|
[1] D.L. Holliday, V. Speirs, Choosing the right cell line for breast cancer research, Breast Cancer Res, 13 (2011) 215. [2] K.E. McCann, S.A. Hurvitz, N. McAndrew, Advances in Targeted Therapies for Triple-Negative Breast Cancer, Drugs, 79 (2019) 1217-1230. [3] A.G. Waks, E.P. Winer, Breast Cancer Treatment: A Review, JAMA, 321 (2019) 288-300. [4] Y.F. Guan, X.J. Liu, X.Y. Yuan, W.B. Liu, Y.R. Li, G.X. Yu, X.Y. Tian, Y.B. Zhang, J. Song, W. Li, S.Y. Zhang, Design, Synthesis, and Anticancer Activity Studies of Novel Quinoline-Chalcone Derivatives, Molecules, 26 (2021) 4899. [5] R. Michalkova, M. Kello, M. Cizmarikova, A. Bardelcikova, L. Mirossay, J. Mojzis, Chalcones and Gastrointestinal Cancers: Experimental Evidence, Int J Mol Sci, 24 (2023) 5964. [6] A.A. WalyEldeen, S. Sabet, H.M. El-Shorbagy, I.A. Abdelhamid, S.A. Ibrahim, Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer, Chem Biol Interact, 369 (2023) 110297. [7] R. Musiol, An overview of quinoline as a privileged scaffold in cancer drug discovery, Expert Opin Drug Discov, 12 (2017) 583-597. [8] V. R Solomon, H. Lee, Quinoline as a privileged scaffold in cancer drug discovery, Curr Med Chem, 18 (2011) 1488-1508. [9] A. Shi, T.A. Nguyen, S.K. Battina, S. Rana, D.J. Takemoto, P.K. Chiang, D.H. Hua, Synthesis and anti-breast cancer activities of substituted quinolines, Bioorg Med Chem Lett, 18 (2008) 3364-3368. [10] C.-H. Tseng, Y.-L. Chen, C.-L. Yang, C.-M. Cheng, C.-H. Han, C.-C. Tzeng, Synthesis of 6-substituted 9-methoxy-11H-indeno [1, 2-c] quinoline-11-one derivatives as potential anticancer agents, Bioorg Med Chem, 20 (2012) 4397- 4404. [11] F. Gao, G. Huang, J. Xiao, Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure‐activity relationship, Med Res Rev, 40 (2020) 2049-2084. [12] M. Szumilak, A. Wiktorowska-Owczarek, A.J.M. Stanczak, Hybrid drugs—a strategy for overcoming anticancer drug resistance?, Molecules, 26 (2021) 2601. [13] L. Kopper, Lapatinib: a sword with two edges, Pathol Oncol Res, 14 (2008) 1-8. [14] T. Bekaii-Saab, J. Markowitz, N. Prescott, W. Sadee, N. Heerema, L. Wei, Z. Dai, A. Papp, A. Campbell, K. Culler, C. Balint, B. O'Neil, R.M. Lee, M. Zalupski, J. Dancey, H. Chen, M. Grever, C. Eng, M. Villalona-Calero, A multiinstitutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas, Clin Cancer Res, 15 (2009) 5895- 5901. [15] R.K. Ramanathan, C.P. Belani, D.A. Singh, M. Tanaka, H.J. Lenz, Y. Yen, H.L. Kindler, S. Iqbal, J. Longmate, P.C. Mack, G. Lurje, R. Gandour-Edwards, J. Dancey, D.R. Gandara, A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer, Cancer Chemother Pharmacol, 64 (2009) 777-783. [16] D.W. Rusnak, K.J. Alligood, R.J. Mullin, G.M. Spehar, C. Arenas-Elliott, A.M. Martin, Y. Degenhardt, S.K. Rudolph, T.F. Haws, Jr., B.L. Hudson-Curtis, T.M. Gilmer, Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines, Cell Prolif, 40 (2007) 580-594. [17] C.Y. Yang, M.Y. Lee, Y.L. Chen, J.P. Shiau, Y.H. Tsai, C.N. Yang, H.W. Chang, C.H. Tseng, Synthesis and Anticancer Evaluation of 4- Anilinoquinolinylchalcone Derivatives, Int J Mol Sci, 24 (2023) 6034. [18] C.H. Huang, J.M. Yeh, W.H. Chan, Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes, Environ Toxicol, 33 (2018) 1039-1049. [19] T.S. Wang, C.P. Lin, Y.P. Chen, M.R. Chao, C.C. Li, K.L. Liu, CYP450- mediated mitochondrial ROS production involved in arecoline N-oxide-induced oxidative damage in liver cell lines, Environ Toxicol, 33 (2018) 