跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃泰銘
研究生(外文):HUANG, TAI-MING
論文名稱:醫療院所溫室氣體盤查之研究—以中部區域醫院為例
論文名稱(外文):Research on Greenhouse Gas Inventory in Medical Institutions: A Case Study of a Central Regional Hospital
指導教授:周煥銘周煥銘引用關係江智偉
指導教授(外文):CHOU, HUANN-MINGCHIANG, CHIH-WEI
口試委員:傅耀賢莊慧仁陳賢焜
口試委員(外文):FU, YAW-SHYANCHUANG, HUI-JENCHEN, SHENG-KUN
口試日期:2024-06-30
學位類別:博士
校院名稱:崑山科技大學
系所名稱:機械與能源工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:91
中文關鍵詞:溫室氣體醫院碳盤查門診碳排放節能減碳淨零排放
外文關鍵詞:Greenhouse gasesHospital carbon inventoryOutpatient carbon emissionsEnergy-saving and carbon reductionNet-zero emissions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
目前台灣醫療院所實際醫院碳盤查結果,對於其他間接溫室氣體排放之盤查因為量化與查證有其困難性,故多不揭露。對於醫院門診病患產生溫室氣體方面,由於盤查複雜度高,少有實際操作研究。
本研究顯示某中部區域醫院碳盤查結果溫室氣體排放量最多為類別2(輸入能源) 61.41%、第二為類別3(運輸) 23.67%、第三為類別4(組織使用產品) 13.01%、第四為類別1(直接溫室氣體排放) 1.91%。目前台灣醫療院所碳盤查多不列入類別3運輸方面盤查,本研究碳盤查結果在類別3運輸方面員工通勤溫室氣體排放占總排放量13.90%,而門診客戶與訪客運輸排放占比9.77%,合計23.67%,成為該院溫室氣體排放第二大排放源。本研究以問卷數據計算門診病患交通通勤產生之交通溫室氣體排放,計算出包含到院陪同者,醫院門診就診看診者實際到院人數應乘以1.59倍。單以門診就診人次而論,平均每位門診患者交通通勤產生溫室氣體排放約為1.322kg CO2e/人,可以此參數作為台灣中型醫院計算門診患者交通通勤溫室氣體排放量之參考。
醫院如果要向淨零排放方向努力,因為類別2之外購電力為最大之碳排放源,減碳方向應以省電為主要方法;裝置智慧電力監控系統進行需控、時控及溫控可節省15%電力,提升冰水主機EER可節省2.93%電力,提升箱型(>8 RT)或小型冷氣機(<8 RT)EER可節省1.22%電力,日光燈管改換LED燈管可節省0.88%電力,以IE4等級馬達替代IE1等級馬達可節省4.46%電力,合計節省24.63%電力,可減少總排碳量15.12%,為最主要減碳方法。充份利用樓頂面積及空地面積建置太陽能發電,一年可以發電1,277,500度電(占2022年該醫院總用電量12,632,000度之10.11%),相當於可以減碳632 噸 CO2e/年 (以0.495 kg CO2/度 計算),占該醫院2022年之總排碳量6.21%。
Currently, the results of carbon audits in actual Taiwanese medical institutions reveal that due to the difficulties in quantification and verification, many do not disclose the indirect emissions of other greenhouse gases. As for the greenhouse gas emissions generated by outpatient visits to hospitals, there are few practical operational studies due to the high complexity of the audits.
