跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林澤龍
研究生(外文):LIN, TSE-LUNG
論文名稱:應用於液體分類和介電特性擬合的微波感測器
論文名稱(外文):Microwave Sensor for Liquid Classification and Permittivity Estimation
指導教授:陳政傳陳政傳引用關係
指導教授(外文):CHEN, CHENG-CHUAN
口試委員:蔡沅南葉明豐陳政傳
口試委員(外文):TSAI, YUAN-NANYEH, MING-FENGCHEN, CHENG-CHUAN
口試日期:2024-05-08
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:133
中文關鍵詞:微波介電陶瓷FR1頻段液體感測器
外文關鍵詞:Microwave Dielectric CeramicsFR1 Frequency BandLiquid Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用 X-RAY 粉末繞射、拉曼光譜及微觀結構分析,探討 NdTi(0.5-x)MexMo0.5O4 (Me = Sn、Ge、Zr)之微波介電特性。陶瓷樣品使用傳統固態反應法製備並燒結在不同溫度,由實驗結果得知 NdTi0.49Sn0.01Mo0.5O4 燒結在 1425 ℃持溫4 小時,具有微波介電特性: εr 為 18.2;Q×f 為 35,700 GHz;τf 為-26.5 ppm/℃。 NdTi0.49Ge0.01Mo0.5O4 燒結在 1425 ℃持溫 4 小時,具有微波介電特性: εr 為 17.6;Q×f 為 33,400 GHz;τf 為-30.7 ppm/℃。NdTi0.49Zr0.01Mo0.5O4 燒結在 1425 ℃持溫 4小時,具有微波介電特性: εr 為 18.7;Q×f 為 33,100 GHz;τf 為-31.0 ppm/℃。
液體感測器,利用 NdTi0.49Sn0.01Mo0.5O4 介電陶瓷製作,為將液體感測器設計於 3.5 GHz;靈敏度為-0.015 GHz/εr;線性度為 9.704 %,液體感測器有著高靈敏度、低功耗、體積小及易製造等優點。
In this study, the microwave dielectric properties of NdTi(0.5-x)MexMo0.5O4 (Me = Sn, Ge, Zr) are discussed by means of X-RAY powder diffraction, Raman vibration and observing microstructure. The ceramic samples were prepared by traditional solid-state reaction method and sintered at different temperatures. The experimental results showed that NdTi0.49Sn0.01Mo0.5O4 sintered at 1425 ℃ for 4 hours had microwave dielectric properties: εr was 18.2; Q×f is 35,700 GHz; τf is -26.5 ppm/℃.NdTi0.49Ge0.01Mo0.5O4 sintered at 1425 ℃ for 4 hours has microwave dielectric properties: εr is 17.6; Q×f is 33,400 GHz; τf is -30.7 ppm/℃. NdTi0.49Zr0.01Mo0.5O4 sintered at 1425 ℃ for 4 hours has microwave dielectric properties: εr is 18.7; Q×f is 33,100 GHz; τf is -31.0 ppm/℃.
The liquid sensor is made of NdTi0.49Sn0.01Mo0.5O4 dielectric ceramic. The liquid sensor is designed to operate at 3.5 GHz; the sensitivity is -0.015 GHz/εr; the linearity is 9.704%. Liquid sensors have the advantages of high sensitivity, low power consumption, small size and easy manufacturing.
摘要i
ABSTRACTii
目錄iii
表目錄vii
圖目錄ix
第一章 緒論1
1.1 前言1
1.2 研究目的2
第二章 介電材料原理3
2.1 微波介電特性3
2.1.1 介電常數(Dielectric Constant :εr)3
2.1.2 品質因數 (Quality Factor : Q)4
2.1.3 諧振頻率溫度係數(Temperature Coefficient of Resonate Frequency:τf)7
2.2 介電原理9
2.3 介質共振器原理12
2.4褐釔鈮礦結構14
2.5 燒結原理14
2.5.1 燒結的過程14
2.5.2 燒結的種類15
2.6 拉曼光譜18
第三章 天線原理20
3.1天線功能與參數20
3.1.1輸入阻抗(Input Impedance)21
3.1.2 諧振頻率(Resonant Frequency)22
3.1.3 頻寬(Bandwidth)23
