跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂紹維
研究生(外文):LU,SHAO-WEI
論文名稱:矽基金氧半元件紅光照度感測器之研究
論文名稱(外文):Red light Illumination Sensor Using Silicon Based Metal-Oxide- Silicon Device
指導教授:謝文靚謝文靚引用關係
指導教授(外文):Hsieh,WEN-CHING
口試委員:謝東儒陳炳茂謝文靚
口試委員(外文):SIE,DONG-RUCHEN,BING-MAUHsieh,WEN-CHING
口試日期:2024-07-19
學位類別:碩士
校院名稱:明新科技大學
系所名稱:半導體與光電科技系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:97
中文關鍵詞:氮化鈦奈米晶體氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽紅光照度感 測器
外文關鍵詞:Titanium NitrideZirconia Aluminum OxideTAZAOSRed lightIllumination sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的重點是使用氧化銦錫-氧化鋁-氧化鋯鋁-氧化矽-矽(Indium Tin Oxide-Aluminum Oxide- Zirconia Aluminum Oxide-Silicon Oxide-Silicon,IAZAOS)與氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽(Titanium Nitride-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon Oxide-Silicon,TAZAOS)提高靈敏度、解析度與可靠度的紅光光譜範圍內工作的紅光照度感測器;與其他光照度感測器如金屬-絕緣體-半導體(Metal-Insulator-Semiconductor,MIS)和金屬-絕緣體-半導體(MetalInsulator-Semiconductor,MIS)不同,氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽紅光照度感測器可以測量光照射下正向偏壓下反轉電容的變化,具有幾個關鍵優勢:高靈敏度、弱偏壓依賴性、低暗電流、可調靈敏度、低功耗、CMOS製程相容性、簡單低成本製造以及良好的閘極氧化物可靠性等優點。在1kHz C-V量測下,光源25Lux 照射下,氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽紅光照度感測器反轉載子濃度達到約90%飽和。C-V量測頻率越低時反轉電容的解析度越好; 在1kHz至100kHz 的C-V量測頻率範圍內,可以感應光照度範圍為10Lux至100000Lux光照度,透過改變C-V曲線的測量頻率可以調節氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽的靈敏度以1kHz的頻率照度範圍在0Lux~200Lux、10kHz的頻率照度範圍在200Lux~1000Lux、100kHz 的頻率照度範圍1000Lux~100000Lux;這些性能特徵超過了其他紅光照度感測器技術所報告的性能特徵; 採用沉積後退火技術來增強感測器的性能,沉積後退火在1000°C 45s 的退火條件光感測器的反應是最好的所以反轉電容變化最大,結構表現出部分較小的奈米結晶區域,改善了氧化鋯鋁界面陷阱和介電常數特性,而進行金屬沉積後退火則增強了氧化銦錫的穿透率和電阻率其中以500°C 30s的退火條件光感測器的反應是最好的所以反轉電容變化最大,穿透率達到95%,電阻率表現出最低的電阻率,表明金屬沉積後退火改善了電氣特性,結合這些處理帶來了高速度、高靈敏度、高解析度和高可靠的紅光照度感測能力。
This study focuses on a red light illumination sensor using Titanium Nitride
Aluminum Oxide-Zirconia Aluminum Oxide-Silicon Oxide-Silicon (TAZAOS). Unlike other light illumination sensors such as metal-insulator-semiconductor (MIS) and metal-insulator-semiconductor (MIS), the Titanium Nitride-Aluminum Oxide Zirconia Aluminum Oxide-Silicon Oxide-Silicon red light illumination sensor measures changes in inversion capacitance under strong forward bias with light irradiation, offering several key advantages: high sensitivity, weak bias dependence, low dark current, tunable sensitivity, low power consumption, CMOS process compatibility, simple low-cost manufacturing, and good gate oxide reliability. Under 1kHz C-V measurements with a 25Lux light source, the inversion carrier concentration reaches approximately 90% saturation. The lower the C-V measurement frequency, the better the resolution of the inversion capacitance. In the C-V measurement frequency range from 1kHz to 10kHz, it can sense light illuminance from 10Lux to 3500Lux. These performance characteristics exceed those reported for other red light illumination sensor technologies. Post-deposition annealing techniques are employed to enhance the sensor's performance. Dielectric annealing improves the Zirconia Aluminum Oxide interface trap and dielectric constant properties, while oxide annealing enhances the transmission and resistivity of Zinc tin Oxide. The combination of these treatments results in high-speed, high-sensitivity, high-resolution, and highly reliable red light illumination sensing capabilities.