1029-1038. [20] Y. Ouyang, J. Li, X. Chen, X. Fu, S. Sun, Q. Wu, Chalcone Derivatives: Role in Anticancer Therapy, Biomolecules, 11 (2021) 894. [21] J. Chen, C.Y. Kang, Z.X. Niu, H.C. Zhou, H.M. Yang, A chalcone inhibits the growth and metastasis of KYSE-4 esophageal cancer cells, J Int Med Res, 48 (2020) 300060520928831. [22] D.K. Mahapatra, S.K. Bharti, V. Asati, Chalcone Derivatives: Antiinflammatory Potential and Molecular Targets Perspectives, Curr Top Med Chem, 17 (2017) 3146-3169. [23] N. Padauleng, M. Mustofa, T.D. Wahyuningsih, D. Purnomosari, Chalcone-3 Inhibits the Proliferation of Human Breast Cancer MDA-MB-231 Cell Line, Asian Pac J Cancer Prev, 24 (2023) 683-691. [24] P.S. Dube, L.J. Legoabe, R.M. Beteck, Quinolone: a versatile therapeutic compound class, Mol Divers, 27 (2023) 1501-1526. [25] F. Gao, P. Wang, H. Yang, Q. Miao, L. Ma, G. Lu, Recent developments of quinolone-based derivatives and their activities against Escherichia coli, Eur J Med Chem, 157 (2018) 1223-1248. [26] Y.-Q. Hu, S. Zhang, Z. Xu, Z.-S. Lv, M.-L. Liu, L.-S. Feng, 4-Quinolone hybrids and their antibacterial activities, Eur J Med Chem, 141 (2017) 335-345. [27] N. Azzman, S. Anwar, W.A. Syazani Mohamed, N. Ahemad, Quinolone Derivatives as Anticancer Agents: Importance in Medicinal Chemistry, Breast Cancer Res, 24 (2024) 1134-1157. [28] F. Gao, X. Zhang, T. Wang, J. Xiao, Quinolone hybrids and their anti-cancer activities: An overview, Eur J Med Chem, 165 (2019) 59-79. [29] M.M. Ghorab, M.S. Alsaid, Anti-breast cancer activity of some novel quinoline derivatives, Acta Pharm, 65 (2015) 271-283. [30] K.L. Maughan, M.A. Lutterbie, P.S. Ham, Treatment of breast cancer, Am Fam Physician, 81 (2010) 1339-1346. [31] K.P. Trayes, S.E.H. Cokenakes, Breast Cancer Treatment, Am Fam Physician, 104 (2021) 171-178. [32] K. Barzaman, J. Karami, Z. Zarei, A. Hosseinzadeh, M.H. Kazemi, S. MoradiKalbolandi, E. Safari, L. Farahmand, Breast cancer: Biology, biomarkers, and treatments, Int Immunopharmacol, 84 (2020) 106535. [33] H. Sies, Oxidative stress: a concept in redox biology and medicine. Redox Biol 4: 180–183, 2015. [34] G. Greco, M. Schnekenburger, E. Catanzaro, E. Turrini, F. Ferrini, P. Sestili, M. Diederich, C. Fimognari, Discovery of sulforaphane as an inducer of ferroptosis in u-937 leukemia cells: Expanding its anticancer potential, Cancers, 14 (2021) 76. [35] T. Ozben, Oxidative stress and apoptosis: impact on cancer therapy, J Pharm Sci, 96 (2007) 2181-2196. [36] M. Bonora, S. Patergnani, A. Rimessi, E. De Marchi, J.M. Suski, A. Bononi, C. Giorgi, S. Marchi, S. Missiroli, F. Poletti, M.R. Wieckowski, P. Pinton, ATP synthesis and storage, Purinergic Signal, 8 (2012) 343-357. [37] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J, 17 (2003) 1195-1214. [38] S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action, Eur J Pharmacol, 740 (2014) 364-378. [39] J. Li, X. Xu, X. Peng, NDC80 Enhances Cisplatin-resistance in Triple-negative Breast Cancer, Arch Med Res, 53 (2022) 378-387. [40] C. Liang, H.Y. Zhang, Y.Q. Wang, L.A. Yang, Y.S. Du, Y. Luo, T.C. Zhang, Y. Xu, TMED2 Induces Cisplatin Resistance in Breast Cancer via Targeting the KEAP1-Nrf2 Pathway, Curr Med Sci, 43 (2023) 1023-1032. [41] H. Wang, S. Guo, S.J. Kim, F. Shao, J.W.K. Ho, K.U. Wong, Z. Miao, D. Hao, M. Zhao, J. Xu, J. Zeng, K.H. Wong, L. Di, A.H. Wong, X. Xu, C.X. Deng, Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel, Theranostics, 11 (2021) 2442- 2459.
|