跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉霞
研究生(外文):NATHASYA IMANUELLA
論文名稱(外文):A Novel Inverted F-Scheme Heterojunction based on CdS/Co3O4 Nanocage for an Enhanced Photocatalytic Activity
指導教授:黃錦鴻
指導教授(外文):NG, KIM-HOONG
口試委員:林正裕蘇家弘黃錦鴻
口試委員(外文):LIN, JENG-YUSU, CHIA-HUNGNG, KIM-HOONG
口試日期:2024-04-11
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:119
外文關鍵詞:Co3O4CdSInverted F-SchemeNanocageHeterojunction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In the regime of augmenting photo-activity over semiconductor-semiconductor heterojunction, composite with Type-I-like band alignment is allegedly inferior to Type-II, Z-scheme, and S-scheme heterojunctions due to its incapability in separating photo-charges. While disagreeing with this ‘dogma’, current thesis endeavors a composite of CdS/Co3O4 nanocage with Type-I-like band structure but manifesting improved photo-activity with electron mechanism that challenges general beliefs. The resultant composite herein, which named as ‘inverted F-Scheme’ heterojunction, possesses large interactive interface due to the even-distribution of CdS in the cavity of Co3O4 nanocage. With their Fermi level variations, band edges of both constituents at the interface would be bended in such a way that the electrons and holes tend to reside at Co3O4 and CdS, respectively. Strong evidence from photo-electron-chemical (PEC) and photoluminescence (PL) investigations further supported the establishment of facilitated electron-shuttling channels from CdS to Co3O4 upon coupling, thereby giving rise to spatial separation of photo-charges during photoreaction. This explains the outstanding performance of CdS/Co3O4 nanocage in photo-degrading tetracycline (TC), with CdS/Co3O4-1.75 enabling reaction constant of 71.4 x 10-4 min-1, outperforming those of pure CdS (20.2 x10-4 min-1) and Co3O4 nanocage (2.75 x 10-4 min-1). Scavenging study also confirms the dominance of reductive pathway (involving photo-electron) in degrading TC. While adopting well-explored materials for theoretical demonstration, this project justifies the possibility of securing enhanced photo-activity using composite with Type-I-like band alignment, alongside its photo-charges mechanisms for improvement. This opens up a new horizon for future investigation in related field.
Table of Contents

Thesis/Dissertation (Professional Practice Report) Oral Defense Committee Certification i
Acknowledgement ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 7
1.3 Research Objective and Scopes 8
Chapter 2 Literature Review 9
2.1 Fundamentals of Photocatalyst 9
2.2 Heterojunctions 12
2.3 Co3O4 as Photocatalyst 18
2.4 CdS as Photocatalyst 22
2.5 CdS/Co3O4 Heterojunction as Photocatalyst 27
Chapter 3 Methods 35
3.1 Materials 35
3.2 Preparation of Photocatalyst 37
3.3 Characterization of Photocatalyst 38
3.4 Evaluation of Photocatalytic Activity 53
3.5 Photo-electro-chemical (PEC) Evaluation 54
Chapter 4 Results and Discussion 56
4.1 Characterization of Photocatalysts 56
4.2 Evaluation of Photocatalytic Activity 74
4.3 Photo-electro-chemical Evaluation 82
4.4 Mechanisms Determination 88
Chapter 5 Conclusion and Recommendations 97
5.1 Conclusion 97
5.2 Recommendations 98
References 99

List of Figures

Figure 1.1 (a) Type-II heterojunction, (b) Z-scheme heterojunction, (c) S-scheme heterojunction, (d) Type-I heterojunction, and (e) Inverted F-scheme heterojunction 6
Figure 2.1 Photocatalyst mechanisms [1] 10
Figure 2.2 Band gap of various semiconductors [2] 11
Figure 2.3 (a) Type-I heterojunction, (b) type-II heterojunction, and (c) type-III heterojunction [3] 13
Figure 2.4 p-n heterojunction [4] 14
Figure 2.5 The conventional Z-scheme heterojunction [4] 15
Figure 2.6 The all-solid-state Z-scheme heterojunction [3] 16
Figure 2.7 Direct Z-scheme heterojunction [3] 17
Figure 2.8 S-scheme heterojunction [5] 18
Figure 2.9 (a) Photocatalytic efficiency of Co3O4, Bi2WO4, and the heterojunction, (b) the proposed mechanism for degradation of TC [6] 19
Figure 2.10 (a) Preparation scheme of ZIF-67, (b) the morphology of resulting ZIF-67, (c) the proposed mechanism of Co3O4/NiCo2O4 type-II heterojunction [7] 21
Figure 2.11 The CO and H2 production rate of Co3O4 hexagonal platelets, compared to other material [8] 21
Figure 2.12 Degradation profile of CdS NPs, CdS NRs, CdS NSs, and CdS NFs against (a) methylene blue, (b) methyl orange, (c) safranin O, (d) rhodamine B, and (e) remazol briliant yellow [9] 23
Figure 2.13 Proposed photocatalytic mechanism of CdS/CdWO4 Z-scheme heterojunction [10] 25
Figure 2.14 The preparation scheme of Pt-loaded CdS nanostructures [11] 25
Figure 2.15 HRTEM images of Sv-CdS [12] 27
Figure 2.16 TEM images of 11%-Co3O4/CdS [13] 28
Figure 3.1 Schematic diagram of X-ray diffraction [14] 39
Figure 3.2 Schematic diagram of typical SEM microscope 41
Figure 3.3 Schematic diagram of typical TEM microscope 42
Figure 3.4 Schematic diagram of BET measurement [15] 44
Figure 3.5 Schematic diagram of PAS, which indicating the basis of bulk PALS and CDB measurements [16] 47
Figure 3.6 Schematic diagram of UV-Vis instrument 48
Figure 3.7 (a) Schematic diagram of XPS and UPS [17], the fundamental difference between XPS and UPS [18] 51
Figure 3.8 Photoluminescence spectroscopy [19] 53
Figure 4.1 (a) XRD pattern (b) Magnified peak corresponding to Co3O4 (311) plane of different photocatalysts 57
Figure 4.2 SEM image of (a) ZIF-67, (b) Co3O4, (c) CdS, (d) CdS/Co3O4-0.25, (e) CdS/Co3O4-0.75, (f) CdS/Co3O4-1.25, (g) CdS/Co3O4-1.75 and (h) CdS/Co3O4-2.50 61
Figure 4.3 TEM images of (a) Co3O4, (d) CdS/Co3O4-0.25, and (g) CdS/Co3O4-1.75; interplanar spacing of (b) Co3O4, (e) CdS/Co3O4-0.25, and (h) CdS/Co3O4-1.75; SAED pattern of (c) Co3O4, (f) CdS/Co3O4-0.25, and (i) CdS/Co3O4-1.75 62
Figure 4.4 (a) The BET measurements and (b) pore size distribution of Co3O4, CdS, and the composites 65
Figure 4.5 (a) The peak-normalized positron lifetime spectra, (b) Coincidence Doppler broadening (CDB) measurements, (c) the S-parameter versus W-parameter variation in CdS, Co3O4, and CdS/Co3O4-0.25 and (d) ratio curves of the electron momentum distribution extracted from CDB measurements 68
Figure 4.6 (a) UV-Vis DRS graph of Co3O4 nanocage, pure CdS, and composites, and (b) corresponding Tauc plot for both Co3O4 and pure CdS 70
Figure 4.7 UV Vis DRS graph of bulk Co3O4 and Co3O4 nanocage 70
Figure 4.8 XPS spectra of (a) Co 2p, (b) O 1s, (c) Cd 3d, and (d) S 2p for selected samples 72