摘要......................................................................... ii
Abstract .................................................................... iv
致謝......................................................................... v
目錄......................................................................... vi
表目錄....................................................................... ix
圖目錄........................................................................ x
第一章緒論 ................................................................... 1
1.1背景介紹................................................................... 1
1.1.1透明導電膜簡介 ........................................................... 1
1.1.2透明導電膜的基本性質 ..................................................... 1
1.1.3透明導電膜的製備方法 ..................................................... 2
1.1.4透明導電膜的發展趨勢未來 ................................................. 2
1.2三種常見類型的半導體光照度感測器 ............................................ 2
1.2.1 透明導電氧化物-高介電質-矽電容器光照度感測器 .............................. 3
第二章原理 ................................................................... 7
2.1透明導電電極................................................................ 7
2.2高介電質材料(High-k) ....................................................... 9
2.3三氧化二鋁(氧化鋁) ........................................................ 10
2.4金屬氧化物半導體場效電晶體 ................................................. 11
2.5濺鍍 ..................................................................... 13
2.5.1磁控濺鍍................................................................ 14
2.5.2直流濺鍍................................................................ 15
2.5.3射頻濺鍍................................................................ 15
2.6多層金屬濺鍍系統(FSE Cluster PVD) ......................................... 17
2.7原子層沉積系統ALD ......................................................... 18
2.8分光光譜儀 ............................................................... 19
2.9 快速熱退火處理設備(Rapid Thermal Annealing,RTA) ......................... 21
2.10橢圓儀................................................................... 22
2.11金屬膜四點探針量測儀 ..................................................... 24
2.12量子效率................................................................. 25
第三章 實驗部分 ............................................................. 27
3.1實驗流程.................................................................. 27
3.1.1矽基板準備 ............................................................. 27
3.1.2 基板清洗與沉積Dry oxide ................................................ 27
3.1.3高介電係數薄膜沉積 ...................................................... 28
3.1.4沉積後退火(PDAS) ....................................................... 29
3.1.5金屬閘極製作 ............................................................ 29
3.1.6金屬沉積後退火(PMA) ..................................................... 29
3.1.7黃光微影製程圖案化光阻層 ................................................. 29
3.1.8 氧化銦錫-氧化鋁-氧化鋯鋁-氧化矽-矽與氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽電容元件製程流程 ........................................................................ 29
3.1.9氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽電容器元件的OM 影像 ........................ 31
3.1.10氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽電容器元件製造流程 ........................ 33
3.1.11各種退火製程製備的氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽元件 .................... 43
3.1.12透明導電氧化物高介電半導體電容器光照度感測器操作流程 ...................... 43
3.2電性、物性分析儀 .......................................................... 44
3.2.1 Capacitance-Voltage(C-V) 、Current-Voltage(I-V) ....................... 44
3.2.2 矽基金氧半元件SONOS光照度感測器材料檢驗 .................................. 47
3.2.3穿透式電子顯微鏡(TEM) ................................................... 47
3.2.4 X光繞射儀-XRD ......................................................... 48
第四章實驗結果 ............................................................... 50
4.1量測所使用的光源的光譜分佈圖 ............................................... 50
4.2反轉電容增加氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽 ................................ 50
4.3 氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽在不同照度測量對反轉電容的變化................ 64
4.4 紅光波長和不同退火溫度下各種IAZAOS 的反轉電容比較 .......................... 66
4.6 不同退火溫度下ITO薄膜的光穿透率與電阻率 .................................... 73
4.7不同退火溫度下ITO薄膜的XRD與TEM比較 ........................................ 75
4.8 光照下元件的IV ........................................................... 80
第五章 討論 ................................................................. 81
5.1氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽中的反轉電容變化 ............................ 81
5.2氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽的靈敏度 ................................... 81
5.3氮化鈦-氧化鋁-氧化鋯鋁-氧化矽-矽紅光照度感测器反轉電容變化與光照强度之的關係 ... 81
5.4不同退火溫度下ITO薄膜的電阻率分析 .......................................... 82
5.5 反轉電容相對照度變化理論模型 .............................................. 83
第六章 結論 ................................................................. 91
參考文獻..................................................................... 94
1.D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248.
