulsed GMA Welding of AI-Mg Alloys. Welding Journal 1999, 78, 397–407.
56.Rajasekaran, S.; Kulkarni, S.D.; Mallya, U.D.; Chaturvedi, R.C. Droplet Detachment and Plate Fusion Characteristics in Pulsed Current Gas Metal Arc Welding. Welding Journal 1998, 77, 254–269.
57.Harwig, D.D.; Dierksheide, J.E.; Yapp, D.; Blackman, S. Arc Behavior and Melting Rate in the VP-GMAW Process. Welding Journal 2006, 85, 52–62.
58.Hertel, M.; Rose, S.; Füssel, U. Numerical Simulation of Arc and Droplet Transfer in Pulsed GMAW of Mild Steel in Argon. Welding Wire World 2016, 60, 1055–1061.
59.Chen, C.; Fan, C.; Cai, X.; Lin, S.; Yang, C. Analysis of Droplet Transfer, Weld Formation and Microstructure in Al-Cu Alloy Bead Welding Joint with Pulsed Ultrasonic-GMAW Method. Journal of Materials Processing Technology 2019, 271, 144–151.
60.Yao, P.; Zhou, K.; Lin, H.; Xu, Z.; Yue, S. Exploration of Weld Bead Forming Rule during Double-Pulsed GMAW Process Based on Grey Relational Analysis. Materials 2019, 12, 3662.
61.Yao, P.; Zhou, K.; Huang, S. Process and Parameter Optimization of the Double-Pulsed GMAW Process. Metals 2019, 9, 1009.

62.Gu, D. Laser Additive Manufacturing of High-Performance Materials; Springer: Berlin/Heidelberg, Germany, 2015.
63.Brandt, M.; Sun, S.J.; Leary, M.; Feih, S.; Elambasseril, J.; Liu, Q.C. High-value SLM aerospace components: From design to manufacture. Advanced Materials 2013, 633, 135–147.
64.Traini, T.; Mangano, C.; Sammons, R.L.; Mangano, F.; Macchi, A.; Piattelli, A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental materials 2008, 24, 1525–1533.
65.Wehmöller, M.; Warnke, P.H.; Zilian, C.; Eufinger, H. Implant design and production—A new approach by selective laser melting. International Congress Series 2005, 1281, 690–695.
66.Demir, A.G.; Previtali, B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Materials & Design 2017, 119, 338–350.
67.Lu, Y.; Ren, L.; Wu, S.; Yang, C.; Lin, W.; Xiao, S.; Yang, Y.; Yang, K.; Lin, J. CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties and microstructural analysis. powder technology 2018, 325, 289–300.
68.Lu, Y.; Ren, L.; Xu, X.; Yang, Y.; Wu, S.; Luo, J.; Yang, M.; Liu, L.; Zhuang, D.; Yang, K. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the mechanical behavior of biomedical materials.2018, 81, 130–141.
69.Badrossamay, M.; Childs, T.H.C. Further studies in selective laser melting of stainless and tool steel powders. International Journal of Machine Tools & Manufacture 2007, 47, 779–784.
70.Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia 2010, 58, 3303–3312.
71.Byeong-Don, J.O.O.; Jeong-Hwan, J.; Jae-Ho, L.E.E.; Young-Myung, S.O.N.; Young-Hoon, M. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel. Transactions of Nonferrous Metals Society of China 2009, 19, 921–924.
72.Yadroitsev, I.; Bertrand, P.; Smurov, I. Parametric analysis of the selective laser melting process. Applied Surface Science 2007, 253, 8064–8069.
73.Moraru, E.; Dontu, O.; Petre, A.; Vaireanu, D.; Constantinescu, F.; Besnea, D. Some technological particularities on the execution of dental prostheses realized by selective laser deposition. Journal of Optoelectronics and Advanced Materials 2018, 20, 208–213.
