|
1.Wang, G., et al., The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int J Environ Res Public Health, 2020. 17(17). 2.Holt, K.E., et al., Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A, 2015. 112(27): p. E3574-81. 3.台灣抗生素抗藥性監視年報(2022年). 2024: Taiwan Centers for Disease Control. 4.Global action plan on antimicrobial resistance. 2015, Geneva: World Health Organization. 5.Woodford, N., J.F. Turton, and D.M. Livermore, Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiology Reviews, 2011. 35(5): p. 736-755. 6.Husna, A., et al., Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines, 2023. 11(11). 7.Rahman, S.U., et al., The growing genetic and functional diversity of extended spectrum beta-lactamases, BioMed Research International, vol. 2018, 2018. DOI: https://doi. org/10.1155/2018/9519718. 8.Pana, Z.D. and T. Zaoutis, Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBLs) infections: what have we learned until now? F1000Research, 2018. 7. 9.Jeon, J.H., et al., Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci, 2015. 16(5): p. 9654-92. 10.Yong, D., et al., Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother, 2009. 53(12): p. 5046-54. 11.Papp-Wallace, K.M., et al., Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase. Antimicrob Agents Chemother, 2010. 54(2): p. 890-7. 12.Hirvonen, V.H.A., J. Spencer, and M.W. van der Kamp, Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother, 2021. 65(6). 13.Pulzova, L., L. Navratilova, and L. Comor, Alterations in Outer Membrane Permeability Favor Drug-Resistant Phenotype of Klebsiella pneumoniae. Microb Drug Resist, 2017. 23(4): p. 413-420. 14.Wu, L.T., et al., Characterization of the Genetic Background of KPC-2-Producing Klebsiella pneumoniae with Insertion Elements Disrupting the ompK36 Porin Gene. Microb Drug Resist, 2020. 26(9): p. 1050-1057. 15.Jacoby, G.A., AmpC beta-lactamases. Clin Microbiol Rev, 2009. 22(1): p. 161-82, Table of Contents. 16.Bradford, P.A., Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical microbiology reviews, 2001. 14(4): p. 933-951. 17.WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. 2024. 18.Sader, H.S., et al., Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. Journal of antimicrobial chemotherapy, 2021. 76(3): p. 659-666. 19.Global antimicrobial resistance and use surveillance system (GLASS) report 2022. 2022. 20.Han, J.H., et al., Epidemiology of carbapenem-resistant Klebsiella pneumoniae in a network of long-term acute care hospitals. Clinical Infectious Diseases, 2017. 64(7): p. 839-844. 21.Data from the ECDC Surveillance Atlas - Antimicrobial resistance2020. 2020. 22.Antimicrobial resistance surveillance in Europe 2014. Annual report of the European antimicrobial resistance surveillance network (EARS-net). ECDC, 2015. 23.Giakkoupi, P., et al., An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother, 2011. 66(7): p. 1510-3. 24.Fupin, H., et al., CHINET surveillance of bacterial resistance across China: report of the results in 2016. Chinese Journal of Infection and Chemotherapy, 2017. 17(5): p. 481-491. 25.Paveenkittiporn, W., et al., Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016–2018. Antimicrobial Resistance & Infection Control, 2021. 10(1): p. 88. 26.Kim, J.S., et al., Distribution of mcr genes among carbapenem-resistant Enterobacterales clinical isolates: high prevalence of mcr-positive Enterobacter cloacae complex in Seoul, Republic of Korea. International Journal of Antimicrobial Agents, 2021. 58(5): p. 106418. 27.Marimuthu, K., et al., Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat Commun, 2022. 13(1): p. 3052. 28.Velkov, T., et al., Pharmacology of polymyxins: new insights into an ‘old’class of antibiotics. Future microbiology, 2013. 8(6): p. 711-724. 