Figure 4.9 UPS spectra of pure Co3O4 and CdS 74
Figure 4.10 (a) Photocatalytic degradation curve, (b) degradation efficiency, (c) plot of –ln(CTC/CTC0) vs irradiation time, and (d) error analysis of –ln(CTC/CTC0)
76
Figure 4.11 (a) Degradation efficiency of CdS/Co3O4-1.75 with different photocatalyst loading, (b) with different amounts of oxygen bubbling, (c) with different pH, (d) with different NaCl concentration and (e) different light wavelength, (f) degradation-UV-Vis DRS adsorbance-wavelength relationship of Co3O4, CdS, and CdS/Co3O4-1.75 80
Figure 4.12 (a) Recyclability test of CdS/Co3O4-1.75. Spent photocatalyst analysis: (b) XRD, (c) SEM images, and (d) TEM images of CdS/Co3O4-1.75 after five consecutive photoreactions 81
Figure 4.13 (a) LSV curve and (b) corresponding Tafel plot, (c) EIS curve, (d) transient photocurrent response curve of pure Co3O4, CdS, and CdS/Co3O4-1.75, (e) Mott Schottky curve of Co3O4 and (f) CdS with three different frequencies 85
Figure 4.14 (a) Steady state PL spectra and (b) time-resolved PL spectra of Co3O4, CdS, and CdS/Co3O4-1.75 86
Figure 4.15 Charge dynamic for inverted F-scheme heterojunction based on CdS/Co3O4 photocatalytic model 87
Figure 4.16 EPR analysis of CdS and CdS/Co3O4-1.75 90
Figure 4.17 Degradation efficiency of CdS/Co3O4-1.75 with different scavenger agent, with 0.8 g/L photocatalyst loading, 10 mL/min O2-bubbling, 30 ppm initial TC concentration, 20% white light intensity and 300 rpm stirring speed 91
Figure 4.18 LCMS result of liquid sample from photoreaction using CdS/Co3O4-1.75 (top: 1 h-irradiation; bottom: 2h- irradiation) 94
Figure 4.19 Possible TC degradation pathways 95
Figure 4.20 Possible mechanism of CdS/Co3O4 heterojunction 96


List of Tables

Table 2.1 Comparison of photocatalytic performance of calcined-Co(OH)2 at different calcination temperatures [8] 22
Table 2.2 Compilation of Type-II heterojunction photocatalyst 29
Table 2.3 Compilation of direct Z-scheme heterojunction photocatalyst 30
Table 2.4 Compilation of S-scheme heterojunction photocatalyst 32
Table 2.5 Compilation of CdS/Co3O4 heterojunction photocatalyst 33
Table 3.1 List of chemicals and gases 35
Table 3.2 Amounts of precursors used to synthesize the CdS/Co3O4 heterojunction 38
Table 4.1 Crystallite size of the photocatalyst 58
Table 4.2 Specific surface area, pore volume, and pore diameter of Co3O4, CdS, and the composites 64
Table 4.3 Positron lifetimes and their relative intensities of the samples 68
Table 4.4 The rate constant of photocatalytic TC degradation 77
Table 4.5 Two-exponential decay fitting parameters of Co3O4, CdS, and CdS/Co3O4-1.75
86

[1]P. Ganguly, C. Byrne, A. Breen, and S. C. Pillai, “Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances,” Appl Catal B, vol. 225, pp. 51–75, 2018, doi: https://doi.org/10.1016/j.apcatb.2017.11.018.
[2]J. Jian and J. Sun, “A Review of Recent Progress on Silicon Carbide for Photoelectrochemical Water Splitting,” Solar RRL, vol. 4, no. 7, p. 2000111, Jul. 2020, doi: https://doi.org/10.1002/solr.202000111.
[3]J. Low, B. Dai, T. Tong, C. Jiang, and J. Yu, “In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst,” Advanced Materials, vol. 31, no. 6, p. 1802981, Feb. 2019, doi: https://doi.org/10.1002/adma.201802981.
[4]J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, “Heterojunction Photocatalysts,” Advanced Materials, vol. 29, no. 20, p. 1601694, May 2017, doi: https://doi.org/10.1002/adma.201601694.
[5]Q. Xu, L. Zhang, B. Cheng, J. Fan, and J. Yu, “S-Scheme Heterojunction Photocatalyst,” Chem, vol. 6, no. 7, pp. 1543–1559, 2020, doi: https://doi.org/10.1016/j.chempr.2020.06.010.
[6]X. Zhang, H. Zhang, J. Yu, Z. Wu, and Q. Zhou, “Preparation of flower-like Co3O4 QDs/Bi2WO6 p-n heterojunction photocatalyst and its degradation mechanism of efficient visible-light-driven photocatalytic tetracycline antibiotics,” Appl Surf Sci, vol. 585, p. 152547, 2022, doi: https://doi.org/10.1016/j.apsusc.2022.152547.
[7]P. Su, H. Liu, and Z. Jin, “Metal organic framework-derived Co3O4/NiCo2O4 hollow double-shell polyhedrons for effective photocatalytic hydrogen generation,” Appl Surf Sci, vol. 571, p. 151288, 2022, doi: https://doi.org/10.1016/j.apsusc.2021.151288.
[8]C. Gao et al., “Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2,” Advanced Materials, vol. 28, no. 30, pp. 6485–6490, Aug. 2016, doi: https://doi.org/10.1002/adma.201601387.
[9]R. Malik, C. Singh, R. Garg, V. Kumar, and S. Singhal, “Morphology Controlled CdS Nanostructures: A Proficient Visible-Light-Driven Photocatalyst,” Analytical Chemistry Letters, vol. 6, no. 5, pp. 492–507, Sep. 2016, doi: 10.1080/22297928.2016.1241718.
[10]H. Cui, B. Li, Z. Li, X. Li, and S. Xu, “Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution,” Appl Surf Sci, vol. 455, pp. 831–840, 2018, doi: https://doi.org/10.1016/j.apsusc.2018.06.054.
[11]N. Bao, L. Shen, T. Takata, and K. Domen, “Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light,” Chemistry of Materials, vol. 20, no. 1, pp. 110–117, Jan. 2008, doi: 10.1021/cm7029344.
[12]F. Tian et al., “Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating,” Appl Catal B, vol. 285, p. 119834, 2021, doi: https://doi.org/10.1016/j.apcatb.2020.119834.
[13]L. Chen, X. Xie, T. Su, H. Ji, and Z. Qin, “Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co-S bond as a bridge for electron transfer,” Appl Surf Sci, vol. 567, p. 150849, 2021, doi: https://doi.org/10.1016/j.apsusc.2021.150849.
[14]C. Zhao, B. Wang, S. Zhong, Md. Akhtaruzzaman, W. Liang, and H. Chen, “Chapter 12 - NDT studies of nanoscale polymeric coatings,” in Polymer-Based Nanoscale Materials for Surface Coatings, S. Thomas and J. S. George, Eds., Elsevier, 2023, pp. 235–257. doi: https://doi.org/10.1016/B978-0-32-390778-1.00019-0.
[15]M. Naderi, “Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET),” in Progress in Filtration and Separation, S. Tarleton, Ed., Oxford: Academic Press, 2015, pp. 585–608. doi: https://doi.org/10.1016/B978-0-12-384746-1.00014-8.
[16]F. A. Selim, “Positron annihilation spectroscopy of defects in nuclear and irradiated materials- a review,” Mater Charact, vol. 174, p. 110952, 2021, doi: https://doi.org/10.1016/j.matchar.2021.110952.
[17]G. Greczynski and L. Hultman, “X-ray photoelectron spectroscopy: Towards reliable binding energy referencing,” Prog Mater Sci, vol. 107, p. 100591, 2020, doi: https://doi.org/10.1016/j.pmatsci.2019.100591.
