1.D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248.
2.Amaro-Ortiz, A.; Yan, B.; D’Orazio, J.A. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation. Molecules 2014, 19, 6202–6219.
3.Oliveira, F.; Amaral, L.L.; Costa, A.M.; Netto, T.G. In vivo dosimetry with silicon diodes in total body irradiation. Radiat. Phys. Chem. 2014, 95, 230–232.
4.Sarrabayrouse, G.; Siskos, S. Low dose measurement with thick gate oxide MOSFETs. Radiat. Phys. Chem. 2012, 81, 339–344.
5.Karmakar, A.; Wang, J.; Prinzie, J.; De Smedt, V.; Leroux, P. A Review of Semiconductor Based Ionising Radiation Sensors Used in Harsh Radiation Environments and Their Applications. Radiation 2021, 1, 194–217.
6.Holmes-Siedle, A.; Adams, L. RADFET: A review of the use of metal-oxide-silicon devices as integrating dosimeters. Radiat. Phys. Chem. 1986, 28, 235–244.
7.Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 663.
8.Pejović, M.M. P-channel MOSFET as a sensor and dosimeter of ionizing radiation. Electron. Energ. 2016, 29, 509–541.
9.Ho, W.S.; Lin, C.H.; Kuo, P.S. Metal Oxide Semiconductor UV Sensor. Proc. IEEE Sens. 2008, 8, 1584–1587.
10.Oldham, T.R.; McLean, F.B. Total Ionizing Dose Effects in MOS Oxides and Devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–499.
11.Jong, F.C.; Hsieh, W.C.; Lee, H.D.; Wu, S.C. UV Total Dose Nonvolatile Sensor Using Silicon-Oxide-Nitride-Oxide-Silicon Capacitor with Oxy-Nitride as Charge-trapping Layer. Sens. Mater. 2018, 30, 1831–1839.
12.Hsieh, W.C.; Jong, F.C.; Tseng, W.T. Performance Improvement of SAONOS Device as UV-total-dose Nonvolatile Sensor with Al2O3/SiO2 Bilayer Blocking Oxide. Sens. Mater. 2020, 32, 2303–2310.
13.Tan, Y.N.; Chim, W.K.; Choi, W.K.; Joo, M.S.; Ng, T.H.; Cho, B.J. High-K HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation. IEEE IEDM 2004, 4, 889–892.
14.Yu, H.Y.; Li, M.F.; Kwong, D.L. ALD (HfO2)x (Al2O3) 1−x high-k gate dielectrics for advanced MOS devices application. Thin Solid Films 2004, 462, 110–113.
15.Zhu, W.J.; Tamagawa, T.; Gibson, M.; Furukawa, T.; Ma, T.P. Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of the Dielectrics. IEEE Electr. Device Lett. 2002, 23, 649–651.
16.J.-E. Sundgren. “ Structure and properties of TiN coatings.” Thin Solid Films 128(1985) 21-44.
17.徐智弋 陳皇銘 不同氧氣流量對非晶系銦鎵鋅氧薄膜電晶體製程之影響,國立交通大學光電工程研究所碩士論文,(2010).18.“MOS Capacitor | MOS Capacitance CV Curve” October 28, by Electrical4U. (2020).
19.A Study on the Coatings and Characteristics of Ti Metal Nitride” Z.W. Wang、Y.Y. Hsieh、C.K. Chung* Journal of Chinese Corrosion Engineering, Vol. 30, No. 2, pp. 24 ~ 27 (June, 2016)
20.B. Rajesh Kumar1* and T. Subba Rao2; High-k Gate Dielectrics of Thin Films with its Technological Applications –A Review; Int. J. Pure Appl. Sci. Technol., 4(2) (2011), pp. 105-114 ISSN 2229 – 6107
21.Chen, Dong & Jiang, Yutong & Sun, Zehua & Huang, Yuelong & Yu, Jian & Chen, Tao. “ITO/Ag/ITO and ITO/Cu/ITO transparent rear contacts for semi-transparent perovskite solar cells”. Thin Solid Films. 752. (2022).