29.Falagas, M.E., S.K. Kasiakou, and L.D. Saravolatz, Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clinical Infectious Diseases, 2005. 40(9): p. 1333-1341. 30.Li, J., et al., Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents, 2005. 25(1): p. 11-25. 31.Baron, S., et al., Molecular mechanisms of polymyxin resistance: knowns and unknowns. International journal of antimicrobial agents, 2016. 48(6): p. 583-591. 32.Olaitan, A.O., S. Morand, and J.-M. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in microbiology, 2014. 5: p. 116005. 33.Gunn, J.S., The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol, 2008. 16(6): p. 284-90. 34.Groisman, E.A., The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol, 2001. 183(6): p. 1835-42. 35.Kaye, K.S., et al., Agents of Last Resort: Polymyxin Resistance. Infect Dis Clin North Am, 2016. 30(2): p. 391-414. 36.Zafer, M.M., et al., Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Annals of clinical microbiology and antimicrobials, 2019. 18: p. 1-8. 37.Lippa, A.M. and M. Goulian, Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet, 2009. 5(12): p. e1000788. 38.Wright, M.S., et al., Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother, 2015. 59(1): p. 536-43. 39.Cheng, Y.H., et al., Amino Acid Substitutions of CrrB Responsible for Resistance to Colistin through CrrC in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2016. 60(6): p. 3709-16. 40.Cannatelli, A., et al., In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother, 2013. 57(11): p. 5521-6. 41.Gupta, N., et al., Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention. Clinical Infectious Diseases, 2011. 53(1): p. 60-67. 42.Antimicrobial resistance surveillance in Europe 2013. 2013: European Centre for Disease Prevention and Control (ECDC). 43.Antimicrobial resistance surveillance in Europe 2014. 2014: European Centre for Disease Prevetion and Control (ECDC). 44.Suh, J.Y., et al., Nonclonal emergence of colistin-resistant Klebsiella pneumoniae isolates from blood samples in South Korea. Antimicrob Agents Chemother, 2010. 54(1): p. 560-2. 45.Uzairue, L.I., et al., Global Prevalence of Colistin Resistance in Klebsiella pneumoniae from Bloodstream Infection: A Systematic Review and Meta-Analysis. Pathogens, 2022. 11(10). 46.Bir, R., et al., Analysis of colistin resistance in carbapenem-resistant Enterobacterales and XDR Klebsiella pneumoniae. Ther Adv Infect Dis, 2022. 9: p. 20499361221080650. 47.Liu, Y.Y., et al., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016. 16(2): p. 161-8. 48.Berglund, B., Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. Infectious Microbes & Diseases, 2019. 1(1): p. 10-19. 49.Sun, J., et al., Towards Understanding MCR-like Colistin Resistance. Trends in Microbiology, 2018. 26(9): p. 794-808. 50.Xavier, B.B., et al., Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance, 2016. 21(27): p. 30280. 51.Yin, W., et al., Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio, 2017. 8(3): p. 10.1128/mbio. 00543-17. 52.Carroll, L.M., et al., Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio, 2019. 10(3): p. 10.1128/mbio. 00853-19. 53.Wang, X., et al., Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerging microbes & infections, 2018. 7(1): p. 1-9. 54.Yang, Y.-Q., et al., Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2018. 73(7): p. 1791-1795. 55.Zhang, J., et al., Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Scientific reports, 2018. 8(1): p. 3705. 56.Lima, T., S. Domingues, and G.J. Da Silva, Plasmid-mediated colistin resistance in Salmonella enterica: a review. Microorganisms, 2019. 7(2): p. 55. 57.Borowiak, M., et al., Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. Journal of Antimicrobial Chemotherapy, 2017. 72(12): p. 3317-3324. 58.Roer, L., et al., Novel mcr-3 variant, encoding mobile colistin resistance, in an ST131 Escherichia coli isolate from bloodstream infection, Denmark, 2014. Eurosurveillance, 2017. 