[18]P. Cakir, R. Eloirdi, F. Huber, R. J. M. Konings, and T. Gouder, “An XPS and UPS Study on the Electronic Structure of ThOx (x ≤ 2) Thin Films,” The Journal of Physical Chemistry C, vol. 118, no. 42, pp. 24497–24503, Oct. 2014, doi: 10.1021/jp506750p.
[19]S. Agrawal, “6 - Spectroscopy techniques for rare-earth-activated phosphors,” in Rare-Earth-Activated Phosphors, V. Dubey, N. Dubey, M. M. Domańska, M. Jayasimhadri, and S. J. Dhoble, Eds., Elsevier, 2022, pp. 147–175. doi: https://doi.org/10.1016/B978-0-323-89856-0.00002-X.
[20]A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972, doi: 10.1038/238037a0.
[21]F. Li, L. Cheng, J. Fan, and Q. Xiang, “Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective,” J. Mater. Chem. A, vol. 9, no. 42, pp. 23765–23782, 2021, doi: 10.1039/D1TA06899G.
[22]Y. Li, Z. Xia, Q. Yang, L. Wang, and Y. Xing, “Review on g-C3N4-based S-scheme heterojunction photocatalysts,” J Mater Sci Technol, vol. 125, pp. 128–144, 2022, doi: https://doi.org/10.1016/j.jmst.2022.02.035.
[23]G. Liao, C. Li, S.-Y. Liu, B. Fang, and H. Yang, “Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications,” Phys Rep, vol. 983, pp. 1–41, 2022, doi: https://doi.org/10.1016/j.physrep.2022.07.003.
[24]H. Cui, S. Dong, K. Wang, M. Luan, and T. Huang, “Synthesis of a novel Type-II In2S3/Bi2MoO6 heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism for Rhodamine B,” Sep Purif Technol, vol. 255, p. 117758, 2021, doi: https://doi.org/10.1016/j.seppur.2020.117758.
[25]C. Lu et al., “Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light,” J Alloys Compd, vol. 811, p. 151976, 2019, doi: https://doi.org/10.1016/j.jallcom.2019.151976.
[26]T. Paul, D. Das, B. K. Das, S. Sarkar, S. Maiti, and K. K. Chattopadhyay, “CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst,” J Hazard Mater, vol. 380, p. 120855, 2019, doi: https://doi.org/10.1016/j.jhazmat.2019.120855.
[27]Sonu et al., “Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater,” Appl Nanosci, vol. 13, no. 6, pp. 3693–3707, 2023, doi: 10.1007/s13204-022-02500-y.
[28]C. Wang, Z. Chen, and R. Yu, “Construction of BiOCl/Ti-MOFs type-II heterojunction photocatalyst for enhanced photocatalytic performance for multiple antibiotics removal,” Environmental Science and Pollution Research, vol. 30, no. 14, pp. 42140–42151, 2023, doi: 10.1007/s11356-022-24987-2.
[29]J. Feng, M. Cui, H. Liu, F. Zhou, S. Bi, and D. Zhang, “Design of an efficient photocatalyst: a type II heterojunction for enhanced hydrogen production driven by visible light,” Phys. Chem. Chem. Phys., vol. 23, no. 20, pp. 11893–11899, 2021, doi: 10.1039/D1CP00347J.
[30]H. Liu et al., “Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production,” J Colloid Interface Sci, vol. 619, pp. 246–256, 2022, doi: https://doi.org/10.1016/j.jcis.2022.03.080.
[31]X. Zhang, Z. Cheng, P. Deng, L. Zhang, and Y. Hou, “NiSe2/Cd0.5Zn0.5S as a type-II heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution,” Int J Hydrogen Energy, vol. 46, no. 29, pp. 15389–15397, 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.02.018.
[32]Y. Zhu, T. Wan, X. Wen, D. Chu, and Y. Jiang, “Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production,” Appl Catal B, vol. 244, pp. 814–822, 2019, doi: https://doi.org/10.1016/j.apcatb.2018.12.015.
[33]Y. Cheng et al., “A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light,” Nano Res, vol. 15, no. 10, pp. 8880–8889, 2022, doi: 10.1007/s12274-022-4714-7.
[34]D. Li, B. Zhu, Z. Sun, Q. Liu, L. Wang, and H. Tang, “Construction of UiO-66/Bi4O5Br2 Type-II Heterojunction to Boost Charge Transfer for Promoting Photocatalytic CO2 Reduction Performance,” Front Chem, vol. 9, 2021, doi: 10.3389/fchem.2021.804204.
[35]Q. Wang et al., “Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system,” Nano Energy, vol. 60, pp. 827–835, 2019, doi: https://doi.org/10.1016/j.nanoen.2019.04.037.
[36]D. Zhou, J. Zhang, Z. Jin, T. Di, and T. Wang, “Reduced graphene oxide assisted g-C3N4/rGO/NiAl-LDHs type II heterostructure with high performance photocatalytic CO2 reduction,” Chemical Engineering Journal, vol. 450, p. 138108, 2022, doi: https://doi.org/10.1016/j.cej.2022.138108.
[37]N. Imanuella et al., “Interfacial-engineered CoTiO3-based composite for photocatalytic applications: a review,” Environ Chem Lett, vol. 20, no. 5, pp. 3039–3069, 2022, doi: 10.1007/s10311-022-01472-3.
[38]P. Zhou, J. Yu, and M. Jaroniec, “All-solid-state Z-scheme photocatalytic systems,” Advanced Materials, vol. 26, no. 29. Wiley-VCH Verlag, pp. 4920–4935, Aug. 06, 2014. doi: 10.1002/adma.201400288.
[39]A. J. Bard, “Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors,” Journal of Photochemistry, vol. 10, no. 1, pp. 59–75, 1979, doi: https://doi.org/10.1016/0047-2670(79)80037-4.
[40]Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, “Direct Z-scheme photocatalysts: Principles, synthesis, and applications,” Materials Today, vol. 21, no. 10, pp. 1042–1063, 2018, doi: https://doi.org/10.1016/j.mattod.2018.04.008.
[41]X. Chen, J. Wang, Y. Chai, Z. Zhang, and Y. Zhu, “Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g-C3N4/rGO/PDIP Z-Scheme Heterojunction,” Advanced Materials, vol. 33, no. 7, p. 2007479, Feb. 2021, doi: https://doi.org/10.1002/adma.202007479.
[42]J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, and S. F. Liu, “Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting,” Appl Catal B, vol. 191, pp. 130–137, 2016, doi: https://doi.org/10.1016/j.apcatb.2016.03.026.
[43]M. Chen et al., “A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation,” Appl Catal B, vol. 266, p. 118614, 2020, doi: https://doi.org/10.1016/j.apcatb.2020.118614.
[44]T. Cheng et al., “An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification,” Advanced Powder Technology, vol. 32, no. 3, pp. 951–962, 2021, doi: https://doi.org/10.1016/j.apt.2021.01.039.
[45]J. Wang, G. Wang, X. Wei, G. Liu, and J. Li, “ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB,” Appl Surf Sci, vol. 456, pp. 666–675, 2018, doi: https://doi.org/10.1016/j.apsusc.2018.06.182.
[46]Y. Wang et al., “0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation,” Appl Catal B, vol. 278, p. 119298, 2020, doi: https://doi.org/10.1016/j.apcatb.2020.119298.
[47]B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, and J. Yu, “Hierarchically Porous ZnO/g-C3N4 S-Scheme Heterojunction Photocatalyst for Efficient H2O2 Production,” Langmuir, vol. 37, no. 48, pp. 14114–14124, Dec. 2021, doi: 10.1021/acs.langmuir.1c02360.
