跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪庭禎
研究生(外文):WANG, TING-ZHEN
論文名稱:環境友善快速維生素萃取 (FaVEx) 技術結合 UHPLC-MS/MS 監測人體血漿中脂溶性維生素
論文名稱(外文):Green Fast Vitamins Extraction (FaVEx) Technique for the Rapid Simultaneous Determination of Fat-Soluble Vitamins in Human Plasma using UHPLC-MS/MS
指導教授:王俊棋庫碼
指導教授(外文):WANG, CHUN-CHIPONNUSAMY, VINOTH KUMAR
口試委員:王俊棋張值維李啟偉
口試委員(外文):WANG, CHUN-CHICHANG, CHIH-WEILEE, CHI-WEI
口試日期:2024-06-25
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:66
中文關鍵詞:脂溶性維生素生物監測人體血漿樣本綠色分析方法樣品製備液相層析串聯式質譜儀
外文關鍵詞:Fat-soluble vitaminHuman plasma samplesBiomonitoringGreen analytical methodologyGreen sample preparationUHPLC-MS/MS analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脂溶性維生素在人體健康中扮演著重要角色,除了調節基本的生理功能外,還能預防和降低疾病的發生率。缺乏或過量的脂溶性維生素會對健康造成影響。研究顯示,缺乏脂溶性維生素可能增加慢性病、心血管疾病甚至癌症的風險;而過量則有中毒的風險。因此,監測血漿中脂溶性維生素的濃度,不僅有助於了解其含量,還可作為臨床診斷的輔助標準。
過往的脂溶性維生素分析方法耗時耗溶媒且操作繁複,特異性和靈敏度不佳。本研究開發了一種新型萃取裝置技術,具有操作簡便、省時、溶媒消耗少、環境友好的優點,並結合高靈敏度的UHPLC-MS/MS分析儀器,用於檢測人體血漿中微量脂溶性維生素的濃度。本研究優化萃取溶媒、輔助鹽種類和用量、萃取時間及甲酸溶液體積等參數,以提升萃取效率。結果顯示,使用1 mL乙醇、200 mg無水硫酸鎂、渦旋輔助震盪3分鐘,以及50 mg PSA、50 mg C18和100 mg無水硫酸鎂作為淨化吸附劑(比例1:1:2)可在5分鐘內完成樣品前處理。最佳化條件下,線性範圍為1 ng/mL至1000 ng/mL,線性相關係數大於0.993,偵測極限為0.3至0.8 ng/mL,定量極限為1 ng/mL。此方法快速、環境友善、省時,且具有良好回收率,顯示出在不同領域和樣品基質的前處理過程中的潛力。

Fat-soluble vitamins play a crucial role in human health. Besides regulating essential physiological functions, they can also prevent and reduce the incidence of diseases. Deficiency or excess of fat-soluble vitamins can impact health. Research shows that a lack of fat-soluble vitamins may increase the risk of chronic diseases, cardiovascular diseases, and even cancer, while an excess can led to toxicity. Therefore, monitoring the concentration of fat-soluble vitamins in human plasma helps understand their levels and serves as an auxiliary standard for clinical diagnosis.
Previous methods for analyzing fat-soluble vitamins were time and solvent-consuming and complex with poor specificity and sensitivity. In this study, we intend to develop a new extraction technique that is simple, fast, consumes less solvent, is low-cost, and is environmentally friendly for rapid isolation and cleanup of fat-soluble (Vitamins D and E) from human blood samples, and then, it was analyzed using UHPLC-MS/MS for quantification. We optimized various parameters such as extraction solvent, type and amount of salts, extraction time, and volume of formic acid solution to enhance the extraction efficiency of target vitamins. Results showed that using 1 mL ethanol, 200 mg anhydrous magnesium sulfate, vortex-assisted agitation for 3 minutes, and 50 mg PSA, 50 mg C18, and 100 mg anhydrous magnesium sulfate as dSPE adsorbents (in a ratio of 1:1:2) allowed sample pretreatment to be completed within 5 minutes. Under optimal conditions, the linear ranges were between 1 to 1000 ng mL-1, with correlation coefficients greater than 0.993. Detection limits ranged from 0.3 to 0.8 ng mL-1, and the quantification limits were 1 ng mL-1 for all the target vitamins. These results prove that the developed method is fast, sensitive, environmentally friendly, time-saving, and has reasonable recovery rates, indicating its potential for application in clinical analysis and diagnosis.

