跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王佑寧
研究生(外文):WANG, YU-NING
論文名稱:查耳酮及喹啉化合物 COQM 選擇性抑制乳癌細胞生長並促進細胞凋亡
論文名稱(外文):A Chalcone/Quinolone Hybrid Drug (COQM) Exerts Selective Anti-Proliferation and Promotes Apoptosis in Breast Cancer Cells
指導教授:張學偉
指導教授(外文):CHANG, HSUEH-WEI
口試委員:邱建智張嘉哲
口試委員(外文):CHIU, CHIEN-CHIHCHANG, CHIA-CHE
口試日期:2024-07-02
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:生物醫學暨環境生物學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:90
中文關鍵詞:乳癌查耳酮喹啉細胞凋亡
外文關鍵詞:breast cancerchalconequinoloneapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
COQM 是一種以查耳酮(chalcone)及喹啉(quinolone)合成的新化合物,且查耳酮和喹啉都已被證實具有抗癌和抗發炎的能力。然而,目前對於 COQM 實際用於乳癌治療的成效尚不清楚。本文旨在探討 COQM 對於三陰性乳癌細胞(HCC1937)及非三陰性乳癌細胞(SKBR-3)的效果,以及藉由確認其是否會傷害正常乳房細胞(H184B5F5/M10, M10)來探討 COQM 作為藥品的安全性。經由實驗可知,COQM 顯著抑制了三陰性乳癌細胞(HCC1937)及非三陰性乳癌細胞
(SKBR-3)之生長、促進細胞停滯於細胞週期中的 subG1 期,並藉由增加 Caspase 3、Caspase 8 和 Caspase 9 之表現來大幅促進細胞凋亡。然而,上述的效果在正常乳房細胞(M10)中都遠低於乳癌細胞。不僅如此,這些效果都能被 Nacetylcysteine (NAC)減弱,這也代表 COQM 經由調控氧化壓力來促進細胞凋亡。因此本篇研究也藉由流式細胞儀確認COQM 對於氧化壓力的影響,並發現COQM 能增加細胞內的活性氧物質(reactive oxygen species)及粒線體超氧化物(mitochondrial superoxide)堆積,還能使粒線體膜電位及穀胱甘肽(glutathione)含量顯著下降,並促進 DNA 雙股和單股斷裂。上述效果在乳癌細胞中遠高於正常細胞,且同樣能被 NAC 減弱,顯示 COQM 具有選擇性毒殺之特性。因此可知,COQM 能藉由調控氧化壓力來達成在乳癌細胞中的抗癌效果,且對於正常細胞的傷害較低,在未來對乳癌的治療上將會是很好的研究目標。
COQM is a newly developed hybrid compound of chalcone and quinolone. Both are reported to have anticancer and anti-inflammatory abilities, but the effect of COQM on breast cancer cells and drug safety was poorly understood. This study aims to assess the anticancer ability and mechanism of COQM against triple-negative breast cancer (TNBC; HCC1937) and non-TNBC (SKBR-3) cells compared to normal breast cells (H184B5F5/M10 (M10)). COQM exhibits more antiproliferation, subG1 accumulation,apoptotic phenotype (annexin V), and activates apoptotic signaling such as caspases 3, 8, and 9 in breast cancer than normal cells. These effects are attenuated by Nacetylcysteine (NAC) pretreatment, suggesting oxidative stress mediates these antibreast cancer mechanisms. The COQM-induced oxidative stress responses are further validated by flow cytometry, showing higher generation of reactive oxygen species and mitochondrial superoxide and lower mitochondrial membrane potential and glutathione in breast cancer than normal cells, attenuated by NAC. Similarly, COQM exhibits oxidative stress-dependent DNA damages for γH2AX and 8-hydroxy-2-deoxyguanosine in a greater extent of breast cancer than normal cells, confirmed by NAC. Consequently, COQM has anticancer effects and oxidative stress-mediated mechanisms in breast cancer cells and exhibits low impact on normal cell.