[48]X. Zhao et al., “Z‐scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light,” Appl Catal B, vol. 278, p. 119251, 2020, doi: https://doi.org/10.1016/j.apcatb.2020.119251.
[49]Y. Jiang et al., “Z-Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic CO2 Reduction,” Adv Funct Mater, vol. 30, no. 50, p. 2004293, Dec. 2020, doi: https://doi.org/10.1002/adfm.202004293.
[50]G. Zhang, Z. Wang, and J. Wu, “Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO2 reduction,” Nanoscale, vol. 13, no. 8, pp. 4359–4389, 2021, doi: 10.1039/D0NR08442E.
[51]S. Li et al., “Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment,” Chemical Engineering Journal, vol. 429, p. 132519, 2022, doi: https://doi.org/10.1016/j.cej.2021.132519.
[52]J. Wang, Y. Shi, H. Sun, W. Shi, and F. Guo, “Fabrication of Bi4Ti3O12/ZnIn2S4 S-scheme heterojunction for achieving efficient photocatalytic hydrogen production,” J Alloys Compd, vol. 930, p. 167450, 2023, doi: https://doi.org/10.1016/j.jallcom.2022.167450.
[53]C. Lai et al., “An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air,” Chemical Engineering Journal, vol. 452, p. 139070, 2023, doi: https://doi.org/10.1016/j.cej.2022.139070.
[54]S. Gong et al., “Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction,” Appl Catal B, vol. 298, p. 120521, 2021, doi: https://doi.org/10.1016/j.apcatb.2021.120521.
[55]G. Palmisano, V. Augugliaro, M. Pagliaro, and L. Palmisano, “Photocatalysis: a promising route for 21st century organic chemistry,” Chemical Communications, no. 33, pp. 3425–3437, 2007, doi: 10.1039/B700395C.
[56]R. P. Cavalcante et al., “Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: Primary active species and intermediates,” Appl Catal B, vol. 194, pp. 111–122, 2016, doi: https://doi.org/10.1016/j.apcatb.2016.04.054.
[57]M. Ateia, M. G. Alalm, D. Awfa, M. S. Johnson, and C. Yoshimura, “Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review,” Science of The Total Environment, vol. 698, p. 134197, 2020, doi: https://doi.org/10.1016/j.scitotenv.2019.134197.
[58]H. Wang et al., “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem Soc Rev, vol. 43, no. 15, pp. 5234–5244, 2014, doi: 10.1039/C4CS00126E.
[59]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, “All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system,” Nat Mater, vol. 5, no. 10, pp. 782–786, 2006, doi: 10.1038/nmat1734.
[60]J. Yu, S. Wang, J. Low, and W. Xiao, “Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air,” Physical Chemistry Chemical Physics, vol. 15, no. 39, pp. 16883–16890, 2013, doi: 10.1039/C3CP53131G.
[61]B. Varghese et al., “Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties,” Adv Funct Mater, vol. 17, no. 12, pp. 1932–1939, Aug. 2007, doi: https://doi.org/10.1002/adfm.200700038.
[62]Y. Tang et al., “Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater,” Mater Res Express, vol. 5, no. 4, p. 045045, 2018, doi: 10.1088/2053-1591/aabdd8.
[63]Y. Chen, L. Hu, M. Wang, Y. Min, and Y. Zhang, “Self-assembled Co3O4 porous nanostructures and their photocatalytic activity,” Colloids Surf A Physicochem Eng Asp, vol. 336, no. 1, pp. 64–68, 2009, doi: https://doi.org/10.1016/j.colsurfa.2008.11.018.
[64]M. M. Jaffer Sadiq and A. Samson Nesaraj, “Reflux condensation synthesis and characterization of Co3O4 nanoparticles for photocatalytic applications,” Iranian Journal of Catalysis, vol. 4, no. 4, pp. 219–226, 2014, [Online]. Available: https://ijc.shahreza.iau.ir/article_553563.html
[65]C. Yang, G. Gao, Z. Guo, L. Song, J. Chi, and S. Gan, “Two-step hydrothermal synthesis of novel hierarchical Co3O4/Bi2O2CO3 p-n heterojunction composite photocatalyst with enhanced visible light photocatalytic activity,” Appl Surf Sci, vol. 400, pp. 365–374, 2017, doi: https://doi.org/10.1016/j.apsusc.2016.12.194.
[66]V. Anh Tran et al., “Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4-ZnO nanoparticles,” Mater Lett, vol. 284, p. 128902, 2021, doi: https://doi.org/10.1016/j.matlet.2020.128902.
[67]G. Mohamed Reda, H. Fan, and H. Tian, “Room-temperature solid state synthesis of Co3O4/ZnO p–n heterostructure and its photocatalytic activity,” Advanced Powder Technology, vol. 28, no. 3, pp. 953–963, 2017, doi: https://doi.org/10.1016/j.apt.2016.12.025.
[68]Y. Sun et al., “Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation,” Nanomaterials, vol. 12, no. 16, 2022, doi: 10.3390/nano12162850.
[69]M. Saeed, N. Alwadai, L. Ben Farhat, A. Baig, W. Nabgan, and M. Iqbal, “Co3O4-Bi2O3 heterojunction: An effective photocatalyst for photodegradation of rhodamine B dye,” Arabian Journal of Chemistry, vol. 15, no. 4, p. 103732, 2022, doi: https://doi.org/10.1016/j.arabjc.2022.103732.
[70]R. Huang et al., “Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light,” J Colloid Interface Sci, vol. 542, pp. 460–468, 2019, doi: https://doi.org/10.1016/j.jcis.2019.01.089.
[71]S. Shanavas et al., “Development of high efficient Co3O4/Bi2O3/rGO nanocomposite for an effective photocatalytic degradation of pharmaceutical molecules with improved interfacial charge transfer,” J Environ Chem Eng, vol. 10, no. 2, p. 107243, 2022, doi: https://doi.org/10.1016/j.jece.2022.107243.
[72]C. Jin et al., “Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance,” Chemical Engineering Journal, vol. 398, p. 125569, 2020, doi: https://doi.org/10.1016/j.cej.2020.125569.
[73]S. H. Almenia, A. A. Ismail, K. A. Alzahrani, and M. Aljahdali, “Design of mesoporous heterojunction CuCo2O4/Co3O4 photocatalyst with superior photocatalytic degradation of tetracycline,” J Photochem Photobiol A Chem, vol. 438, p. 114507, 2023, doi: https://doi.org/10.1016/j.jphotochem.2022.114507.
[74]U. Kumar, J. Kuntail, A. Kumar, R. Prakash, M. R. Pai, and I. Sinha, “In-situ H2O2 production for tetracycline degradation on Ag/s-(Co3O4/NiFe2O4) visible light magnetically recyclable photocatalyst,” Appl Surf Sci, vol. 589, p. 153013, 2022, doi: https://doi.org/10.1016/j.apsusc.2022.153013.
[75]M. Althamthami, E. Guettaf Temam, H. Ben Temam, G. G. Hasan, and N. Malfi, “Influence of hole-scavenger and different withdrawn speeds on photocatalytic activity of Co3O4 thin films under sunlight irradiation,” Ceram Int, vol. 48, no. 21, pp. 31570–31578, 2022, doi: https://doi.org/10.1016/j.ceramint.2022.07.078.
[76]A. Chinnathambi, O. Nasif, S. A. Alharbi, and S. S. Khan, “Enhanced optoelectronic properties of multifunctional MnFe2O4 nanorods decorated Co3O4 nanoheterostructure: Photocatalytic activity and antibacterial behavior,” Mater Sci Semicond Process, vol. 134, p. 105992, 2021, doi: https://doi.org/10.1016/j.mssp.2021.105992.