74.Moraru, E. Research on the Realization of Dental Prostheses by Selective Laser Deposition and Other Additive Technologies. Ph.D. Thesis, Politehnica University of Bucharest, Bucharest, Romania, 2021. (In Romanian).
75.Singh, D.D.; Mahender, T.; Reddy, A.R. Powder bed fusion process: A brief review. Materials Today: Proceedings 2021,46,350–355.
76.Salmi, M. Additive manufacturing processes in medical applications. Materials 2021, 14, 191.
77.Cortis, G.; Mileti, I.; Nalli, F.; Palermo, E.; Cortese, L. Additive manufacturing structural redesign of hip prostheses for stress-shielding reduction and improved functionality and safety. Mechanics of Materials 2022, 165, 104173.



78.Ni, J.; Liu, F.; Yang, G.; Lee, G.H.; Chung, S.M.; Lee, I.S.; Chen, C. 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating. Journal of Materials Research and Technology 2021, 14, 2322–2332.
79.Oliveira, T.T.; Reis, A.C. Fabrication of dental implants by the additive manufacturing method: A systematic review.The Journal of prosthetic dentistry. 2019, 122, 270–274.
80.Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Materials & Design 2021, 209, 110008.
81.Charles, A.; Hofer, A.; Elkaseer, A.; Scholz, S.G. Additive Manufacturing in the Automotive Industry and the Potential for Driving the Green and Electric Transition. In Sustainable Design and Manufacturing; Scholz, S.G., Howlett, R.J., Setchi, R., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2022; Volume 262.
82.Zito, D.; Carlotto, A.; Loggi, A.; Sbornicchia, P.; Maggian, D.; Progold, S.A. Optimization of SLM technology main parameters in the production of gold and platinum jewelry. In Proceedings of the Santa Fe Symposium on Jewelry Manufacturing Technology, Albuquerque, NM, USA, 18–21 May 2014; Met-Chem Research. Volume 47, pp. 439–470.
83.Yun, C.S.; Hanawa, T.; Hong, M.H.; Min, B.K.; Kwon, T.Y. Biocompatibility of Ni–Cr alloys, with the same composition, prepared by two new digital manufacturing techniques. Materials Letters 2021, 305, 130761.
84.Özsoy, K. Examining mechanical properties of profiles manufactured aluminium extrusion dies using powder bed fusion. Measurement 2021, 177, 109266.
85.Zeltser, C.; Lewinstein, I.; Grajower, R. Fit of crown wax patterns after removal from the die.The Journal of prosthetic dentistry 1985, 53, 344–346.
86.Venkatesh, K.V.; Nandini, V.V. Direct metal laser sintering: A digitised metal casting technology. Journal of Indian Prosthodontic Society 2013, 13, 389–392.
87.Pacquet, W.; Tapie, L.; Mawussi, B.; Boitelle, P. Volumetric and dimensional accuracy assessment of CAD-CAM–manufactured dental prostheses from different materials.The Journal of prosthetic dentistry 2021.
88.Anzai, M.; Kumasaka, T.; Inoue, E.; Seimiya, K.; Kawanishi, N.; Hayakawa, T.; Ohkubo, C.; Miura, H.; Hoshi, N.; Kimoto, K. Application of multi-directional forged titanium for prosthetic crown fabrication by CAD/CAM.
Dental materials journal 2021, 40, 1049–1054.
89.Kayikci, O.; Ates, S.M. Comparison of marginal and internal fit of three-unit implant-supported fixed prosthetic substructures fabricated using CAD/CAM systems.
Clinical oral investigations 2021, 26, 1–9.
90.Song, D.-B.; Han, M.-S.; Kim, S.-C.; Ahn, J.; Im, Y.-W.; Lee, H.-H. Influence of Sequential CAD/CAM Milling on the Fitting Accuracy of Titanium Three-Unit Fixed Dental Prostheses. Materials 2021, 14, 1401.