Acknowledgements.......iv
Table of Content.......v
List of Tables..vi
List of Figures..vii
Acronyms and Abbreviations.....ix
Chapter – I.... 1
1. INTRODUCTION..1
1.1 Background.....1
1.2 Target chemistry compound and its functions....2
1.3 Source of vitamin D and E.....6
1.4 Vitamin D and E deficiency.....10
1.5 Treatment of vitamin D and E deficiency.....11
1.6 Biological sample analysis.....13
1.7 Analytical methods for determining vitamin D and E.....14
1.8 Sample preparation.....16
1.8.1 Protein precipitation.....18
1.8.2 Liquid-liquid extraction (LLE).....19
1.8.3 Salting-out assisted liquid-liquid extraction (SALLE).....21
1.8.4 Dispersive solid-phase extraction(dSPE).....22
1.9 Aim of this study.....23
Chapter-II.....26
2. EXPERIMENTAL SECTION.....26
2.1 Equipment and Chemicals.....26
2.2 Instrument.....26
2.3 Real samples.....29
2.4 Human Blood Samples Collection.....30
2.5 FaVEx Procedure.....32
Chapter-III.....34
3. RESULTS AND DISCUSSION.....34
3.1 Target analyte separation.....35
3.2 Effect of extraction solvent.....35
3.3 Effect of salt type.....37
3.4 Effect of extraction time.....38
3.5 Effect of formic acid volume.....40
3.6 Effect of dSPE technology clean-up sorbents.....41
3.7 Method Validation.....43
3.8 Comparison to other methods.....44
Chapter-IV.....47
4. CONCLUSION.....47
5. REFERENCES.....48



[1] G.R.P. Arachchige, E.B. Thorstensen, M. Coe, J.M. O'Sullivan, C.J. Pook, Absolute quantification of eleven A, D, E and K vitamers in human plasma using automated extraction and UHPLC-Orbitrap MS, Anal Chim Acta, 1181 (2021) 338877.

[2] A.A. Albahrani, V. Rotarou, P.J. Roche, R.F. Greaves, A simultaneous quantitative method for vitamins A, D and E in human serum using liquid chromatography-tandem mass spectrometry, J Steroid Biochem Mol Biol, 159 (2016) 41-53.

[3] L. Konieczna, K. Kaźmierska, A. Roszkowska, A. Szlagatys-Sidorkiewicz, T. Bączek, The LC-MS method for the simultaneous analysis of selected fat-soluble vitamins and their metabolites in serum samples obtained from pediatric patients with cystic fibrosis, J Pharm Biomed Anal, 124 (2016) 374-381.

[4] M.F. Holick, Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis, Am J Clin Nutr, 79 (2004) 362-371.

[5] N. Ewald, P.D. Hardt, Diagnosis and treatment of diabetes mellitus in chronic pancreatitis, World J Gastroenterol, 19 (2013) 7276-7281.

[6] M. Boaz, S. Smetana, T. Weinstein, Z. Matas, U. Gafter, A. Iaina, A. Knecht, Y. Weissgarten, D. Brunner, M. Fainaru, M.S. Green, Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial, Lancet, 356 (2000) 1213-1218.

[7] K.J. Helzlsouer, H.Y. Huang, A.J. Alberg, S. Hoffman, A. Burke, E.P. Norkus, J.S. Morris, G.W. Comstock, Association between alpha-tocopherol, gamma-tocopherol, selenium, and subsequent prostate cancer, J Natl Cancer Inst, 92 (2000) 2018-2023.

[8] C.K. Sen, S. Khanna, S. Roy, Tocotrienols in health and disease: the other half of the natural vitamin E family, Mol Aspects Med, 28 (2007) 692-728.

