跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘭斯
研究生(外文):PANGALANGAN, LANCE MAVERICK SOSA
論文名稱:腐蝕環境下柔性夾緊機構的研究
論文名稱(外文):A Study of Compliant Clamp Mechanism, Employed in Corrosive Environment
指導教授:任復華任復華引用關係
指導教授(外文):JEN, FU-HUA
口試委員:王派祥邱正豪任復華
口試委員(外文):WANG, PAIH-SHIANGCHIU, CHENG-HAOJEN, FU-HUA
口試日期:2024-06-26
學位類別:碩士
校院名稱:明新科技大學
系所名稱:機械工程系精密機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:49
中文關鍵詞:柔順機構偽剛體模型有限元素分析電鍍
外文關鍵詞:Compliant MechanismPseudo-Rigid-Body Model (PRBM)Finite Element Analysis (FEA)Electroplating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在積體電路 (IC) 基板製造中,電鍍製程用於在基板表面添加一層金屬,以實現積體電路製造所需的連接。然而,該過程使用對金屬有害的腐蝕性化學物質。用於卸載過程的手臂機械手的夾緊機構就是暴露在腐蝕環境中的此類部件之一。這些化學物質也會留下殘留物並進入機構的接頭。本研究提出了一種柔順機構夾具來取代需要金屬旋轉接頭的傳統剛性機構設計。設計中考慮了聚合物聚四氟乙烯 (PTFE) 和丙烯腈丁二烯苯乙烯 (ABS),因為它們具有抵抗腐蝕環境的能力和靈活性。該機構設計為適合 PTFE 材料,但仍將 ABS 應用於該機構,以比較不同剛度材料的效果。結合偽剛體模型 (PRBM)、運動學綜合和有限元素分析 (FEA) 來開發所提出的設計。 PRBM 的預測運動與 FEA 和原型模型 B 的結果相似,其中 FEA 提供了更接近的結果。 PTFE 設計模型 A 和 B 能夠實現固定電路板所需的運動以及基於 FEA 和 PRBM 結果產生的力,但原型模型 B 的測試表明,夾具無法在不發生屈曲的情況下產生足夠的力。 ABS 的設計只能實現運動,但無法實現所需的力,因為它比 PTFE 更硬。透過調節柔順機構的柔順件的厚度,影響疲勞壽命和力量輸出。
In integrated circuit (IC) substrate manufacturing, an electroplating process is used to add a layer of metal on the surface of a substrate allowing connections needed for the fabrication of integrated circuits. This process however uses corrosive chemicals that are harmful to metals. The clamping mechanism of the arm manipulator for the unloading process is one of such parts that are exposed in corrosive environments. These chemicals can also leave residue and enter the joints of the mechanism. This study proposes a compliant mechanism clamp to replace the traditional rigid mechanisms design, which requires metal revolute joints. The polymers, Polytetrafluoroethylene (PTFE) and Acrylonitrile Butadiene Styrene (ABS) were considered for the design for their ability to resist corrosive environments and their flexibility. The mechanism was designed to fit the PTFE material but ABS was still applied to the mechanism to compare the effect of materials with different stiffness. A combination of pseudo-rigid-body model (PRBM), kinematic synthesis, and finite element analysis (FEA) is used to develop the proposed design. The predicted motion of the PRBM is similar to the result of the FEA and the prototype model B where the FEA provided a closer result. The PTFE design models A and B were able to accomplish both the needed motion and force to hold the board based on the FEA and PRBM results but testing of the prototype model B shows that the clamp cannot generate enough force without undergoing buckling. The design with ABS was only able to achieve the motion but not the force needed due to it being stiffer than the PTFE. By adjusting the thickness of the compliant member of the compliant mechanism, the fatigue life and the force output is affected.
Table of Contents
摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
Acknowledgement ..................................................................................................................... iii
List of Figures ............................................................................................................................ vi
List of Tables ............................................................................................................................. ix
Chapter 1 Introduction ........................................................................................................... 1
Chapter 2 Review of Related Literature ................................................................................ 4
2.1 Compliant Mechanism ................................................................................................ 4
2.2 Pseudo-Rigid Body Model (PRBM) ........................................................................... 5
2.3 Kinematic Analysis and Synthesis Methods ............................................................... 7
2.4 Materials ..................................................................................................................... 7
2.5 Fatigue Analysis ....................................................................................................... 10
2.6 Finite Element Analysis (FEA) ................................................................................. 11
Chapter 3 Methodology ....................................................................................................... 13
3.1 Design Process .......................................................................................................... 13
3.2 Original Design ......................................................................................................... 14
3.2.1 Kinematic Analysis ........................................................................................... 14
3.2.2 Force Analysis ................................................................................................... 15
3.3 New Design .............................................................................................................. 16
3.3.1 Compliant Mechanism ....................................................................................... 17
3.3.2 PRBM ................................................................................................................ 17
3.3.3 Kinematic Synthesis .......................................................................................... 19
3.3.4 FEA Simulation ................................................................................................. 22
3.3.5 Fatigue Analysis ................................................................................................ 30
3.4 Prototype .................................................................................................................. 31
Chapter 4 Result and Discussion ......................................................................................... 35
Chapter 5 Conclusion and Recommendation ...................................................................... 46
Chapter 6 References ........................................................................................................... 47
[1] N. Kanani, Electroplating: Basic Principles, Processes and Practice. Elsevier, 2004.