This study shows that the carbon audit results of a central regional hospital in Taiwan indicate that the largest amount of greenhouse gas emissions is from Category 2 (input energy) at 61.41%, followed by Category 3 (transportation) at 23.67%, Category 4 (use of organizational products) at 13.01%, and Category 1 (direct greenhouse gas emissions) at 1.91%. Currently, carbon audits in Taiwanese medical institutions often do not include Category 3 transportation. The results of this study show that in Category 3 transportation, employee commuting accounts for 13.90% of the total emissions, while outpatient clients and visitor transportation account for 9.77%, totaling 23.67%, making it the second-largest source of greenhouse gas emissions for the hospital. This study calculates the transportation greenhouse gas emissions generated by outpatient commuting using survey data, including those accompanying the patients to the hospital. The actual number of visitors to the hospital should be multiplied by 1.59 times. Considering the number of outpatient visits alone, the average greenhouse gas emissions generated by each outpatient's commute are approximately 1.322 kg CO2e per person. This parameter can be used as a reference for calculating the greenhouse gas emissions from outpatient commuting for medium-sized hospitals in Taiwan.If hospitals aim to move towards net-zero emissions, since Category 2's purchased electricity is the largest source of carbon emissions, the main method of carbon reduction should focus on saving electricity. Installing smart electricity monitoring systems for demand control, time control, and temperature control can save 15% of electricity. Improving the Energy Efficiency Ratio (EER) of chilled water hosts can save 2.93% of electricity, enhancing the EER of box-type (>8 RT) or small air conditioners (<8 RT) can save 1.22% of electricity, replacing fluorescent tubes with LED tubes can save 0.88% of electricity, and substituting IE1 motors with IE4 motors can save 4.46% of electricity. In total, these measures can save 24.63% of electricity, reducing the overall carbon emissions by 15.12%, which is the primary method of carbon reduction. Fully utilizing the rooftop area and vacant land for solar power generation, the hospital can generate 1,277,500 kWh of electricity per year (accounting for 10.11% of the hospital's total electricity consumption of 12,632,000 kWh in 2022), equivalent to reducing 632 tons of CO2e per year (calculated at 0.495 kg CO2/kWh), which accounts for 6.21% of the hospital's total carbon emissions in 2022.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 氣候變遷的影響和風險 3
2.2 氣候變遷對醫療體系的影響 5
2.3 氣候變遷對人類健康的影響 6
2.4醫療體系溫室氣體排放分析 8
2.5 醫療體系淨零排放趨勢 11
2.6 醫療體系淨零排放策略 13
2.7臺灣醫療體系淨零排放策略 16
第三章 研究方法 25
3.1研究流程 25
3.2碳盤查方法 26
3.2.1顯著性分析 26
3.2.2活動數據收集 28
3.2.3排放係數來源 33
3.2.4碳排放計算方法 35
3.3員工通勤盤查 37
3.4問卷調查 38
第四章 醫院碳盤查實際研究 40
4.1某中部區域醫院初次碳盤查 40
4.2某中部區域醫院初次碳盤查準確度提升方向 43
4.2.1問卷調查統計 44
4.3問卷數據溫室氣體排放計算 46
4.3.1門診病患引起之交通排碳 46
4.3.2門診病患引起之化糞池排碳 47
4.4 某中部區域醫院準確度提升後最後碳盤查結果 47
4.5某中部區域醫院省電評估 50
4.5.1冰水主機及冷氣機省電 51
4.5.2某中部區域改用高效率照明、動力設備預估之省電度數 57
4.6某中部區域醫院各種減碳方法減碳量百分比彙整 59
4.7醫院淨零排放可行性評估 60
第五章 結論與建議 63
5.1 結論 63
5.2 建議 64
參 考 文 獻 65
附件一 某中部區域醫院2022年溫室氣體盤查報告書 69
[1]D. McCoy, B. Hoskins, “The science of anthropogenic climate change: what every doctor should know,” BMJ, 349, pp. 1-11, 2014.
[2]A. Costello, M. Abbas, A. Allen et al., “Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission,” Lancet, Vol. 373, pp. 1693-1733, 2009.
[3]IPCC氣候變遷第六次評估報告。https://www.ipcc.ch/assessment-report/ar6/
[4]A. Connor, D. O'Donoghue, “Sustainability: the seventh dimension of quality in health care,” Hemodialysis International, Vol. 16, pp. 2-5, 2012.
[5]中華民國國家標準CNS 溫室氣體-第2部:專案層級溫室氣體排放減量或移除增量之量化、監督及報告附指引之規範。chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/http://ucs.ucscert.com.tw/upload/CNS14064-2_2021.PDF
[6]World Health Organization: Climate Change and Health. https://www.who.int/news-room/factsheets/detail/climate-change-and-health. accessed2023/4/7.
[7]A. J. McMichael, E. Lindgren, “Climate change: present and future risks to health, and necessary responses,” J Intern Med, Vol. 270, pp. 401-413, 2011.