[9] P. Congden, G. Bruce, M. Rothburn, P. Clarke, J. Littlewood, J. Kelleher, M. Losowsky, Vitamin status in treated patients with cystic fibrosis, Archives of disease in childhood, 56 (1981) 708-714.

[10] C. Bertolaso, V. Groleau, J.I. Schall, A. Maqbool, M. Mascarenhas, N.E. Latham, K.A. Dougherty, V.A. Stallings, Fat-soluble vitamins in cystic fibrosis and pancreatic insufficiency: efficacy of a nutrition intervention, Journal of pediatric gastroenterology and nutrition, 58 (2014) 443-448.
[11] M. Rana, D. Wong-See, T. Katz, K. Gaskin, B. Whitehead, A. Jaffe, J. Coakley, A. Lochhead, Fat-soluble vitamin deficiency in children and adolescents with cystic fibrosis, Journal of clinical pathology, 67 (2014) 605-608.

[12] J. Glowacki, M.S. LeBoff, Vitamin D insufficiency and fracture risk, Current Opinion in Endocrinology, Diabetes and Obesity, 11 (2004) 353-358.

[13] F. Jumaah, S. Larsson, S. Essén, L.P. Cunico, C. Holm, C. Turner, M. Sandahl, A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography–mass spectrometry, Journal of Chromatography A, 1440 (2016) 191-200.

[14] F. Priego Capote, J.R. Jiménez, J.M.M. Granados, M.D.L. de Castro, Identification and determination of fat‐soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring, Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 21 (2007) 1745-1754.

[15] S.A. Ahmed, H.M. Khojah, S.S. Al-Thagfan, Y.M. Alahmadi, Y.A. Mohammed, An ultrasensitive UHPLC-ESI-MS/MS method augmented with a controlled microwave derivatization reaction for quantitation of vitamin D3 and its major metabolites in COVID-19 patients, Talanta, 246 (2022) 123497.

[16] D.O. Meltzer, T.J. Best, H. Zhang, T. Vokes, V. Arora, J. Solway, Association of vitamin D status and other clinical characteristics with COVID-19 test results, JAMA network open, 3 (2020) e2019722-e2019722.

[17] W.B. Grant, H. Lahore, S.L. McDonnell, C.A. Baggerly, C.B. French, J.L. Aliano, H.P. Bhattoa, Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths, Nutrients, 12 (2020) 988.

[18] N. Ali, Role of vitamin D in preventing of COVID-19 infection, progression and severity, J Infect Public Health, 13 (2020) 1373-1380.

[19] P.C. Ilie, S. Stefanescu, L. Smith, The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality, Aging clinical and experimental research, 32 (2020) 1195-1198.

[20] C. Annweiler, B. Hanotte, C.G. de l’Eprevier, J.-M. Sabatier, L. Lafaie, T. Célarier, Vitamin D and survival in COVID-19 patients: A quasi-experimental study, The Journal of steroid biochemistry and molecular biology, 204 (2020) 105771.
[21] S. Rizvi, S.T. Raza, F. Ahmed, A. Ahmad, S. Abbas, F. Mahdi, The role of vitamin E in human health and some diseases, Sultan Qaboos University Medical Journal, 14 (2014) e157.

[22] K. Nagy, M.-C. Courtet-Compondu, B. Holst, M. Kussmann, Comprehensive analysis of vitamin E constituents in human plasma by liquid chromatography− mass spectrometry, Analytical Chemistry, 79 (2007) 7087-7096.

[23] S. Arnon, R.H. Regev, S. Bauer, R. Shainkin-Kestenbaum, Y. Shiff, Y. Bental, T. Dolfin, I. Litmanovitz, Vitamin E levels during early iron supplementation in preterm infants, American journal of perinatology, (2009) 387-392.

[24] A. Pathak, P. Roth, J. Piscitelli, L. Johnson, Effects of vitamin E supplementation during erythropoietin treatment of the anaemia of prematurity, Archives of Disease in Childhood-Fetal and Neonatal Edition, 88 (2003) F324-F328.