22.C.T. Lee, W.C. Chen, H.P. Chen, J.H. Xie, C.C. Jaing,“Investigation of WO_3/Ag/W/WO_3 multilayer by RF magnetron sputtering” Journal of the Vacuum Society of the R.O.C. Volume 32 Issue 2. pp. 35~1-35~6. (2019).
23.lorian Cougnon , Mathias Kersemans , Wim Van Paepegem ,Diederik Depla ,* Sputter Deposited Metal Layers Embedded in Composites—From Fundamentals to Applications; . Coatings 2021, 11, 190.
24.D.E.Aspnes; Spectroscopic ellipsometry — Past, present, and future; Volume 571, Part 3, 28 November 2014, Pages 334-344
25.簡瑋志。「金屬/高介電/矽閘極結構製作與電性之特性研究」。碩士論文,中國文化大學機械工程學系數位機電碩士班,2011。26.Enlitech。「量子效率-光譜響應-IPCE-在矽晶太陽能電池製程改善上之應用」。Sep. 15th , 2021。
27.張振暘。「利用高解析度X光繞射進行InGaAsN太陽能電池材料特性之研究」。碩士論文,國立中興大學光電工程研究所,2014。28.Ghosh, A.; Mondal, A.; Murkute, P.; Lahiri, R.; Chakrabarti, S.; Chattopadhyay, K.K. GLAD synthesised erbium doped In2O3 nano-columns for UV detection. J. Mater. Sci. Mater. Electron. 2019, 30, 12739–12752.
29.Pokaipisit, A.; Horprathum, M.; Limsuwan, P. Vacuum and air annealing effects on properties of indium tin oxide films prepared byion-assisted electron beam evaporation. Jpn. J. Appl. Phys. 2008, 47, 4692–4695.
30.Dobrowolski, J.A.; Ho, F.C.; Menagh, D.; Simpson, R.; Waldorf, A. Transparent, conducting indium tin oxide films formed on low or medium temperature substrates by ion-assisted deposition. Appl. Opt. 1987, 26, 5204–5210.
31.Y Yu,H.Y.; Li, M.F.; Kwong, D.L. ALD (HfO2)x (Al2O3) 1-x high-k gate dielectrics for advanced MOS devices application. Thin Solid Films 2004, 462, 110–113.
32.Liang, Z.; Zhou, S.; Cai, W.; Fu, X.; Ning, H.; Chen, J.; Yuan, W.; Zhu, Z.; Yao, R.; Peng, J. Zirconium-Aluminum-Oxide Dielectric Layer with High Dielectric and Relatively Low Leakage Prepared by Spin-Coating and the Application in Thin-Film Transistor. Coatings 2020, 10, 282.
33.Park, T.J.; Kim, J.H.; Jang, J.H.; Lee, C.K.; Na, K.D.; Lee, S.Y.; Jung, H.S.; Kim, M.; Han, S.; Hwang, C.S. Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping. Chem. Mater. 2010, 22, 4175–4184.
34.Zhang, G.; Samanta, S.K.; Singh, P.K.; Ma, F.J.; Yoo, M.T.; Roh, Y.; Yoo, W.J. Partial Crystallization of HfO2 for Two-Bit/Four-Level SONOS-Type Flash Memory. IEEE Trans. Electron Devices 2007, 54, 3177–3185.Hsieh, W.-C.; Chen, B.-M.; Wang, M.-C.; Lee, Y.-S.; Tsai, C.-C. Enhancing the Tunable Sensitivity of a Near-Ultraviolet to Visible to Near-Infrared Photo Irradiance Sensor Using an Indium Tin Oxide-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon. Crystals 2023, 13, 1530.
35.Hsieh, W.-C.; Chen, B.-M.; Wang, M.-C.; Lee, Y.-S.; Tsai, C.-C. Enhancing the Tunable Sensitivity of a Near-Ultraviolet to Visible to Near-Infrared Photo Irradiance Sensor Using an Indium Tin Oxide-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon. Crystals 2023, 13, 1530.
36.Kang, J.; Li, J.; Liu, X. Design of High-Precision Micro-Capacitance Detection System. J. Phys. 2003, 2437, 012081.