[8]J. B. Rose, P. R. Epstein, E. K. Lipp et al., “Climate variability and change in the United States: potential impacts on water-and foodborne diseases caused by microbiologic agents,” Environ Health Perspect, Vol. 109(Suppl 2), pp. 211-221, 2001.
[9]C. Bezirtzoglou, K. Dekas, E. Charvalos, “Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe,” Anaerobe, Vol. 17, pp. 337-340, 2011.
[10]Z. Xu, G. FitzGerald, Y. Guo, B. Jalaludin & S. Tong, “Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis,” Environment International, Vol. 89-90, pp. 193-203, 2016.
[11]Y. Guo, et al., “Heat wave and mortality: a multicountry, multicommunity study,” Environ Health Perspect, Vol. 125, pp. 087006-1−087006-11, 2017.
[12]R. Sharovsky, L. A. M. César and J. A. F. Ramires, “Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil,” Brazilian Journal of Medical and Biological Research, Vol. 37, pp. 1651-1657, 2004.
[13]T. Messner, V. Lundberg, B. Wikström, “A temperature rise is associated with an increase in the number of acute myocardial infarctions in the subarctic area,” International Journal of Circumpolar Health, Vol. 61, pp. 201-207, 2002.
[14]S. Fumihiko, R.J. Carlos et al., “Climate change and nephrology nephrology,” Nephrol Dial Transplant, Vol. 38, Issue 1, pp. 41-48, January 2023.
[15]P. Hausfater, B. Megarbane, L. Fabricatore, et al., “Serum sodium abnormalities during nonexertional heatstroke: incidence and prognostic values,” The American Journal of Emergency Medicine, Vol. 30, pp. 741-748, 2012.
[16]J. Liu, B. M. Varghese, A. Hansen et al., “Hot weather as a risk factor for kidney disease outcomes: A systematic review and meta-analysis of epidemiological evidence,” Science of The Total Environment, Vol. 801, 149806, pp. 1-20, 2021.
[17]Y. Wei, Y. Wang, C. K. Lin et al., “Associations between seasonal temperature and dementia- associated hospitalizations in New England,” Environment International, Vol. 126, pp. 228-233, 2019.
[18]R. Basu, B. D. Ostro, “A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California,” American Journal of Epidemiology, Vol. 168, pp. 632-637, 2008.
[19]V. L. Feigin, Y. P. Nikitin, M. L. Bots et al., “A population-based study of the associations of stroke occurrence with weather parameters in Siberia, Russia (1982-92),” european journal of neurology, Vol. 7, pp. 171-178, 2000.
[20]J. Dawson, C. Weir, F. Wright et al., “Associations between meteorological variables and acute stroke hospital admissions in the west of Scotland,” Acta Neurologica Scandinavica, Vol. 117, pp. 85-89, 2008.
[21]C. Kyobutungi, A. Grau, G. Stieglbauer et al, “Absolute temperature, temperature changes and stroke risk: a case-crossover study,” European Journal of Epidemiology, Vol. 20, pp. 693-698, 2005.
[22]C. Zammit, N. Torzhenskaya, et al., “Neurological disorders vis-`a-vis climate change,” Early Human Development, Vol. 155, 105217, pp. 1-7, 2021.
[23]C. S. North, A. Kawasaki, E. L. Spitznagel et al., “The course of PTSD, major depression, substance abuse, and somatization after a natural disaster,” The Journal of Nervous and Mental Disease, Vol. 192, pp. 823-829, 2004.
[24]M. McGinn, 2019's biggest pop-culture trend was climate anxiety, Grist. https:// grist.org/politics/2019s-biggest-pop-culture-trend-was- climate-anxiety/.
[25]T. J. Doherty, Mental health impacts In B. Levy, & J. Patz (Eds.), Climate change and public health, New York: Oxford University Press, pp. 195-214, 2015.
[26]S. Clayton, “Climate anxiety: Psychological responses to climate change,” Journal of Anxiety Disorders, Vol. 74, 102263, pp. 1-7, 2020.
[27]D. McAloose, A. L. Newton, “Wildlife cancer: a conservation perspective. Nature Reviews Cancer,” Vol. 9, pp. 517-526, 2009.