[25] J.Y. Lee, T.-Y. So, J. Thackray, A review on vitamin d deficiency treatment in pediatric patients, The Journal of Pediatric Pharmacology and Therapeutics, 18 (2013) 277-291.

[26] A.-L. Hamdan, J. Hosri, P.A.R. Feghali, Y. Yammine, C.A.Z. Daou, C. Jabbour, Effect of Vitamin D Deficiency on Voice: A Review of the Literature, Journal of Voice, (2023).

[27] W. Tsiaras, M.A. Weinstock, Factors influencing vitamin D status, Acta dermato-venereologica, 91 (2011) 115-124.

[28] J. Janoušek, V. Pilařová, K. Macáková, A. Nomura, J. Veiga-Matos, D.D.d. Silva, F. Remiao, L. Saso, K. Malá-Ládová, J. Malý, Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites, Critical reviews in clinical laboratory sciences, 59 (2022) 517-554.

[29] S. Basit, Vitamin D in health and disease: a literature review, British journal of biomedical science, 70 (2013) 161-172.

[30] C. Desmarchelier, P. Borel, Bioavailability of vitamin E in humans, Bioavailability of vitamin E in humans, (2017) np.

[31] S. Fairus, R.M. Nor, H.M. Cheng, K. Sundram, Postprandial metabolic fate of tocotrienol-rich vitamin E differs significantly from that of α-tocopherol, The American journal of clinical nutrition, 84 (2006) 835-842.

[32] F. Galli, A. Azzi, Present trends in vitamin E research, Biofactors, 36 (2010) 33-42.
[33] S.R. Wells, M.H. Jennings, C. Rome, V. Hadjivassiliou, K.A. Papas, J.S. Alexander, α-, γ-and δ-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells, The Journal of nutritional biochemistry, 21 (2010) 589-597.

[34] S. Mahabir, K. Schendel, Y.Q. Dong, S.L. Barrera, M.R. Spitz, M.R. Forman, Dietary α‐, β‐, γ‐and δ‐tocopherols in lung cancer risk, International journal of cancer, 123 (2008) 1173-1180.

[35] A.K. Smolarek, N. Suh, Chemopreventive activity of vitamin E in breast cancer: a focus on γ-and δ-tocopherol, Nutrients, 3 (2011) 962-986.

[36] C. Román-Hidalgo, M. Villar-Navarro, G.E. Falcón-García, M.P. Carbonero-Aguilar, J.D. Bautista-Palomas, M.A. Bello-López, M.J. Martín-Valero, R. Fernández-Torres, Selective, rapid and simultaneous determination of ergosterol and ergocalciferol in mushrooms by UPLC-Q-TOF-MS, J Pharm Biomed Anal, 194 (2021) 113748.

[37] A. Jungert, A. Spinneker, A. Nagel, M. Neuhäuser-Berthold, Dietary intake and main food sources of vitamin D as a function of age, sex, vitamin D status, body composition, and income in an elderly German cohort, Food & nutrition research, 58 (2014) 23632.

[38] A. Vaes, E. Brouwer-Brolsma, N. van der Zwaluw, J. van Wijngaarden, A. Berendsen, N. van Schoor, N. van der Velde, A. Uitterlinden, P. Lips, R. Dhonukshe-Rutten, Food sources of vitamin D and their association with 25-hydroxyvitamin D status in Dutch older adults, The Journal of steroid biochemistry and molecular biology, 173 (2017) 228-234.

[39] C. Lamberg-Allardt, Vitamin D in foods and as supplements, Progress in biophysics and molecular biology, 92 (2006) 33-38.

[40] M.F. Holick, Vitamin D deficiency, New England journal of medicine, 357 (2007) 266-281.

[41] S.H. Pearce, T.D. Cheetham, Diagnosis and management of vitamin D deficiency, Bmj, 340 (2010).

[42] K. Amrein, M. Scherkl, M. Hoffmann, S. Neuwersch-Sommeregger, M. Köstenberger, A. Tmava Berisha, G. Martucci, S. Pilz, O. Malle, Vitamin D deficiency 2.0: an update on the current status worldwide, European journal of clinical nutrition, 74 (2020) 1498-1513.