3.1.4 輻射場型(Radiation Pattern)23
3.1.5 極化(Polarization)28
3.1.6 輻射效率(Radiation Efficiency)31
3.1.7 指向性(Directional)31
3.1.8 增益(Gain)33
3.2微帶線原理33
3.2.1 微帶線原理及結構33
3.2.2 微帶線傳播模態34
3.2.3 微帶線公式分析及考量35
3.2.3.1 等效介電常數及特性阻抗35
3.2.3.2 微帶線公式分析36
3.2.3.3 微帶線各項參數37
3.2.3.4 微帶線的損失38
3.3微帶天線原理39
3.3.1 微帶天線概述40
3.3.2 空腔模型理論41
3.4 微帶平面天線42
3.4.1 微帶平面天線結構42
3.4.2 微帶平面天線設計方式43
第四章 實驗流程與量測方法48
4.1 微波介電材料的製備步驟48
4.1.1 粉末的配置與球磨48
4.1.2 粉末的煆燒與二次球磨49
4.1.3 加入黏著劑、過篩及壓模50
4.1.4 去除黏著劑與燒結50
4.2 微波介電材料的特性分析與量測51
4.2.1 X-Ray繞射分析51
4.2.2 掃描式電子顯微鏡分析51
4.2.3 拉曼光譜分析儀52
4.2.4 密度量測53
4.2.5 微波介電特性量測53
4.2.5.1 共振模式的鑑別55
4.2.5.2 介電常數之量57
4.2.5.3 Q值之量測58
4.2.5.4 諧振頻率溫度係數(τf)之量測60
4.3 陶瓷基板與線路的製備步驟61
4.3.1 微波陶瓷基板製備61
4.4 天線63
4.4.1 天線設計63
4.4.2 天線製作63
4.4.3 天線量測64
4.4.4 天線輻射場型量測65
第五章 實驗結果與討論67
5.1 NdTi(0.5-X)MeXMO0.5O4 (Me=Sn、Ge、Zr)系統67
5.1.1 NdTi(0.5-x)SnxMo0.5O4材料分析67
5.1.1.1 NdTi(0.5-x)SnxMo0.5O4之XRD分析67
5.1.1.2 NdTi(0.5-x)SnxMo0.5O4之SEM分析69
5.1.1.3 NdTi(0.5-x)SnxMo0.5O4之Raman分析74
5.1.1.4 NdTi(0.5-x)SnxMo0.5O4之密度分析76
5.1.1.5 NdTi(0.5-x)SnxMo0.5O4之介電常數分析78
5.1.1.6 NdTi(0.5-x)SnxMo0.5O4之品質因數分析80
5.1.1.7 NdTi(0.5-x)SnxMo0.5O4之諧振頻率溫度係數分析82
5.1.2 NdTi(0.5-x)GexMo0.5O4材料分析83
5.1.2.1 NdTi(0.5-x)GexMo0.5O4之XRD分析83
5.1.2.2 NdTi(0.5-x)GexMo0.5O4之SEM分析85
5.1.2.3 NdTi(0.5-x)GexMo0.5O4之Raman分析90
5.1.2.4 NdTi(0.5-x)GexMo0.5O4之密度分析92
5.1.2.5 NdTi(0.5-x)GexMo0.5O4之介電常數分析94
5.1.2.6 NdTi(0.5-x)GexMo0.5O4之品質因數分析96
5.1.2.7 NdTi(0.5-x)GexMo0.5O4之諧振頻率溫度係數分析98
5.1.3 NdTi(0.5-x)ZrxMo0.5O4材料分析99
5.1.3.1 NdTi(0.5-x)ZrxMo0.5O4之XRD分析99
5.1.3.2 NdTi(0.5-x)ZrxMo0.5O4之SEM分析101
5.1.3.3 NdTi(0.5-x)ZrxMo0.5O4之Raman分析106
5.1.3.4 NdTi(0.5-x)ZrxMo0.5O4之密度分析108
5.1.3.5 NdTi(0.5-x)ZrxMo0.5O4之介電常數分析110
5.1.3.6 NdTi(0.5-x)ZrxMo0.5O4之品質因數分析112
5.1.3.7 NdTi(0.5-x)ZrxMo0.5O4之諧振頻率溫度係數分析114
5.2 天線液體感測器115
5.2.1 FR4基板天線液體感測器115
5.2.1.1 天線液體感測實現於FR4基板特性模擬及量測117
5.2.1.2 FR4基板液體天線感測器應用於丙酮模擬119
5.2.1.3 FR4基板液體天線感測器應用於丙酮量測121
5.2.2 天線液體感測實現於NdTi0.49Sn0.01Mo0.5O4基板設計123
5.2.2.1 天線液體感測實現於NdTi0.49Sn0.01Mo0.5O4基板特性模擬及量124
5.2.2.2 NdTi0.49Sn0.01Mo0.5O4基板液體天線感測器應用於丙酮量測127
第六章 結論129
參考文獻131

[1]Haneul Woo, Hee-Jo Lee and Jong-Gwan Yook "Noninvasive Detection of Glucose and NaCl Solutions With Environment Correction Using a Dual IDC-Based Microwave Sensor", IEEE, 19039-19049, (2024)
[2]張運宏,La(Mg1/2Sn1/2)O3 微波介電特性之研究及其在雙層微帶天線之應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2009)。
[3]Shannon, R. D., "Dielectric Polarizabilities of Ions in Oxides and Fluorides, "Journal of Applied Physics, 73, 1, 348-366 (1993).