目錄
中文摘要.......................................................................................................................1
英文摘要.......................................................................................................................2
1. 背景介紹.................................................................................................................3
1.1 乳癌分類及現今治療方法 ..............................................................................3
1.2 查耳酮及喹啉之抗癌特性 ..............................................................................3
1.3 化療藥物泰嘉錠之療效..................................................................................4
1.4 COQM 簡介....................................................................................................4
2. 研究動機與目的.....................................................................................................5
2.1 假說 .................................................................................................................5
2.2 實驗流程圖......................................................................................................6
3. 實驗材料與方法.....................................................................................................7
3.1 細胞培養 .........................................................................................................7
3.2 藥物製備 .......................................................................................................14
3.3 細胞存活率分析(ATP assay)........................................................................16
3.4 細胞週期分析(Cell cycle analysis)...............................................................19
3.5 細胞凋亡分析(Apoptosis assay)...................................................................22
3.6 Caspase 3/7 活性分析(Caspase 3/7 analysis)...............................................25
3.7 Caspase 3/8/9 含量測定(Caspase 3/8/9 activity assay)................................27
3.8 ROS 含量測定(ROS assay)..........................................................................30
3.9 粒線體內之超氧化物測定(MitoSOX assay)................................................33
3.10 粒線體膜電位檢測 (MMP assay)................................................................36
3.11 GSH 含量測定 (GSH assay)........................................................................39
3.12 DNA 雙股損傷測定(γH2AX assay) .............................................................42
3.13 氧化性 DNA 損傷測定(8-OHdG assay) ......................................................47
4. 實驗結果說明.......................................................................................................50
4.1 COQM 透過調控 ROS 來抑制細胞增生.....................................................50
4.2 COQM 改變乳癌細胞之細胞週期...............................................................50
4.3 COQM 選擇性增加乳癌細胞之細胞凋亡率...............................................50
4.4 COQM 選擇性增加乳癌細胞之 caspase3/7 活性 .......................................51
4.5 COQM 選擇性促進 caspase 8 和 caspase 9 之活化....................................51
4.6 COQM 選擇性增加乳癌細胞中之 ROS 堆積量.........................................52
4.7 COQM 選擇性增加乳癌細胞中之 MitoSOX 含量.....................................52
4.8 COQM 選擇性降低乳癌細胞之粒線體膜電位 ...........................................53
4.9 COQM 選擇性減少乳癌細胞之 GSH 含量.................................................53
4.10 COQM 選擇性提升乳癌細胞中 γH2AX 之生成量.....................................54
4.11 COQM 選擇性促進 8-OHdG 之含量提升 ..................................................54
5. 討論 ......................................................................................................................55
5.1 查耳酮及喹啉之抗乳癌療效 ........................................................................55
5.2 COQM 透過增加氧化壓力抑制乳癌細胞之生存率 ...................................56
5.3 COQM 大幅提升乳癌細胞的 subG1 期......................................................56
5.4 COQM 藉由調控氧化壓力促進乳癌細胞凋亡 ...........................................57
5.5 COQM 增加乳癌細胞之氧化壓力並損壞 DNA..........................................57
5.6 比較 COQM 與臨床化療藥物 ciaplatin 之效果 .........................................58
6. 結論 ......................................................................................................................59
7. 實驗結果圖...........................................................................................................60
7.1 細胞存活率分析(ATP assay)........................................................................60
7.2 細胞週期分析(Cell cycle analysis)...............................................................62
7.3 細胞凋亡分析(Apoptosis assay)...................................................................63
7.4 Caspase 3 活性分析(Caspase 3 analysis).....................................................65
7.5 Caspase 8/9 活性測定(Caspase 8/9 activity assay)......................................67
7.6 ROS 含量測定(ROS assay)..........................................................................69
7.7 粒線體內之超氧化物測定(MitoSOX assay)................................................71
7.8 粒線體膜電位測定(MMP assay)..................................................................73
7.9 GSH 含量測定 (GSH assay)........................................................................75
7.10 DNA 雙股損傷測定(γH2AX assay) .............................................................77
7.11 氧化性 DNA 損傷測定(8-OHdG assay) ......................................................79
8. 參考文獻...............................................................................................................81
[1] D.L. Holliday, V. Speirs, Choosing the right cell line for breast cancer research,
Breast Cancer Res, 13 (2011) 215.
[2] K.E. McCann, S.A. Hurvitz, N. McAndrew, Advances in Targeted Therapies for
Triple-Negative Breast Cancer, Drugs, 79 (2019) 1217-1230.
[3] A.G. Waks, E.P. Winer, Breast Cancer Treatment: A Review, JAMA, 321 (2019)
288-300.
[4] Y.F. Guan, X.J. Liu, X.Y. Yuan, W.B. Liu, Y.R. Li, G.X. Yu, X.Y. Tian, Y.B.
Zhang, J. Song, W. Li, S.Y. Zhang, Design, Synthesis, and Anticancer Activity
Studies of Novel Quinoline-Chalcone Derivatives, Molecules, 26 (2021) 4899.
[5] R. Michalkova, M. Kello, M. Cizmarikova, A. Bardelcikova, L. Mirossay, J.
Mojzis, Chalcones and Gastrointestinal Cancers: Experimental Evidence, Int J
Mol Sci, 24 (2023) 5964.