[43] D.K. Dror, L.H. Allen, Vitamin E deficiency in developing countries, Food and nutrition bulletin, 32 (2011) 124-143.

[44] M.G. Traber, Vitamin E inadequacy in humans: causes and consequences, Advances in nutrition, 5 (2014) 503-514.
[45] R. Brigelius‐Flohé, M.G. Traber, Vitamin E: function and metabolism, The FASEB journal, 13 (1999) 1145-1155.

[46] J. Cannell, B. Hollis, M. Zasloff, R.P. Heaney, Diagnosis and treatment of vitamin D deficiency, Expert opinion on pharmacotherapy, 9 (2008) 107-118.

[47] M.F. Holick, N.C. Binkley, H.A. Bischoff-Ferrari, C.M. Gordon, D.A. Hanley, R.P. Heaney, M.H. Murad, C.M. Weaver, Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline, The Journal of clinical endocrinology & metabolism, 96 (2011) 1911-1930.

[48] A.P. Feranchak, R.J. Sokol, F. Suchy, Medical and nutritional management of cholestasis in infants and children, Liver disease in children, 3 (2007) 190-231.

[49] R.J. Sokol, N. Butler-Simon, C. Conner, J.E. Heubi, F.R. Sinatra, F.J. Suchy, M.B. Heyman, J. Perrault, R.J. Rothbaum, J. Levy, Multicenter trial of d-α-tocopheryl polyethylene glycol 1000 succinate for treatment of vitamin E deficiency in children with chronic cholestasis, Gastroenterology, 104 (1993) 1727-1735.

[50] A. Thébaut, A. Nemeth, J. Le Mouhaër, R. Scheenstra, U. Baumann, B. Koot, F. Gottrand, R. Houwen, L. Monard, S.L. de Micheaux, Oral tocofersolan corrects or prevents vitamin E deficiency in children with chronic cholestasis, Journal of pediatric gastroenterology and nutrition, 63 (2016) 610-615.

[51] Z. Yu, G. Kastenmüller, Y. He, P. Belcredi, G. Möller, C. Prehn, J. Mendes, S. Wahl, W. Roemisch-Margl, U. Ceglarek, Differences between human plasma and serum metabolite profiles, PloS one, 6 (2011) e21230.

[52] Y. Zhang, V. Bala, Z. Mao, Y.S. Chhonker, D.J. Murry, Quantification of fat-soluble vitamins and their metabolites in biological matrices: an updated review, Bioanalysis, 12 (2020) 625-640.

[53] H.J. Issaq, Z. Xiao, T.D. Veenstra, Serum and plasma proteomics, Chemical reviews, 107 (2007) 3601-3620.

[54] S.W. Zhang, W. Jian, S. Sullivan, B. Sankaran, R.W. Edom, N. Weng, D. Sharkey, Development and validation of an LC–MS/MS based method for quantification of 25 hydroxyvitamin D2 and 25 hydroxyvitamin D3 in human serum and plasma, Journal of Chromatography B, 961 (2014) 62-70.

[55] G. Arachchige, E. Thorstensen, M. Coe, E. McKenzie, J. O'Sullivan, C. Pook, LC-MS/MS quantification of fat soluble vitamers–A systematic review, Analytical biochemistry, 613 (2021) 113980.
[56] D.A. Volmer, L.R. Mendes, C.S. Stokes, Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions, Mass Spectrometry Reviews, 34 (2015) 2-23.

[57] S. Yin, Y. Yang, L. Wu, Y. Li, C. Sun, Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices, TrAC Trends in Analytical Chemistry, 110 (2019) 204-220.

[58] H. Trufelli, P. Palma, G. Famiglini, A. Cappiello, An overview of matrix effects in liquid chromatography–mass spectrometry, Mass spectrometry reviews, 30 (2011) 491-509.

[59] A. Cappiello, G. Famiglini, P. Palma, E. Pierini, V. Termopoli, H. Trufelli, Overcoming matrix effects in liquid chromatography− mass spectrometry, Analytical chemistry, 80 (2008) 9343-9348.