[4]李偉晟,La(Mg0.5Sn0.5)O3陶瓷微波介電特性之改善極高K 值天線之應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2012)。
[5]郭仁財譯,微波工程,台北:高立圖書館有限公司 (2001)。
[6]吳朗,電子陶瓷—介電陶瓷,台北:全欣資訊圖書股份有限公司 (1994)。
[7]Cheng D. K., Field and Wave Electromagnetics, Boston: Addison-wesley (1989).
[8]邱碧秀,電子陶瓷材料,台北:徐氏基金會 (1997)。
[9]魏炯權,電子材料工程,台北:全華圖書公司 (2005)。
[10]Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to Ceramics, 2nd Ed., New York: John Wiley & Sons (1976).
[11]Yonggui Zhao and Ping Zhang "Complex chemical bond theory, Raman spectra and microwavedielectric properties of low loss ceramics NdNbO4–xAl2O3", (2015).
[12]Kajfez, D., "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, 13, 152-161 (1983).
[13]Kajfez, D. and Guillon, P., Dielectric Resonators., New York: Artech House (1989).
[14] Huppmann, W. J. and Petzow, G., "The Elementary Mechanisms of Liquid Sintering," Sintering Processes. Materials Science Research, New York, 189-201 (1980).
[15]Kingery, W. D., "Densification During Sintering in The Presence of A Liquid Phase," Journal of Applied Physics, 30, 3, 301-306 (1959).
[16]Marion, J. E., "Liquid Phase Sintering of Ceramics," Journal of the American Society, 70, 10, 708-713 (1987).
[17]Raj, R. and Chyung, C. K., "Solution Precipitation Creep in Glass Ceramics," Acta Metall, 29, 1, 159-166 (1980).
[18]康鼎佳,以溶膠凝膠法製成反尖晶石鈦酸鎂薄膜,碩士論文,國立成功大學電機工程研究所,台南 (2011)。
[19]Hongcheng Yanga, Shuren Zhanga, Hongyu Yanga, Ying Yuana, Enzhu Li "Bond characteristics, vibrational spectrum and optimized microwave dielectric properties of chemically substituted NdNbO4", 2019, 16940-19947.
[20]白光弘,天線原理及應用,台北:明文出版社 (1992)。
[21]Warren, L. S. and Gary, A. T., Antenna Theory and Design, New York: John Wiley & Sons (1998).
[22]Aprel, "Electromagnetic Near-field Zone", 2022.
[23]Constantine, A. B., Antenna Theory, New York: John Wiley & Sons (2005).
[24]Gupta, K. C., Garg, R., Bahl, I. and Bhartis, E., Microstrip Lines and Slotlines, 2nd Ed., Artech House, Boston (1996).
[25]Hammerstard, E. O., Proceedings of the European Microwave Conference, 268-272 (1975).
[26]Pucel, R. A., Masse, D. J. and Hartwin, C. E., “Losses in Microstrip,” IEEE Trans., MIT-16, June, 342-350 (1968).
[27]Gupta, K. C. and Abouzahra, M. D., Analysis and Design of Planar Microwave Components, ISBN 0-7803-0437-3, Chap. 11 (1994).
[28]Derneryd , A. G., "A theoretical investigation of the rectangular microstrip antenna element", IEEE Trans. Antennas Propagat., 26, 4, 532-535. (1978).
[29]Jung, D., Woo, Y. and Ha, C., "Modified inset fed microstrip patch antenna", 2001 Asia-Pacific Microwave Conference, APMC 2001, 3, 1346-1349. (2001).
[30]Carver, K. R. and Mink ,J. W., "Microstrip antenna technology", IEEETrans. Antennas Propagat., vol. AP-29, 1, 2-24. (1981).
[31]何英吉,射頻接收電路設計與無線功率傳輸之智慧生活應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2012)。
[32]Courtney, W. E., "Analysis and Evaluation of A Method of Measuring The Complex Permittivity of Microwave Insulations," IEEE Transactions on Microwave Theory and Techniques, 18, 8, 476-485 (1970).
[33]Wheless, P. and Kajfez, D., "The Use of Higher Resonant Modes in Measuring The Dielectric Constant of Dielectric Resonators," IEEE Transactions on Microwave Theory and Techniques - Symposium Dig., Atlanta, GA, 473-476 (1985).
[34]Kobayashi, Y. and Katoh, N., "Microwave Measurement of Resonator Method," IEEE Transactions on Microwave Theory and Techniques, 33, 7, 586-592 (1985).
[35]Johnson, P. B. and Christy, R. W., "Optical Constants of the Noble Metals," Physical Review B, 6, 12, 4370-3479 (1972).
[36]Shi, F., Yang, J., Liu, Q., Qi, Z. M. and Sun, H.. "Crystal structure, lattice vibrational characteristic, and dielectric property of Nd(Mg1/2Sn1/2)O3 ceramic," Materials Chemistry and Physics, 200, 9-15(2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top