2.Amaro-Ortiz, A.; Yan, B.; D’Orazio, J.A. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation. Molecules 2014, 19, 6202–6219.
3.Oliveira, F.; Amaral, L.L.; Costa, A.M.; Netto, T.G. In vivo dosimetry with silicon diodes in total body irradiation. Radiat. Phys. Chem. 2014, 95, 230–232.
4.Sarrabayrouse, G.; Siskos, S. Low dose measurement with thick gate oxide MOSFETs. Radiat. Phys. Chem. 2012, 81, 339–344.
5.Karmakar, A.; Wang, J.; Prinzie, J.; De Smedt, V.; Leroux, P. A Review of Semiconductor Based Ionising Radiation Sensors Used in Harsh Radiation Environments and Their Applications. Radiation 2021, 1, 194–217.
6.Holmes-Siedle, A.; Adams, L. RADFET: A review of the use of metal-oxide-silicon devices as integrating dosimeters. Radiat. Phys. Chem. 1986, 28, 235–244.
7.Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 663.
8.Pejović, M.M. P-channel MOSFET as a sensor and dosimeter of ionizing radiation. Electron. Energ. 2016, 29, 509–541.
9.Ho, W.S.; Lin, C.H.; Kuo, P.S. Metal Oxide Semiconductor UV Sensor. Proc. IEEE Sens. 2008, 8, 1584–1587.
10.Oldham, T.R.; McLean, F.B. Total Ionizing Dose Effects in MOS Oxides and Devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–499.
11.Jong, F.C.; Hsieh, W.C.; Lee, H.D.; Wu, S.C. UV Total Dose Nonvolatile Sensor Using Silicon-Oxide-Nitride-Oxide-Silicon Capacitor with Oxy-Nitride as Charge-trapping Layer. Sens. Mater. 2018, 30, 1831–1839.
12.Hsieh, W.C.; Jong, F.C.; Tseng, W.T. Performance Improvement of SAONOS Device as UV-total-dose Nonvolatile Sensor with Al2O3/SiO2 Bilayer Blocking Oxide. Sens. Mater. 2020, 32, 2303–2310.
13.Tan, Y.N.; Chim, W.K.; Choi, W.K.; Joo, M.S.; Ng, T.H.; Cho, B.J. High-K HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation. IEEE IEDM 2004, 4, 889–892.
14.Yu, H.Y.; Li, M.F.; Kwong, D.L. ALD (HfO2)x (Al2O3) 1−x high-k gate dielectrics for advanced MOS devices application. Thin Solid Films 2004, 462, 110–113.
15.Zhu, W.J.; Tamagawa, T.; Gibson, M.; Furukawa, T.; Ma, T.P. Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of the Dielectrics. IEEE Electr. Device Lett. 2002, 23, 649–651.
16.J.-E. Sundgren. “ Structure and properties of TiN coatings.” Thin Solid Films 128(1985) 21-44.
17.徐智弋 陳皇銘 不同氧氣流量對非晶系銦鎵鋅氧薄膜電晶體製程之影響,國立交通大學光電工程研究所碩士論文,(2010).
18.“MOS Capacitor | MOS Capacitance CV Curve” October 28, by Electrical4U. (2020).
19.A Study on the Coatings and Characteristics of Ti Metal Nitride” Z.W. Wang、Y.Y. Hsieh、C.K. Chung* Journal of Chinese Corrosion Engineering, Vol. 30, No. 2, pp. 24 ~ 27 (June, 2016)
20.B. Rajesh Kumar1* and T. Subba Rao2; High-k Gate Dielectrics of Thin Films with its Technological Applications –A Review; Int. J. Pure Appl. Sci. Technol., 4(2) (2011), pp. 105-114 ISSN 2229 – 6107
21.Chen, Dong & Jiang, Yutong & Sun, Zehua & Huang, Yuelong & Yu, Jian & Chen, Tao. “ITO/Ag/ITO and ITO/Cu/ITO transparent rear contacts for semi-transparent perovskite solar cells”. Thin Solid Films. 752. (2022).