22(31): p. 30584. 59.Chen, C.W., et al., The Microbiological Characteristics of Carbapenem-Resistant Enterobacteriaceae Carrying the mcr-1 Gene. J Clin Med, 2019. 8(2). 60.Müller, A., et al., A novel biologically active seleno-organic compound—1: Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochemical pharmacology, 1984. 33(20): p. 3235-3239. 61.Lu, Q., et al., Ebselen, a multi-target compound: its effects on biological processes and diseases. Expert Reviews in Molecular Medicine, 2021. 23: p. e12. 62.Schewe, T., Molecular actions of ebselen—an antiinflammatory antioxidant. General Pharmacology: The Vascular System, 1995. 26(6): p. 1153-1169. 63.Santi, C., C. Scimmi, and L. Sancineto, Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules, 2021. 26(14). 64.Alves de Lima, E.S.A. and A. Rio-Tinto, Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis, 2024. 2024: p. 9109041. 65.May, H.C., et al., Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol, 2018. 9: p. 336. 66.Thangamani, S., W. Younis, and M.N. Seleem, Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep, 2015. 5: p. 11596. 67.AbdelKhalek, A., et al., Repurposing ebselen for decolonization of vancomycin-resistant enterococci (VRE). PLoS One, 2018. 13(6): p. e0199710. 68.Bender, K.O., et al., A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med, 2015. 7(306): p. 306ra148. 69.Garland, M., et al., The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Rep Med, 2020. 1(1). 70.Zou, L., et al., Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol Med, 2017. 9(8): p. 1165-1178. 71.Khorshidian, N., et al., An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front Nutr, 2022. 9: p. 833618. 72.Clifton, L.A., et al., Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir, 2015. 31(1): p. 404-12. 73.Fleming, A., On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. British journal of experimental pathology, 1929. 10(3): p. 226. 74.Ligon, B.L. Penicillin: its discovery and early development. in Seminars in pediatric infectious diseases. 2004. Elsevier. 75.Abraham, E.P. and E. Chain, An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis, 1988. 10(4): p. 677-8. 76.WHO Global Strategy for Containment of Antimicrobial Resistance. 2001: World Health Organization. 77.The evolving threat of antimicrobial resistance - Options for action. 2012: World Health Organization. 78.Antimicrobial resistance: global report on surveillance. 2014: World Health Organization. 79.Ma, J., et al., Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiological Research, 2023. 266: p. 127249. 80.Zong, Z., Y. Feng, and A. McNally, Carbapenem and Colistin Resistance in Enterobacter: Determinants and Clones. Trends Microbiol, 2021. 29(6): p. 473-476. 81.Grundmann, H., et al., Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis, 2017. 17(2): p. 153-163. 82.Hu, F., et al., Current Status and Trends of Antibacterial Resistance in China. Clinical Infectious Diseases, 2018. 67(suppl_2): p. S128-S134. 83.Tesfa, T., et al., Prevalence and incidence of carbapenem-resistant K. pneumoniae colonization: systematic review and meta-analysis. Syst Rev, 2022. 11(1): p. 240. 84.Xu, L., X. Sun, and X. Ma, Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob, 2017. 16(1): p. 18. 85.Li, J., R.L. Nation, and K.S. Kaye, Polymyxin antibiotics: from laboratory bench to bedside. Vol. 1145. 2019: Springer. 86.Marshall, B.M. and S.B. Levy, Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev, 2011. 24(4): p. 718-33. 87.Kempf, I., et al., What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? International Journal of Antimicrobial Agents, 2013. 42(5): p. 379-383. 88.Hirsch, E.B. and V.H. Tam, Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother, 2010. 