[28]B. Ryan, R. C. Franklin, F. M. Burkle Jr. et al., “Identifying and describing the impact of cyclone, storm and flood related disasters on treatment management, care and exacerbations of non-communicable diseases and the implications for public health,” PLOS Currents Disasters, 1:7, 2015.
[29]T. P. G. Watson, M. Tong, J. Bailie et al., “Relationship between climate change and skin cancer and implications for prevention and management: a scoping review,” Public Health, Vol. 227, pp. 243-249, 2024.
[30]Health Care Without Harm: Designing a Net Zero Roadmap for Healthcare: Technical Methodology and Guidance. https://noharm-global.org/sites/ default/files/documents-files/7186/2022-08-HCWH- Europe-Designing-a-Net-Zero-Road-Map-for- Healthcare.pdf. accessed 2023/4/7.
[31]“環保署溫室氣體排放量盤查作業指引”,行政院環境保護部,2023年5月。
[32]NHS England: Delivering a'Net Zero' National Health Service. https://www.england.nhs.uk/ greenernhs/wp-content/uploads/sites/51/2022/07/ B1728-delivering-a-net-zero-nhs-july-2022.
[33]The Glasgow Climate Pact - Key Outcomes from COP26. Credit: UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26
[34]Alliance for Transformative Action on Climate and Health (ATACH). World Health Organization (WHO). https://www.who.int/initiatives/alliance-for-transformative-action-on-climate-and-health
[35]Global Road Map for Health Care. Taiwan. HEALTH SECTOR EMISSIONS FACT SHEET Decarbonization. https://healthcareclimateaction.org/fact-sheets/en/English%20-%20Taiwan
[36]The Global Green and Healthy Hospitals Agenda. https://greenhospitals.org/goals
[37]N. Redvers, “Patient-planetary health co-benefit prescribing: Emerging considerations for health policy and health professional practice,” Front Public Health, Vol. 9, 678545, pp. 1-7, 2021.
[38]A. J. MacNeill, F. McGain, J. D. Sherman, “Planetary health care: A framework for sustainable health systems,” Lancet Planet Health, Vol. 5, pp. e66-e68, 2021.
[39]E. M. Veidis, S. S. Myers, A. A. Almada et al., “A call for clinicians to act on planetary health,” The Lancet, Vol. 393, pp. 1, 2021.
[40]A. Herrmann, B. Lenzer, B. S. Müller et al., “Integrating planetary health into clinical guidelines to sustainably transform health care,” The Lancet Planetary Health, Vol. 6, e184-e185, 2022.
[41]“醫院節約能源應用技術手冊”,經濟部能源局指導,財團法人台灣綠色生產力基金會編印,2022年11月。
[42]王冠翔、周鼎金,“室內照明節能評估系統對於照明規劃模擬階段作業簡化之研究”,臺灣建築學會「建築學報」,第 111 期增刊(技術專刊),第13~35 頁,2020 年 3 月。
[43]周麗芳、邱泰源,“醫療體系淨零排放的趨勢與策略”,臺灣醫界,第66卷,第5期,第12-19頁, 2023年05月。
[44]“2022年家庭用電資訊百科”,工業技術研究院綠能所編撰,2023年7月編印。
[45]周煥銘、蘇炎坤、陳賢焜等,“崑山科技大學校園節電計畫(I)”,科技部補助專題研究計畫成果報告,計畫編號:MOST 102-3113-P-168-001,執行期間: 102年7 月1 日至 103年 6月30 日,崑山科技大學機械系。
[46]許孟原,“高效率馬達及變頻節能應用案例說明”,東元電機公司,2018-08-21。https://www.tgpf.org.tw/upload/news/news_947/20180821%E9%AB%98%E6%95%88%E7%8E%87%E9%A6%AC%E9%81%94.pdf
[47]經濟部能源署,“各年度各縣市太陽光電發電設備設置容量統計表”,更新日期:2024年01月24日。
[48]“2022年發電概況”,台灣經濟部能源局,更新日期:2023年12月20日。
[49]“2022年電力碳排放因數”,台灣經濟部能源局,更新日期:2024年03月07日。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