[60] F. Petruzziello, A. Grand-Guillaume Perrenoud, A. Thorimbert, M. Fogwill, S. Rezzi, Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS interface, Analytical chemistry, 89 (2017) 7615-7622.

[61] S. Zhou, L. Zhang, C. Guo, Y. Zhong, X. Luo, X. Pan, Z. Yang, L. Tan, Comparing liquid-liquid, solid-phase, and supported-liquid extraction for the determination of polycyclic aromatic hydrocarbons in serum samples and their application for human biomonitoring, Microchemical Journal, 181 (2022) 107812.

[62] J. Płotka-Wasylka, N. Szczepańska, M. de La Guardia, J. Namieśnik, Miniaturized solid-phase extraction techniques, TrAC Trends in Analytical Chemistry, 73 (2015) 19-38.

[63] M. González-Curbelo, B. Socas-Rodríguez, A. Herrera-Herrera, J. González-Sálamo, J. Hernández-Borges, M. Rodríguez-Delgado, Evolution and applications of the QuEChERS method, TrAC Trends in Analytical Chemistry, 71 (2015) 169-185.

[64] N. Casado, S. Morante-Zarcero, I. Sierra, Application of the QuEChERS strategy as a useful sample preparation tool for the multiresidue determination of pyrrolizidine alkaloids in food and feed samples: a critical overview, Applied Sciences, 12 (2022) 4325.

[65] C. Zhang, Y. Deng, J. Zheng, Y. Zhang, L. Yang, C. Liao, L. Su, Y. Zhou, D. Gong, L. Chen, The application of the QuEChERS methodology in the determination of antibiotics in food: A review, TrAC Trends in Analytical Chemistry, 118 (2019) 517-537.

[66] L. Kim, D. Lee, H.-K. Cho, S.-D. Choi, Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals, Trends in Environmental Analytical Chemistry, 22 (2019) e00063.

[67] Á. Santana-Mayor, B. Socas-Rodríguez, A.V. Herrera-Herrera, M.Á. Rodríguez-Delgado, Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis, TrAC Trends in Analytical Chemistry, 116 (2019) 214-235.

[68] H. Arai, N. Kono, α-Tocopherol transfer protein (α-TTP), Free Radical Biology and Medicine, 176 (2021) 162-175.

[69] P. White, N. Cooke, The multifunctional properties and characteristics of vitamin D-binding protein, Trends in endocrinology & metabolism, 11 (2000) 320-327.

[70] C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, R. Grant, Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry, Journal of Chromatography B, 785 (2003) 263-275.

[71] M. Karaźniewicz‐Łada, A. Główka, A review of chromatographic methods for the determination of water‐and fat‐soluble vitamins in biological fluids, Journal of separation science, 39 (2016) 132-148.

[72] S.X. Peng, T.M. Branch, S.L. King, Fully Automated 96-Well Liquid− Liquid Extraction for Analysis of Biological Samples by Liquid Chromatography with Tandem Mass Spectrometry, Analytical Chemistry, 73 (2001) 708-714.

[73] M. de la Guardia, S. Garrigues, Handbook of green analytical chemistry, Wiley Online Library2012.

[74] C.I. Silvestre, J.L. Santos, J.L. Lima, E.A. Zagatto, Liquid–liquid extraction in flow analysis: A critical review, Analytica chimica acta, 652 (2009) 54-65.

[75] S.F. Hammad, I.A. Abdallah, A. Bedair, F.R. Mansour, Homogeneous liquid–liquid extraction as an alternative sample preparation technique for biomedical analysis, Journal of separation science, 45 (2022) 185-209.

[76] Y.Q. Tang, N. Weng, Salting-out assisted liquid–liquid extraction for bioanalysis, Bioanalysis, 5 (2013) 1583-1598.

[77] T. Gezahegn, B. Tegegne, F. Zewge, B.S. Chandravanshi, Salting-out assisted liquid–liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography–diode array detector, BMC chemistry, 13 (2019) 1-10.
[78] Q. Wang, C.r. Yin, L. Xu, Optimization of hydrophilic interaction LC by univariate and multivariate methods and its combination with salting‐out liquid–liquid extraction for the determination of antihypertensive drugs in the environmental waters, Journal of separation science, 36 (2013) 1007-1014.