91.Tamac, E.; Gurel, K.; Toksavul, S.; Toman, M. In vitro marginal and internal adaptation of metal-ceramic crowns with cobalt-chrome and titanium framework fabricated with CAD/CAM and casting technique. Nigerian journal of clinical practice 2019, 22, 812–816.
92.Wu, Y.; Moser, J.B.; Jameson, L.M.; Malone, W.F.P. The effect of oxidation heat treatment on porcelain bond strength in selected base metal alloys.The Journal of prosthetic dentistry 1991, 66, 439–444.
93.Suleiman, S.H.; von Steyern, P.V. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta odontologica Scandinavica 2013, 71, 1280–1289.
94.Al Jabbari, Y.S.; Barmpagadaki, X.; Psarris, I.; Zinelis, S. Microstructural, mechanical, ionic release and tarnish resistance characterization of porcelain fused to metal Co–Cr alloys manufactured via casting and three different CAD/CAM techniques. Journal of prosthodontic research 2019, 63, 150–156.
95.Iseri, U.; Ozkurt, Z.; Kazazoglu, E. Shear strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dental materials journal 2011, 30, 274–280.
96.van Noort, R. The future of dental devices is digital. Dental materials 2012, 28, 3–12.
97.Dikova, T.S.; Dzhendov, D.; Simov, M. Microstructure and hardness of fixed dental prostheses manufactured by additive technologies. journal of Achievements in Materials 2015, 71, 60–69.
98.Koutsoukis, T.; Zinelis, S.; Eliades, G.; Al-Wazzan, K.; Rifaiy, M.A.; Al Jabbari, Y.S. Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2015, 24, 303–312.
99.Özcan, M. Fracture reasons in ceramic-fused-to-metal restorations. Journal of oral rehabilitation 2003, 30, 265–269.
100.Joias, R.M.; Tango, R.N.; Junho de Araujo, J.E.; Junho de Araujo, M.A.; Ferreira Anzaloni Saavedra Gde, S.; Paes-Junior, T.J.; Kimpara, E.T. Shear bond strength of a ceramic to Co-Cr alloys.The Journal of prosthetic dentistry 2008, 99, 54–59.
101.Alexandrino, D.; Antunes, L.H.; Munhoz, A.L.; Filho, A.P.; Silva, W.J. Mechanical and surface properties of Co-Cr alloy produced by additive manufacturing for removable partial denture frameworks.The Journal of prosthetic dentistry 2022, in press.

102.Pereira, A.L.; Medeiros, A.K.; Santos, K.; Almeida, É.; Barbosa, G.A.; Carreiro, A. Accuracy of CAD-CAM systems for removable partial denture framework fabrication: A systematic review.The Journal of prosthetic dentistry 2021, 125, 241–248.
103.Imirzalioglu, P.; Alaaddinoglu, E.; Yilmaz, Z.; Oduncuoglu, B.; Yilmaz, B.; Rosenstiel, S. Influence of Recasting Different Types of Dental Alloys on Gingival Fibroblast Cytotoxicity. The Journal of prosthetic dentistry. 2012, 107, 24–33.
104.Gupta, S.; Mehta, A.S. The Effect of Remelting Various Combinations of New and Used Cobalt-Chromium Alloy on the Mechanical Properties and Microstructure of the Alloy. Indian journal of dental research : official publication of Indian Society for Dental Research.2012, 23, 341.
105.Walczak, M.; Beer, K.; Surowska, B.; Borowicz, J. The Issue of Using Remelted CoCrMo Alloys in Dental Prosthetics. Archives of Civil and Mechanical Engineering. 2012, 12, 171–177.
106.Zhou, Y.; Li, N.; Yan, J.; Zeng, Q. Comparative Analysis of the Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Different Methods. The Journal of prosthetic dentistry. 2018, 120, 617–623.
107.Panchenko, O.; Kurushkin, D.; Mushnikov, I.; Khismatullin, A.; Popovich, A. A high-performance WAAM process for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel. speed. Materials & Design 2020, 195.
108.Kou, S. Welding Metallurgy, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top