[6] A.A. WalyEldeen, S. Sabet, H.M. El-Shorbagy, I.A. Abdelhamid, S.A. Ibrahim,
Chalcones: Promising therapeutic agents targeting key players and signaling
pathways regulating the hallmarks of cancer, Chem Biol Interact, 369 (2023)
110297.
[7] R. Musiol, An overview of quinoline as a privileged scaffold in cancer drug
discovery, Expert Opin Drug Discov, 12 (2017) 583-597.
[8] V. R Solomon, H. Lee, Quinoline as a privileged scaffold in cancer drug
discovery, Curr Med Chem, 18 (2011) 1488-1508.
[9] A. Shi, T.A. Nguyen, S.K. Battina, S. Rana, D.J. Takemoto, P.K. Chiang, D.H.
Hua, Synthesis and anti-breast cancer activities of substituted quinolines, Bioorg
Med Chem Lett, 18 (2008) 3364-3368.
[10] C.-H. Tseng, Y.-L. Chen, C.-L. Yang, C.-M. Cheng, C.-H. Han, C.-C. Tzeng,
Synthesis of 6-substituted 9-methoxy-11H-indeno [1, 2-c] quinoline-11-one
derivatives as potential anticancer agents, Bioorg Med Chem, 20 (2012) 4397-
4404.
[11] F. Gao, G. Huang, J. Xiao, Chalcone hybrids as potential anticancer agents:
Current development, mechanism of action, and structure‐activity relationship,
Med Res Rev, 40 (2020) 2049-2084.
[12] M. Szumilak, A. Wiktorowska-Owczarek, A.J.M. Stanczak, Hybrid drugs—a
strategy for overcoming anticancer drug resistance?, Molecules, 26 (2021)
2601.
[13] L. Kopper, Lapatinib: a sword with two edges, Pathol Oncol Res, 14 (2008) 1-8.
[14] T. Bekaii-Saab, J. Markowitz, N. Prescott, W. Sadee, N. Heerema, L. Wei, Z.
Dai, A. Papp, A. Campbell, K. Culler, C. Balint, B. O'Neil, R.M. Lee, M. Zalupski, J. Dancey, H. Chen, M. Grever, C. Eng, M. Villalona-Calero, A multiinstitutional phase II study of the efficacy and tolerability of lapatinib in patients
with advanced hepatocellular carcinomas, Clin Cancer Res, 15 (2009) 5895-
5901.
[15] R.K. Ramanathan, C.P. Belani, D.A. Singh, M. Tanaka, H.J. Lenz, Y. Yen, H.L.
Kindler, S. Iqbal, J. Longmate, P.C. Mack, G. Lurje, R. Gandour-Edwards, J.
Dancey, D.R. Gandara, A phase II study of lapatinib in patients with advanced
biliary tree and hepatocellular cancer, Cancer Chemother Pharmacol, 64 (2009)
777-783.
[16] D.W. Rusnak, K.J. Alligood, R.J. Mullin, G.M. Spehar, C. Arenas-Elliott, A.M.
Martin, Y. Degenhardt, S.K. Rudolph, T.F. Haws, Jr., B.L. Hudson-Curtis, T.M.
Gilmer, Assessment of epidermal growth factor receptor (EGFR, ErbB1) and
HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb,
GW572016) in an expanded panel of human normal and tumour cell lines, Cell
Prolif, 40 (2007) 580-594.
[17] C.Y. Yang, M.Y. Lee, Y.L. Chen, J.P. Shiau, Y.H. Tsai, C.N. Yang, H.W. Chang,
C.H. Tseng, Synthesis and Anticancer Evaluation of 4-
Anilinoquinolinylchalcone Derivatives, Int J Mol Sci, 24 (2023) 6034.
[18] C.H. Huang, J.M. Yeh, W.H. Chan, Hazardous impacts of silver nanoparticles
on mouse oocyte maturation and fertilization and fetal development through
induction of apoptotic processes, Environ Toxicol, 33 (2018) 1039-1049.
[19] T.S. Wang, C.P. Lin, Y.P. Chen, M.R. Chao, C.C. Li, K.L. Liu, CYP450-
mediated mitochondrial ROS production involved in arecoline N-oxide-induced
oxidative damage in liver cell lines, Environ Toxicol, 33 (2018) 1029-1038.
[20] Y. Ouyang, J. Li, X. Chen, X. Fu, S. Sun, Q. Wu, Chalcone Derivatives: Role in
Anticancer Therapy, Biomolecules, 11 (2021) 894.
[21] J. Chen, C.Y. Kang, Z.X. Niu, H.C. Zhou, H.M. Yang, A chalcone inhibits the
growth and metastasis of KYSE-4 esophageal cancer cells, J Int Med Res, 48
(2020) 300060520928831.