[79] G. Islas, I.S. Ibarra, P. Hernandez, J.M. Miranda, A. Cepeda, Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: a review, International Journal of Analytical Chemistry, 2017 (2017).

[80] A.R. Fontana, A. Camargo, L.D. Martinez, J.C. Altamirano, Dispersive solid-phase extraction as a simplified clean-up technique for biological sample extracts. Determination of polybrominated diphenyl ethers by gas chromatography–tandem mass spectrometry, Journal of Chromatography A, 1218 (2011) 2490-2496.

[81] P. Ścigalski, P. Kosobucki, Recent materials developed for dispersive solid phase extraction, Molecules, 25 (2020) 4869.

[82] H. Liu, D.-j. Wang, K.-x. Wan, J. Zhang, Z.-j. Yuan, C.-w. Yu, J. Yang, L. Zou, Simultaneous quantification of fat-soluble vitamins A, 25-hydroxylvitamin D and vitamin E in plasma from children using liquid chromatography coupled to Orbitrap mass spectrometry, Journal of Chromatography B, 1177 (2021) 122795.

[83] J. Hilger, A. Friedel, R. Herr, T. Rausch, F. Roos, D.A. Wahl, D.D. Pierroz, P. Weber, K. Hoffmann, A systematic review of vitamin D status in populations worldwide, British journal of nutrition, 111 (2014) 23-45.

[84] J. Heukeshoven, R. Dernick, Characterization of a solvent system for separation of water-insoluble poliovirus proteins by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 326 (1985) 91-101.

[85] A.A. Doucette, D.B. Vieira, D.J. Orton, M.J. Wall, Resolubilization of precipitated intact membrane proteins with cold formic acid for analysis by mass spectrometry, Journal of Proteome Research, 13 (2014) 6001-6012.

[86] J. Pawliszyn, Sample preparation: quo vadis?, Analytical chemistry, 75 (2003) 2543-2558.

[87] Y. Guo, H. Hu, T. Li, L. Xue, X. Zhang, Z. Zhong, Y. Zhang, Y. Jin, Primary secondary amine as a sorbent material in dispersive solid‐phase extraction clean‐up for the determination of indicator polychlorinated biphenyls in environmental water samples by gas chromatography with electron capture detection, Journal of Separation Science, 40 (2017) 3279-3288.
[88] S.S. Herrmann, M.E. Poulsen, Clean-up of cereal extracts for gas chromatography–tandem quadrupole mass spectrometry pesticide residues analysis using primary secondary amine and C18, Journal of Chromatography A, 1423 (2015) 47-53.

[89] J. Pawliszyn, Comprehensive sampling and sample preparation: analytical techniques for scientists, Academic Press2012.

[90] E. Psillakis, Vortex-assisted liquid-liquid microextraction revisited, TrAC Trends in Analytical Chemistry, 113 (2019) 332-339.

[91] J. Hepperle, D. Dörk, A. Barth, B. Taşdelen, M. Anastassiades, Studies to improve the extraction yields of incurred pesticide residues from crops using the QuEChERS method, Journal of AOAC International, 98 (2015) 450-463.

[92] M.L. Martins, M. Kemmerich, O.D. Prestes, L. Maldaner, I.C. Jardim, R. Zanella, Evaluation of an alternative fluorinated sorbent for dispersive solid-phase extraction clean-up of the quick, easy, cheap, effective, rugged, and safe method for pesticide residues analysis, Journal of Chromatography a, 1514 (2017) 36-43.

[93] N.S.A. Kassim, P.N. Shaw, A.K. Hewavitharana, Simultaneous determination of 12 vitamin D compounds in human serum using online sample preparation and liquid chromatography-tandem mass spectrometry, Journal of Chromatography A, 1533 (2018) 57-65.

[94] P. Viñas, M. Bravo-Bravo, I. López-García, M. Hernández-Córdoba, Dispersive liquid–liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection, Talanta, 115 (2013) 806-813.

電子全文 電子全文(網際網路公開日期:20290729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文