[77]J. Liu et al., “Uniform Two-Dimensional Co3O4 Porous Sheets: Facile Synthesis and Enhanced Photocatalytic Performance,” Chem Eng Technol, vol. 39, no. 5, pp. 891–898, May 2016, doi: https://doi.org/10.1002/ceat.201500542.
[78]G. Chen, X. Si, J. Yu, H. Bai, and X. Zhang, “Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes,” Appl Surf Sci, vol. 330, pp. 191–199, 2015, doi: https://doi.org/10.1016/j.apsusc.2015.01.011.
[79]B. Janani, A. Syed, H. A. AL-Shwaiman, M. M. Alkhulaifi, A. M. Elgorban, and S. S. Khan, “Performance analysis of novel Bi6Cr2O15 coupled Co3O4 nano-heterostructure constructed by ultrasonic assisted method: Visible-light driven photocatalyst and antibacterial agent,” Colloids Surf A Physicochem Eng Asp, vol. 622, p. 126671, 2021, doi: https://doi.org/10.1016/j.colsurfa.2021.126671.
[80]P. J. Mafa et al., “Cobalt oxide/copper bismuth oxide/samarium vanadate (Co3O4/CuBi2O4/SmVO4) dual Z-scheme heterostructured photocatalyst with high charge-transfer efficiency: Enhanced carbamazepine degradation under visible light irradiation,” J Colloid Interface Sci, vol. 603, pp. 666–684, 2021, doi: https://doi.org/10.1016/j.jcis.2021.06.146.
[81]Q. Yang, J. An, Z. Xu, S. Liang, and H. Wang, “Performance and mechanism of atrazine degradation using Co3O4/g-C3N4 hybrid photocatalyst with peroxymonosulfate under visible light irradiation,” Colloids Surf A Physicochem Eng Asp, vol. 614, p. 126161, 2021, doi: https://doi.org/10.1016/j.colsurfa.2021.126161.
[82]J. Tao et al., “Photocatalyst Co3O4/red phosphorus for efficient degradation of malachite green under visible light irradiation,” Mater Chem Phys, vol. 240, p. 122185, 2020, doi: https://doi.org/10.1016/j.matchemphys.2019.122185.
[83]R. Ji et al., “Heterojunction photocatalyst fabricated by deposition Co3O4 nanoparticles on MoS2 nanosheets with enhancing photocatalytic performance and mechanism insight,” J Taiwan Inst Chem Eng, vol. 97, pp. 158–169, 2019, doi: https://doi.org/10.1016/j.jtice.2019.01.011.
[84]X. Xiong et al., “Novel n-MoSSe/p-Co3O4 Z-scheme heterojunction photocatalyst for highly boosting photoelectrochemical and photocatalytic activity,” J Alloys Compd, vol. 926, p. 166863, 2022, doi: https://doi.org/10.1016/j.jallcom.2022.166863.
[85]H. Li et al., “Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity,” Appl Surf Sci, vol. 257, no. 15, pp. 6527–6530, 2011, doi: https://doi.org/10.1016/j.apsusc.2011.02.066.
[86]X. Lou, J. Han, W. Chu, X. Wang, and Q. Cheng, “Synthesis and photocatalytic property of Co3O4 nanorods,” Materials Science and Engineering: B, vol. 137, no. 1, pp. 268–271, 2007, doi: https://doi.org/10.1016/j.mseb.2006.12.002.
[87]R. M. Mohamed, A. A. Ismail, A. S. Basaleh, and H. A. Bawazir, “Synergistic impact of two-dimensional Ag2O/Co3O4 nanocomposites for improved photocatalytic performance,” Opt Mater (Amst), vol. 123, p. 111937, 2022, doi: https://doi.org/10.1016/j.optmat.2021.111937.
[88]A. A. Ismail, S. Z. Alsheheri, L. A. Al-Hajji, and M. H. H. Mahmoud, “Two-Dimensional Porous PdO/Co3O4 Nanocomposites for Highly Effective Photocatalysts Under Visible-Light Exposure,” J Inorg Organomet Polym Mater, vol. 32, no. 4, pp. 1487–1498, 2022, doi: 10.1007/s10904-021-02217-5.
[89]C. M. Magdalane, K. Kaviyarasu, M. V Arularasu, K. Kanimozhi, and G. Ramalingam, “Structural and morphological properties of Co3O4 nanostructures: Investigation of low temperature oxidation for photocatalytic application for waste water treatment,” Surfaces and Interfaces, vol. 17, p. 100369, 2019, doi: https://doi.org/10.1016/j.surfin.2019.100369.
[90]Y. Zhang, H. Liu, M. Yang, and Z. Jin, “Co-MOF-67 derived hollow double-shell core Co3O4 with Zn0.5Cd0.5S to construct p-n heterojunction for efficient photocatalytic hydrogen evolution,” J Colloid Interface Sci, vol. 630, pp. 99–110, 2023, doi: https://doi.org/10.1016/j.jcis.2022.10.042.
[91]H. Cao, Y. Yan, Y. Wang, F.-F. Chen, and Y. Yu, “Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles,” Carbon N Y, vol. 201, pp. 415–424, 2023, doi: https://doi.org/10.1016/j.carbon.2022.09.029.
[92]J. Liu et al., “Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting,” Appl Catal B, vol. 236, pp. 396–403, 2018, doi: https://doi.org/10.1016/j.apcatb.2018.05.042.
[93]C. Zhu et al., “Carbon-Supported Oxygen Vacancy-Rich Co3O4 for Robust Photocatalytic H2O2 Production via Coupled Water Oxidation and Oxygen Reduction Reaction,” ACS Appl Energy Mater, vol. 2, no. 12, pp. 8737–8746, Dec. 2019, doi: 10.1021/acsaem.9b01712.
[94]Y. Han, Z. Liang, H. Dang, and X. Dong, “Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p–n heterojunction photocatalyst under visible light irradiation,” J Taiwan Inst Chem Eng, vol. 87, pp. 196–203, 2018, doi: https://doi.org/10.1016/j.jtice.2018.03.035.
[95]L. Wang et al., “Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution,” Chemical Engineering Journal, vol. 428, p. 131338, 2022, doi: https://doi.org/10.1016/j.cej.2021.131338.
[96]S. Sk et al., “Function of Defects in NH2-MIL-125@PANI@Co3O4 Photocatalyst for Efficient Hydrogen Evolution,” ACS Appl Energy Mater, vol. 5, no. 10, pp. 12324–12335, Oct. 2022, doi: 10.1021/acsaem.2c01899.
[97]X. Ma, Y. Liu, Y. Wang, and Z. Jin, “Co3O4/CeO2 p-n heterojunction construction and application for efficient photocatalytic hydrogen evolution,” Int J Hydrogen Energy, vol. 46, no. 68, pp. 33809–33822, 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.07.201.
[98]K. Yang, H. Zhang, T. Liu, D. Xiang, Y. Li, and Z. Jin, “Tailoring of efficient electron-extracting system: S-scheme g-C3N4/CoTiO3 heterojunction modified with Co3O4 quantum dots for photocatalytic hydrogen evolution,” Journal of Electroanalytical Chemistry, vol. 922, p. 116749, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116749.
[99]M. Li et al., “Construction of Highly Active and Selective Polydopamine Modified Hollow ZnO/Co3O4 p-n Heterojunction Catalyst for Photocatalytic CO2 Reduction,” ACS Sustain Chem Eng, vol. 8, no. 30, pp. 11465–11476, Aug. 2020, doi: 10.1021/acssuschemeng.0c04829.