[22] D.K. Mahapatra, S.K. Bharti, V. Asati, Chalcone Derivatives: Antiinflammatory Potential and Molecular Targets Perspectives, Curr Top Med
Chem, 17 (2017) 3146-3169.
[23] N. Padauleng, M. Mustofa, T.D. Wahyuningsih, D. Purnomosari, Chalcone-3
Inhibits the Proliferation of Human Breast Cancer MDA-MB-231 Cell Line,
Asian Pac J Cancer Prev, 24 (2023) 683-691.
[24] P.S. Dube, L.J. Legoabe, R.M. Beteck, Quinolone: a versatile therapeutic
compound class, Mol Divers, 27 (2023) 1501-1526.
[25] F. Gao, P. Wang, H. Yang, Q. Miao, L. Ma, G. Lu, Recent developments of
quinolone-based derivatives and their activities against Escherichia coli, Eur J
Med Chem, 157 (2018) 1223-1248.
[26] Y.-Q. Hu, S. Zhang, Z. Xu, Z.-S. Lv, M.-L. Liu, L.-S. Feng, 4-Quinolone
hybrids and their antibacterial activities, Eur J Med Chem, 141 (2017) 335-345.
[27] N. Azzman, S. Anwar, W.A. Syazani Mohamed, N. Ahemad, Quinolone
Derivatives as Anticancer Agents: Importance in Medicinal Chemistry, Breast
Cancer Res, 24 (2024) 1134-1157.
[28] F. Gao, X. Zhang, T. Wang, J. Xiao, Quinolone hybrids and their anti-cancer
activities: An overview, Eur J Med Chem, 165 (2019) 59-79.
[29] M.M. Ghorab, M.S. Alsaid, Anti-breast cancer activity of some novel quinoline
derivatives, Acta Pharm, 65 (2015) 271-283.
[30] K.L. Maughan, M.A. Lutterbie, P.S. Ham, Treatment of breast cancer, Am Fam
Physician, 81 (2010) 1339-1346.
[31] K.P. Trayes, S.E.H. Cokenakes, Breast Cancer Treatment, Am Fam Physician,
104 (2021) 171-178.
[32] K. Barzaman, J. Karami, Z. Zarei, A. Hosseinzadeh, M.H. Kazemi, S. MoradiKalbolandi, E. Safari, L. Farahmand, Breast cancer: Biology, biomarkers, and
treatments, Int Immunopharmacol, 84 (2020) 106535.
[33] H. Sies, Oxidative stress: a concept in redox biology and medicine. Redox Biol
4: 180–183, 2015.
[34] G. Greco, M. Schnekenburger, E. Catanzaro, E. Turrini, F. Ferrini, P. Sestili, M.
Diederich, C. Fimognari, Discovery of sulforaphane as an inducer of ferroptosis
in u-937 leukemia cells: Expanding its anticancer potential, Cancers, 14 (2021)
76.
[35] T. Ozben, Oxidative stress and apoptosis: impact on cancer therapy, J Pharm
Sci, 96 (2007) 2181-2196.
[36] M. Bonora, S. Patergnani, A. Rimessi, E. De Marchi, J.M. Suski, A. Bononi, C.
Giorgi, S. Marchi, S. Missiroli, F. Poletti, M.R. Wieckowski, P. Pinton, ATP
synthesis and storage, Purinergic Signal, 8 (2012) 343-357.
[37] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage:
mechanisms, mutation, and disease, FASEB J, 17 (2003) 1195-1214.
[38] S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms
of action, Eur J Pharmacol, 740 (2014) 364-378.
[39] J. Li, X. Xu, X. Peng, NDC80 Enhances Cisplatin-resistance in Triple-negative
Breast Cancer, Arch Med Res, 53 (2022) 378-387.
[40] C. Liang, H.Y. Zhang, Y.Q. Wang, L.A. Yang, Y.S. Du, Y. Luo, T.C. Zhang, Y.
Xu, TMED2 Induces Cisplatin Resistance in Breast Cancer via Targeting the
KEAP1-Nrf2 Pathway, Curr Med Sci, 43 (2023) 1023-1032.
[41] H. Wang, S. Guo, S.J. Kim, F. Shao, J.W.K. Ho, K.U. Wong, Z. Miao, D. Hao,
M. Zhao, J. Xu, J. Zeng, K.H. Wong, L. Di, A.H. Wong, X. Xu, C.X. Deng,
Cisplatin prevents breast cancer metastasis through blocking early EMT and
retards cancer growth together with paclitaxel, Theranostics, 11 (2021) 2442-
2459.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top