65(6): p. 1119-25. 89.Miriagou, V., et al., Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect, 2010. 16(2): p. 112-22. 90.Gales, A.C., R.N. Jones, and H.S. Sader, Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). Journal of Antimicrobial Chemotherapy, 2011. 66(9): p. 2070-2074. 91.Meletis, G., et al., Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2011. 66(4): p. 946-947. 92.Souli, M., et al., Clinical Experience of Serious Infections Caused by Enterobacteriaceae Producing VIM-1 Metallo-β-Lactamase in a Greek University Hospital. Clinical Infectious Diseases, 2008. 46(6): p. 847-854. 93.Gigante, V., H. Sati, and P. Beyer, Recent advances and challenges in antibacterial drug development. Admet dmpk, 2022. 10(2): p. 147-151. 94.Gwynn, M.N., et al., Challenges of antibacterial discovery revisited. Ann N Y Acad Sci, 2010. 1213: p. 5-19. 95.Vidaillac, C., L. Benichou, and R.E. Duval, In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother, 2012. 56(9): p. 4856-61. 96.Lin, Y., et al., Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin. Front Chem, 2021. 9: p. 795150. 97.Yu, L., et al., Synergetic Effects of Combined Treatment of Colistin With Meropenem or Amikacin on Carbapenem-Resistant Klebsiella pneumoniae in vitro. Front Cell Infect Microbiol, 2019. 9: p. 422. 98.Liu, Y., et al., An effective antimicrobial strategy of colistin combined with the Chinese herbal medicine shikonin against colistin-resistant Escherichia coli. Microbiol Spectr, 2023. 11(6): p. e0145923. 99.Hossain, T.J., Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp), 2024. 14(2): p. 97-115. 100.Zhang, X., et al., Combined With Mefloquine, Resurrect Colistin Active in Colistin-Resistant Pseudomonas aeruginosa in vitro and in vivo. Front Microbiol, 2021. 12: p. 790220. 101.Chen, L., et al., Synergistic Activity and Biofilm Formation Effect of Colistin Combined with PFK-158 Against Colistin-Resistant Gram-Negative Bacteria. Infect Drug Resist, 2021. 14: p. 2143-2154. 102.Zhang, Y., et al., Flufenamic Acid, a Promising Agent for the Sensitization of Colistin-Resistant Gram-Negative Bacteria to Colistin. Microbiol Spectr, 2023. 11(2): p. e0405222. 103.Miki, T. and W.D. Hardt, Outer membrane permeabilization is an essential step in the killing of gram-negative bacteria by the lectin RegIIIβ. PLoS One, 2013. 8(7): p. e69901. 104.Yu, B., et al., Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infectious Diseases, 2022. 8(8): p. 1491-1508. 105.Wang, D., et al., Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics, 2022. 14(10): p. 2025. 106.Shi, J., et al., The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Communications Biology, 2022. 5(1): p. 926. 107.Matuschek, E., et al., Revisiting colistin susceptibility testing: will adding calcium to Mueller-Hinton agar improve the detection of colistin resistance? Clin Microbiol Infect, 2021. 27(8): p. 1172.e1-1172.e5. 108.Liu, Y., et al., Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms, 2020. 8(9): p. 1398. 109.Li, J., et al., The synergistic antibacterial activity and mechanism of colistin-oxethazaine combination against gram-negative pathogens. Front Pharmacol, 2024. 15: p. 1363441. 110.Shafiq, M., et al., Synergistic Activity of Tetrandrine and Colistin against mcr-1-Harboring Escherichia coli. Antibiotics, 2022. 11(10): p. 1346. 111.Xie, M., et al., Synergistic Antimicrobial Effect of Colistin in Combination with Econazole against Multidrug-Resistant Acinetobacter baumannii and Its Persisters. Microbiology Spectrum, 2022. 10(3): p. e00937-22. 112.Huang, J., et al., Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol, 2020. 15(6): p. 445-459. 113.Trimble, M.J., et al., Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med, 2016. 6(10). 