22.C.T. Lee, W.C. Chen, H.P. Chen, J.H. Xie, C.C. Jaing,“Investigation of WO_3/Ag/W/WO_3 multilayer by RF magnetron sputtering” Journal of the Vacuum Society of the R.O.C. Volume 32 Issue 2. pp. 35~1-35~6. (2019).
23.lorian Cougnon , Mathias Kersemans , Wim Van Paepegem ,Diederik Depla ,* Sputter Deposited Metal Layers Embedded in Composites—From Fundamentals to Applications; . Coatings 2021, 11, 190.
24.D.E.Aspnes; Spectroscopic ellipsometry — Past, present, and future; Volume 571, Part 3, 28 November 2014, Pages 334-344
25.簡瑋志。「金屬/高介電/矽閘極結構製作與電性之特性研究」。碩士論文,中國文化大學機械工程學系數位機電碩士班,2011。
26.Enlitech。「量子效率-光譜響應-IPCE-在矽晶太陽能電池製程改善上之應用」。Sep. 15th , 2021。
27.張振暘。「利用高解析度X光繞射進行InGaAsN太陽能電池材料特性之研究」。碩士論文,國立中興大學光電工程研究所,2014。
28.Ghosh, A.; Mondal, A.; Murkute, P.; Lahiri, R.; Chakrabarti, S.; Chattopadhyay, K.K. GLAD synthesised erbium doped In2O3 nano-columns for UV detection. J. Mater. Sci. Mater. Electron. 2019, 30, 12739–12752.
29.Pokaipisit, A.; Horprathum, M.; Limsuwan, P. Vacuum and air annealing effects on properties of indium tin oxide films prepared byion-assisted electron beam evaporation. Jpn. J. Appl. Phys. 2008, 47, 4692–4695.
30.Dobrowolski, J.A.; Ho, F.C.; Menagh, D.; Simpson, R.; Waldorf, A. Transparent, conducting indium tin oxide films formed on low or medium temperature substrates by ion-assisted deposition. Appl. Opt. 1987, 26, 5204–5210.
31.Y Yu,H.Y.; Li, M.F.; Kwong, D.L. ALD (HfO2)x (Al2O3) 1-x high-k gate dielectrics for advanced MOS devices application. Thin Solid Films 2004, 462, 110–113.
32.Liang, Z.; Zhou, S.; Cai, W.; Fu, X.; Ning, H.; Chen, J.; Yuan, W.; Zhu, Z.; Yao, R.; Peng, J. Zirconium-Aluminum-Oxide Dielectric Layer with High Dielectric and Relatively Low Leakage Prepared by Spin-Coating and the Application in Thin-Film Transistor. Coatings 2020, 10, 282.
33.Park, T.J.; Kim, J.H.; Jang, J.H.; Lee, C.K.; Na, K.D.; Lee, S.Y.; Jung, H.S.; Kim, M.; Han, S.; Hwang, C.S. Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping. Chem. Mater. 2010, 22, 4175–4184.
34.Zhang, G.; Samanta, S.K.; Singh, P.K.; Ma, F.J.; Yoo, M.T.; Roh, Y.; Yoo, W.J. Partial Crystallization of HfO2 for Two-Bit/Four-Level SONOS-Type Flash Memory. IEEE Trans. Electron Devices 2007, 54, 3177–3185.Hsieh, W.-C.; Chen, B.-M.; Wang, M.-C.; Lee, Y.-S.; Tsai, C.-C. Enhancing the Tunable Sensitivity of a Near-Ultraviolet to Visible to Near-Infrared Photo Irradiance Sensor Using an Indium Tin Oxide-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon. Crystals 2023, 13, 1530.
35.Hsieh, W.-C.; Chen, B.-M.; Wang, M.-C.; Lee, Y.-S.; Tsai, C.-C. Enhancing the Tunable Sensitivity of a Near-Ultraviolet to Visible to Near-Infrared Photo Irradiance Sensor Using an Indium Tin Oxide-Aluminum Oxide-Zirconia Aluminum Oxide-Silicon. Crystals 2023, 13, 1530.
36.Kang, J.; Li, J.; Liu, X. Design of High-Precision Micro-Capacitance Detection System. J. Phys. 2003, 2437, 012081.

電子全文 電子全文(網際網路公開日期:20290729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top