[100]H. Liu, K. Chen, Y.-N. Feng, Z. Zhuang, F.-F. Chen, and Y. Yu, “In Situ Confined Growth of Co3O4–TiO2/C S-Scheme Nanoparticle Heterojunction for Boosted Photocatalytic CO2 Reduction,” The Journal of Physical Chemistry C, vol. 127, no. 11, pp. 5289–5298, Mar. 2023, doi: 10.1021/acs.jpcc.2c08369.
[101]Y. Ke, Q. Liang, S. Zhao, Z. Zhang, X. Li, and Z. Li, “In Situ Self-Assembled ZIF-67/MIL-125-Derived Co3O4/TiO2 p–n Heterojunctions for Enhanced Photocatalytic CO2 Reduction,” Inorg Chem, vol. 61, no. 5, pp. 2652–2661, Feb. 2022, doi: 10.1021/acs.inorgchem.1c03778.
[102]L. Wang, J. Wan, Y. Zhao, N. Yang, and D. Wang, “Hollow Multi-Shelled Structures of Co3O4 Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO2 Reduction,” J Am Chem Soc, vol. 141, no. 6, pp. 2238–2241, Feb. 2019, doi: 10.1021/jacs.8b13528.
[103]L. Cheng, Q. Xiang, Y. Liao, and H. Zhang, “CdS-Based photocatalysts,” Energy Environ Sci, vol. 11, no. 6, pp. 1362–1391, 2018, doi: 10.1039/C7EE03640J.
[104]W. Hussain et al., “Synthesis and Characterization of CdS Photocatalyst with Different Morphologies: Visible Light Activated Dyes Degradation Study,” Kinetics and Catalysis, vol. 59, no. 6, pp. 710–719, 2018, doi: 10.1134/S0023158418060058.
[105]Y. Cao, H. Yin, T. Fan, X. Liu, and S. Chen, “Morphology-dependent of nanosizes CdS toward efficient photocatalytic Cr (VI) reduction,” Journal of Nanoparticle Research, vol. 22, no. 8, p. 217, 2020, doi: 10.1007/s11051-020-04926-3.
[106]S. S. Hossain et al., “Facile synthesis of CuO/CdS heterostructure photocatalyst for the effective degradation of dye under visible light,” Environ Res, vol. 188, p. 109803, 2020, doi: https://doi.org/10.1016/j.envres.2020.109803.
[107]B. Zhang, W. Yao, C. Huang, Q. Xu, and Q. Wu, “Shape effects of CdS photocatalysts on hydrogen production,” Int J Hydrogen Energy, vol. 38, no. 18, pp. 7224–7231, 2013, doi: https://doi.org/10.1016/j.ijhydene.2013.03.173.
[108]B. Pan, J. Qin, X. Wang, and W. Su, “Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction,” Appl Surf Sci, vol. 504, p. 144379, 2020, doi: https://doi.org/10.1016/j.apsusc.2019.144379.
[109]X. Li, M. Edelmannová, P. Huo, and K. Kočí, “Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2,” J Mater Sci, vol. 55, no. 8, pp. 3299–3313, 2020, doi: 10.1007/s10853-019-04208-x.
[110]W. Yang et al., “Hollow Co3O4/CdS Nanoparticles for Photocatalytic Hydrogen Evolution and Photodegradation,” ACS Appl Nano Mater, Aug. 2023, doi: 10.1021/acsanm.3c02909.
[111]H. Yang et al., “Co3O4@CdS Hollow Spheres Derived from ZIF-67 with a High Phenol and Dye Photodegradation Activity,” ACS Omega, vol. 5, no. 28, pp. 17160–17169, Jul. 2020, doi: 10.1021/acsomega.0c01131.
[112]X. Hao, D. Xiang, and Z. Jin, “Amorphous Co3O4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p–n heterojunction for a highly efficient photocatalytic H2 evolution,” Dalton Trans., vol. 50, no. 30, pp. 10501–10514, 2021, doi: 10.1039/D1DT01333E.
[113]C. Zhang et al., “A well-designed honeycomb Co3O4@CdS photocatalyst derived from cobalt foam for high-efficiency visible-light H2 evolution,” J. Mater. Chem. A, vol. 9, no. 19, pp. 11665–11673, 2021, doi: 10.1039/D0TA11433B.
[114]J. Yuan et al., “Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity,” Dalton Trans., vol. 44, no. 4, pp. 1680–1689, 2015, doi: 10.1039/C4DT03197K.
[115]D. Lang, F. Cheng, and Q. Xiang, “Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification,” Catal. Sci. Technol., vol. 6, no. 16, pp. 6207–6216, 2016, doi: 10.1039/C6CY00753H.
[116]X. Jiang et al., “Magnetically recoverable flower-like Sn3O4/SnFe2O4 as a type-II heterojunction photocatalyst for efficient degradation of ciprofloxacin,” J Alloys Compd, vol. 926, p. 166878, 2022, doi: https://doi.org/10.1016/j.jallcom.2022.166878.
[117]B. Lin, S. Li, Y. Peng, Z. Chen, and X. Wang, “MOF-derived core/shell C-TiO2/CoTiO3 type II heterojunction for efficient photocatalytic removal of antibiotics,” J Hazard Mater, vol. 406, p. 124675, 2021, doi: https://doi.org/10.1016/j.jhazmat.2020.124675.
[118]X. Jiang et al., “Thorny hydrangea-like SnIn4S8/Mn0.3Cd0.7S as novel type-II heterojunction photocatalyst to enhance the efficient degradation of imidacloprid,” Appl Surf Sci, vol. 617, p. 156632, 2023, doi: https://doi.org/10.1016/j.apsusc.2023.156632.
[119]K. Song et al., “Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides,” J Photochem Photobiol A Chem, vol. 433, p. 114122, 2022, doi: https://doi.org/10.1016/j.jphotochem.2022.114122.
[120]J. Yang et al., “In situ conversion of typical type-I MIL-125(Ti)/BiOBr into type-II heterostructure photocatalyst via MOF self-sacrifice: Photocatalytic mechanism and theoretical study,” J Alloys Compd, vol. 900, p. 163440, 2022, doi: https://doi.org/10.1016/j.jallcom.2021.163440.
[121]J. Sen Chang, Y. W. Phuan, M. N. Chong, and J. D. Ocon, “Exploration of a novel Type II 1D-ZnO nanorods/BiVO4 heterojunction photocatalyst for water depollution,” Journal of Industrial and Engineering Chemistry, vol. 83, pp. 303–314, 2020, doi: https://doi.org/10.1016/j.jiec.2019.12.002.
[122]H. Zhang et al., “Ni(OH)2 Nanosheets Modified Hexagonal Pyramid CdS Formed Type II Heterojunction Photocatalyst with High-Visible-Light H2 Evolution,” ACS Appl Energy Mater, vol. 4, no. 11, pp. 13152–13160, Nov. 2021, doi: 10.1021/acsaem.1c02775.
[123]X. Ren, K. Wu, Z. Qin, X. Zhao, and H. Yang, “The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance,” J Alloys Compd, vol. 788, pp. 102–109, 2019, doi: https://doi.org/10.1016/j.jallcom.2019.02.211.
[124]F. Zhang, X. Xiao, and Y. Xiao, “In situ fabrication of type II 3D hierarchical flower-like BiOBr/Bi3O4Br heterojunction with improved photocatalytic activity,” J Alloys Compd, vol. 923, p. 166417, 2022, doi: https://doi.org/10.1016/j.jallcom.2022.166417.
[125]Z. Zhang, Z. Pan, Y. Guo, P. K. Wong, X. Zhou, and R. Bai, “In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light,” Appl Catal B, vol. 261, p. 118212, 2020, doi: https://doi.org/10.1016/j.apcatb.2019.118212.
[126]W. Zhao et al., “A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism,” Appl Catal B, vol. 245, pp. 448–458, 2019, doi: https://doi.org/10.1016/j.apcatb.2019.01.001.