[2] L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of Compliant Mechanisms. John Wiley & Sons, 2013.
[3] L. L. Howell, Compliant Mechanisms. John Wiley & Sons, 2001.
[4] L. L. Howell and A. Midha, “Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” Journal of Mechanical Design, vol. 117, no. 1, pp. 156–165, Mar. 1995.
[5] H.-J. Su, “A pseudo rigid-body 3R model for determining large deflection of cantilever beams subject to tip loads,” J. Mech. Robot., vol. 1, no. 2, p. 021008, May 2009.
[6] Y.-Q. Yu, Z.-L. Feng, and Q.-P. Xu, “A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms,” Mechanism and Machine Theory, vol. 55, pp. 18–33, Sep. 2012.
[7] C. A. Mattson, L. L. Howell, and S. P. Magleby, “Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms,” 2004, Accessed: May 19, 2024. [Online]. Available: https://scholarsarchive.byu.edu/facpub/451
[8] P. E. Nikravesh, Computer-aided Analysis of Mechanical Systems. Prentice-Hall, 1988.
[9] D. H. Myszka, Machines and Mechanisms: Applied Kinematic Analysis. 2002.
[10] K. Russell, Q. Shen, and R. S. Sodhi, Mechanism Design: Visual and Programmable Approaches. CRC Press, 2013.
[11] National Center for Biotechnology Information, “PubChem Compound Summary for CID 24462, Cupric Sulfate.” Accessed: May 21, 2024. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/24462
[12] M. F. McGuire, Stainless Steels for Design Engineers. ASM International, 2008.
[13] CP Lab Safety, “Stainless Steel Chemical Compatibility,” CP Lab Safety. Accessed: May 21, 2024. [Online]. Available: https://www.calpaclab.com/stainless-steel-chemical-compatibility-chart/
[14] Industrial Specialties Manufacturing, “304 Stainless steel chemical compatibility chart from ISM,” Industrial Specialties Manufacturing. Accessed: May 22, 2024. [Online]. Available: https://marketing.industrialspec.com/acton/attachment/30397/f-00b5/1/-/-/-/-/304-stainless-steel-chemical-compatibility-chart-from-ism.pdf
[15] Hayata, “Stainless steel chemical resistance charts,” Hayata. Accessed: May 21, 2024. [Online]. Available: https://hayata.com/wp-content/uploads/catalog-stainless-steel-chemical-resistance-charts.pdf
[16] Graco, “Chemical compatibility guide,” Graco. Accessed: May 21, 2024. [Online]. Available: https://www.graco.com/content/dam/graco/ipd/literature/misc/chemical-compatibility-guide/Graco_ChemCompGuideEN-B.pdf
[17] Industrial Specialties Manufacturing, “Chemical Compatibility Chart,” Industrial Specialties Manufacturing. Accessed: May 23, 2024. [Online]. Available: https://marketing.industrialspec.com/acton/attachment/30397/f-0004/1/-/-/-/-/chemical-compatibility-chart-from-ism.pdf
[18] “MatWeb - The Online Materials Information Resource.” Accessed: May 22, 2024. [Online]. Available: https://www.matweb.com/search/datasheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da&ckck=1
[19] DuPont, “Teflon PTFE Properties Handbook,” RJ Chase Company, Inc. Accessed: May 23, 2024. [Online]. Available: http://www.rjchase.com/ptfe_handbook.pdf
[20] Q. M. Zobaer Shah, M. A. Chowdhury, and M. A. Kowser, “Fretting & friction induced fatigue failure: damage criterion of polytetrafluoroethylene,” Heliyon, vol. 6, no. 6, p.
e04066, Jun. 2020.
[21] A. Lakshmanan and S. K. Chakraborty, “Recycling of Polytetrafluoroethylene (PTFE) Scrap Materials,” in Sintering Techniques of Materials, InTech, 2015.
[22] M. Schlipf and T. Schwalm, “Closing the Recycling Loop: Up-Cycling of End-of-Life Fluoroplastics,” Kunststoffe international, no. 6, pp. 58–60, Jun. 17, 2014.
[23] A. M. E. Arefin, N. R. Khatri, N. Kulkarni, and P. F. Egan, “Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications,” Polymers , vol. 13, no. 9, p. 1499, May 2021.
[24] “ABS Chemical Compatibility.” Accessed: May 23, 2024. [Online]. Available: https://www.calpaclab.com/abs-chemical-compatibility/
[25] “Fatigue strength of plastics components made in additive manufacturing: first experimental results,” Procedia Structural Integrity, vol. 12, pp. 32–43, Jan. 2018.
[26] E. Zahavi and V. Torbilo, Fatigue Design: Life Expectancy of Machine Parts. CRC-Press, 1996.
[27] “Stress- Life Cycle (S-N) Curve.” Accessed: May 24, 2024. [Online]. Available: https://help.solidworks.com/2015/english/solidworks/cworks/c_sn_curve.htm
[28] R. Shih, Introduction to Finite Element Analysis Using SOLIDWORKS Simulation 2024. SDC Publications.
[29] R. L. Norton, Machine Design: An Integrated Approach. Prentice-Hall, Inc, 1996.
[30] M. Kutz, Mechanical Engineers’ Handbook, Volume 1: Materials and Mechanical Design. Wiley, 2005.
電子全文 電子全文(網際網路公開日期:20290628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top