114.Kang, M., et al., 6-Bromo-2-naphthol from Silene armeria extract sensitizes Acinetobacter baumannii strains to polymyxin. Scientific Reports, 2022. 12(1): p. 8546. 115.Han, R., et al., The antihelminth drug rafoxanide reverses chromosomal-mediated colistin-resistance in Klebsiella pneumoniae. mSphere, 2023. 8(5): p. e0023423. 116.Yang, T.-Y., et al., Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 2020. 55(3): p. 105894. 117.Sampson, T.R., et al., Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother, 2012. 56(11): p. 5642-9. 118.Liu, Y., et al., Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics, 2020. 10(23): p. 10697-10711. 119.Gadar, K., et al., Disrupting iron homeostasis can potentiate colistin activity and overcome colistin resistance mechanisms in Gram-Negative Bacteria. Communications Biology, 2023. 6(1): p. 937. 120.Onyedibe, K.I., et al., Re-sensitization of Multidrug-Resistant and Colistin-Resistant Gram-Negative Bacteria to Colistin by Povarov/Doebner-Derived Compounds. ACS Infectious Diseases, 2023. 9(2): p. 283-295. 121.Holmgren, A. and M. Björnstedt, Thioredoxin and thioredoxin reductase. Methods Enzymol, 1995. 252: p. 199-208. 122.Chen, X., et al., Gold(I) selenium N-heterocyclic carbene complexes as potent antibacterial agents against multidrug-resistant gram-negative bacteria via inhibiting thioredoxin reductase. Redox Biol, 2023. 60: p. 102621. 123.Dong, C., et al., Topical Therapeutic Efficacy of Ebselen Against Multidrug-Resistant Staphylococcus aureus LT-1 Targeting Thioredoxin Reductase. Frontiers in Microbiology, 2020. 10. 124.Zou, L., et al., Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Scientific Reports, 2018. 8(1): p. 11131. 125.Li, J., et al., Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms. Front Microbiol, 2021. 12: p. 617050. 126.Zampaloni, C., et al., A novel antibiotic class targeting the lipopolysaccharide transporter. Nature, 2024. 625(7995): p. 566-571. 127.Sun, D., et al., Meropenem-Vaborbactam Resistance Selection, Resistance Prevention, and Molecular Mechanisms in Mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother, 2017. 61(12). 128.Dey, R., et al., Small molecular adjuvants repurpose antibiotics towards Gram-negative bacterial infections and multispecies bacterial biofilms. Chemical Science, 2024. 15(1): p. 259-270. 129.Huang, Y., et al., Flavomycin restores colistin susceptibility in multidrug-resistant Gram-negative bacteria. mSystems. 0(0): p. e00109-24. 130.Zhou, Y., et al., Commercialized artemisinin derivatives combined with colistin protect against critical Gram-negative bacterial infection. Communications Biology, 2022. 5(1): p. 931. 131.Yu, Y., et al., Repurposing Non-Antibiotic Drugs Auranofin and Pentamidine in Combination to Combat Multidrug-Resistant Gram-Negative Bacteria. International Journal of Antimicrobial Agents, 2022. 59(5): p. 106582. 132.Cohen, L.B. and E.R. Troemel, Microbial pathogenesis and host defense in the nematode C. elegans. Curr Opin Microbiol, 2015. 23: p. 94-101. 133.Bag, A., et al., Evaluation of antibacterial properties of Chebulic myrobalan (fruit of Terminalia chebula Retz.) extracts against methicillin resistant Staphylococcus aureus and trimethoprim-sulphamethoxazole resistant uropathogenic Escherichia coli. Afr J Plant Sci, 2009. 3(2): p. 25-29. 134.Sarabhai, S., P. Sharma, and N. Capalash, Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One, 2013. 8(1): p. e53441. 135.Rudrappa, T. and H.P. Bais, Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem, 2008. 56(6): p. 1955-62. 136.Chang, Y.T., et al., Combination of Colistin and Azidothymidine Demonstrates Synergistic Activity against Colistin-Resistant, Carbapenem-Resistant Klebsiella pneumoniae. Microorganisms, 2020. 8(12). 137.Haeili, M., et al., MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Frontiers in Microbiology, 2017. 8.
|