[127]L. Lu, G. Wang, M. Zou, J. Wang, and J. Li, “Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst,” Appl Surf Sci, vol. 441, pp. 1012–1023, 2018, doi: https://doi.org/10.1016/j.apsusc.2018.02.080.
[128]T. Jiang, K. Wang, T. Guo, X. Wu, and G. Zhang, “Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation,” Chinese Journal of Catalysis, vol. 41, no. 1, pp. 161–169, 2020, doi: https://doi.org/10.1016/S1872-2067(19)63391-7.
[129]S. Wang et al., “A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance,” Appl Surf Sci, vol. 391, pp. 194–201, 2017, doi: https://doi.org/10.1016/j.apsusc.2016.07.070.
[130]Q. Li, Y. Xia, C. Yang, K. Lv, M. Lei, and M. Li, “Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis,” Chemical Engineering Journal, vol. 349, pp. 287–296, 2018, doi: https://doi.org/10.1016/j.cej.2018.05.094.
[131]S. Li, J. Chen, S. Hu, W. Jiang, Y. Liu, and J. Liu, “A novel 3D Z-scheme heterojunction photocatalyst: Ag6Si2O7 anchored on flower-like Bi2WO6 and its excellent photocatalytic performance for the degradation of toxic pharmaceutical antibiotics,” Inorg Chem Front, vol. 7, no. 2, pp. 529–541, 2020, doi: 10.1039/C9QI01201J.
[132]H. Zhang, J. He, P. Wu, and W. Jiang, “Facile synthesis of Z-scheme KBiO3/g-C3N4 Z-scheme heterojunction photocatalysts: Structure, performance, and mechanism,” J Environ Chem Eng, vol. 10, no. 3, p. 107804, 2022, doi: https://doi.org/10.1016/j.jece.2022.107804.
[133]C.-H. Shen, X.-J. Wen, Z.-H. Fei, Z.-T. Liu, and Q.-M. Mu, “Novel Z-scheme W18O49/CeO2 heterojunction for improved photocatalytic hydrogen evolution,” J Colloid Interface Sci, vol. 579, pp. 297–306, 2020, doi: https://doi.org/10.1016/j.jcis.2020.06.075.
[134]Y. You, S. Wang, K. Xiao, T. Ma, Y. Zhang, and H. Huang, “Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production,” ACS Sustain Chem Eng, vol. 6, no. 12, pp. 16219–16227, Dec. 2018, doi: 10.1021/acssuschemeng.8b03075.
[135]J. Jin, J. Yu, D. Guo, C. Cui, and W. Ho, “A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity,” Small, vol. 11, no. 39, pp. 5262–5271, Oct. 2015, doi: https://doi.org/10.1002/smll.201500926.
[136]Q. Han et al., “Elegant Construction of ZnIn2S4/BiVO4 Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO2 Photoreduction,” ACS Appl Mater Interfaces, vol. 13, no. 13, pp. 15092–15100, Apr. 2021, doi: 10.1021/acsami.0c21266.
[137]T. Di, B. Zhu, B. Cheng, J. Yu, and J. Xu, “A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance,” J Catal, vol. 352, pp. 532–541, 2017, doi: https://doi.org/10.1016/j.jcat.2017.06.006.
[138]M. A. Ahmed, A. Fahmy, M. G. Abuzaid, and E. M. Hashem, “Fabrication of novel AgIO4/SnO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism,” J Photochem Photobiol A Chem, vol. 400, p. 112660, 2020, doi: https://doi.org/10.1016/j.jphotochem.2020.112660.
[139]J. Wang, G. Wang, B. Cheng, J. Yu, and J. Fan, “Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation,” Chinese Journal of Catalysis, vol. 42, no. 1, pp. 56–68, 2021, doi: https://doi.org/10.1016/S1872-2067(20)63634-8.
[140]Z. Wang, B. Cheng, L. Zhang, J. Yu, and H. Tan, “BiOBr/NiO S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction,” Solar RRL, vol. 6, no. 1, p. 2100587, Jan. 2022, doi: https://doi.org/10.1002/solr.202100587.
[141]Q. Li et al., “2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading,” J Mater Sci Technol, vol. 56, pp. 216–226, 2020, doi: https://doi.org/10.1016/j.jmst.2020.03.038.
[142]Z. Jiang et al., “S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production,” J Mater Sci Technol, vol. 124, pp. 193–201, 2022, doi: https://doi.org/10.1016/j.jmst.2022.01.029.
[143]J. Li, C. Wu, J. Li, B. Dong, L. Zhao, and S. Wang, “1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution,” Chinese Journal of Catalysis, vol. 43, no. 2, pp. 339–349, 2022, doi: https://doi.org/10.1016/S1872-2067(21)63875-5.
[144]A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, and J. Yu, “TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity,” Appl Catal B, vol. 289, p. 120039, 2021, doi: https://doi.org/10.1016/j.apcatb.2021.120039.
[145]Y. Jiang et al., “Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting,” Appl Surf Sci, vol. 571, p. 151287, 2022, doi: https://doi.org/10.1016/j.apsusc.2021.151287.
[146]R. M. Mohamed and A. A. Ismail, “Photocatalytic reduction and removal of mercury ions over mesoporous CuO/ZnO S-scheme heterojunction photocatalyst,” Ceram Int, vol. 47, no. 7, Part A, pp. 9659–9667, 2021, doi: https://doi.org/10.1016/j.ceramint.2020.12.105.
[147]M. Zhang et al., “Construction of Co9Se8/TiO2 S‐scheme heterojunction photocatalyst for efficient hydrogen production,” J Alloys Compd, vol. 963, p. 171302, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.171302.
[148]D. Gogoi, P. Makkar, and N. N. Ghosh, “Solar Light-Irradiated Photocatalytic Degradation of Model Dyes and Industrial Dyes by a Magnetic CoFe2O4–gC3N4 S-Scheme Heterojunction Photocatalyst,” ACS Omega, vol. 6, no. 7, pp. 4831–4841, Feb. 2021, doi: 10.1021/acsomega.0c05809.
[149]Y. Zhang et al., “Fabricated ZnO@ZnIn2S4 S-scheme heterojunction photocatalyst for enhanced electron-transfer and CO2 reduction,” J Colloid Interface Sci, vol. 650, pp. 1762–1772, 2023, doi: https://doi.org/10.1016/j.jcis.2023.07.120.
[150]S. Cao et al., “H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst,” J Mater Chem A Mater, vol. 10, no. 33, pp. 17174–17184, 2022, doi: 10.1039/D2TA05181H.
[151]Y. Zhao, Y. Guo, J. Li, and P. Li, “Efficient hydrogen evolution with ZnO/SrTiO3 S-scheme heterojunction photocatalyst sensitized by Eosin Y,” Int J Hydrogen Energy, vol. 46, no. 36, pp. 18922–18935, 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.03.051.
[152]A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Crit Rev Anal Chem, vol. 45, no. 4, pp. 289–299, Oct. 2015, doi: 10.1080/10408347.2014.949616.
[153]F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs,” Small Methods, vol. 2, no. 11, p. 1800173, Nov. 2018, doi: https://doi.org/10.1002/smtd.201800173.
[154]H. Zhong et al., “Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with Ultraviolet–Visible Spectroscopy: A Case Study for Cubic Boron Arsenide,” J Phys Chem Lett, vol. 14, no. 29, pp. 6702–6708, Jul. 2023, doi: 10.1021/acs.jpclett.3c01416.
[155]P. Morozzi et al., “Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters,” Atmos Environ, vol. 252, p. 118297, 2021, doi: https://doi.org/10.1016/j.atmosenv.2021.118297.
[156]Ł. Haryński, A. Olejnik, K. Grochowska, and K. Siuzdak, “A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data,” Opt Mater (Amst), vol. 127, p. 112205, 2022, doi: https://doi.org/10.1016/j.optmat.2022.112205.
[157]J. E. Whitten, “Ultraviolet photoelectron spectroscopy: Practical aspects and best practices,” Applied Surface Science Advances, vol. 13, p. 100384, 2023, doi: https://doi.org/10.1016/j.apsadv.2023.100384.
[158]T. Aoki, “Photoluminescence Spectroscopy,” in Characterization of Materials, 2012, pp. 1–12. doi: https://doi.org/10.1002/0471266965.com058.pub2.
[159]M. Matsuoka, M. Saito, and M. Anpo, “Photoluminescence Spectroscopy,” in Characterization of Solid Materials and Heterogeneous Catalysts, 2012, pp. 149–184. doi: https://doi.org/10.1002/9783527645329.ch4.
[160]M. Alhaddad, A. A. Ismail, Y. G. Alghamdi, N. D. Al-Khathami, and R. M. Mohamed, “Co3O4 Nanoparticles Accommodated Mesoporous TiO2 framework as an Excellent Photocatalyst with Enhanced Photocatalytic Properties,” Opt Mater (Amst), vol. 131, p. 112643, 2022, doi: https://doi.org/10.1016/j.optmat.2022.112643.
[161]H. Klym, I. Karbovnyk, S. Piskunov, and A. I. Popov, “Positron annihilation lifetime spectroscopy insight on free volume conversion of nanostructured MgAl2 O4 ceramics,” Nanomaterials, vol. 11, no. 12, Dec. 2021, doi: 10.3390/nano11123373.
[162]C. T. Nguyen et al., “Exploring the Sub-nanoscale Structure of Cobalt Molybdenum Sulfide and the Role of a Cobalt Promoter in Catalytic Hydrogen Evolution,” ACS Appl Mater Interfaces, vol. 15, no. 11, pp. 14215–14227, Mar. 2023, doi: 10.1021/acsami.2c20237.
[163]F. Wang, W. Ge, T. Shen, B. Ye, Z. Fu, and Y. Lu, “The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film,” Appl Surf Sci, vol. 410, pp. 513–518, 2017, doi: https://doi.org/10.1016/j.apsusc.2017.03.142.
[164]S. K. Mahammadunnisa, T. Akanksha, K. Krushnamurty, and C. H. Subrahmanyam, “Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts,” Journal of Chemical Sciences, vol. 128, no. 11, pp. 1795–1804, 2016, doi: 10.1007/s12039-016-1180-3.
[165]X. Yang, J. Ma, T. Wang, B. Wang, D. Meng, and Y. Wang, “Synthesis, growth mechanism and photocatalytic property of CdS with different kinds of surfactants,” New Journal of Chemistry, vol. 43, no. 25, pp. 10126–10133, 2019, doi: 10.1039/C9NJ01856E.
[166]Y. Jin, H. Zhang, C. Song, L. Wang, Q. Lu, and F. Gao, “Hollow ZnxCd1−xS nanospheres with enhanced photocatalytic activity under visible light,” Sci Rep, vol. 6, no. 1, p. 29997, 2016, doi: 10.1038/srep29997.
[167]S. G. Ghugal, S. S. Umare, and R. Sasikala, “A stable, efficient and reusable CdS–SnO2 heterostructured photocatalyst for the mineralization of Acid Violet 7 dye,” Appl Catal A Gen, vol. 496, pp. 25–31, 2015, doi: https://doi.org/10.1016/j.apcata.2015.02.035.
[168]T. R. Gurugubelli, R. V. S. S. N. Ravikumar, and R. Koutavarapu, “Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light,” Catalysts, vol. 12, no. 1, 2022, doi: 10.3390/catal12010084.
[169]Q. Chen, M. Zhang, J. Li, G. Zhang, Y. Xin, and C. Chai, “Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation,” Chemical Engineering Journal, vol. 389, p. 124476, 2020, doi: https://doi.org/10.1016/j.cej.2020.124476.
[170]C. Alex, S. Ch. Sarma, S. C. Peter, and N. S. John, “Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium,” ACS Appl Energy Mater, vol. 3, no. 6, pp. 5439–5447, Jun. 2020, doi: 10.1021/acsaem.0c00297.
[171]S. Farid et al., “Cobalt-Pyrazolate-Derived N-Doped Porous Carbon with Embedded Cobalt Oxides for Enhanced Oxygen Evolution Reaction,” Electrocatalysis, vol. 11, no. 1, pp. 46–58, 2020, doi: 10.1007/s12678-019-00557-y.
[172]Y. Wang, X. Wei, X. Hu, W. Zhou, and Y. Zhao, “Effect of Formic Acid Treatment on the Structure and Catalytic Activity of Co3O4 for N2O Decomposition,” Catal Letters, vol. 149, no. 4, pp. 1026–1036, 2019, doi: 10.1007/s10562-019-02681-2.
[173]J. Chang et al., “Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor,” J Colloid Interface Sci, vol. 590, pp. 114–124, 2021, doi: https://doi.org/10.1016/j.jcis.2021.01.035.
[174]N. L. Finčur et al., “Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products,” Chemical Engineering Journal, vol. 307, pp. 1105–1115, 2017, doi: https://doi.org/10.1016/j.cej.2016.09.008.
[175]S. Ghosh, K. Chakraborty, T. Pal, and S. Ghosh, “Photocatalytic degradation of tetracycline antibiotics by RGO-CdTe composite with enhanced apparent quantum efficiency,” Sci Rep, vol. 13, no. 1, p. 19028, 2023, doi: 10.1038/s41598-023-46120-0.
[176]B. Zhang et al., “Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: Influencing factors, products and mechanism insight,” Chinese Chemical Letters, vol. 33, no. 3, pp. 1337–1342, 2022, doi: https://doi.org/10.1016/j.cclet.2021.08.008.
[177]Q. Sun, X. Hu, Y. Zhao, J. Zhang, and J. Sheng, “Construction of Co3O4 anchored on Bi2MoO6 microspheres for highly efficient photocatalytic peroxymonosulfate activation towards degradation of norfloxacin,” Environmental Science and Pollution Research, vol. 30, no. 30, pp. 75247–75261, 2023, doi: 10.1007/s11356-023-27674-y.
[178]H. Gong, G. Wang, H. Li, Z. Jin, and Q. Guo, “Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution,” Int J Hydrogen Energy, vol. 45, no. 51, pp. 26733–26745, 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.07.059.
[179]Z. Xin, H. Zheng, and J. Hu, “Construction of Hollow Co3O4@ZnIn2S4 p-n Heterojunctions for Highly Efficient Photocatalytic Hydrogen Production,” Nanomaterials, vol. 13, no. 4, 2023, doi: 10.3390/nano13040758.
[180]B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” The Journal of Physical Chemistry C, vol. 115, no. 18, pp. 8945–8954, May 2011, doi: 10.1021/jp2011183.
[181]M. Miropoltsev et al., “FRET-Based Analysis of AgInS2/ZnAgInS/ZnS Quantum Dot Recombination Dynamics,” Nanomaterials, vol. 10, no. 12, 2020, doi: 10.3390/nano10122455.
[182]Y. Nosaka and A. Nosaka, Introduction to Photocatalysis: From Basic Science to Applications. The Royal Society of Chemistry, 2016. doi: 10.1039/9781839168918.
[183]M. Sharma, M. K. Mandal, S. Pandey, R. Kumar, and K. K. Dubey, “Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu2O–TiO2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines,” ACS Omega, vol. 7, no. 37, pp. 33572–33586, Sep. 2022, doi: 10.1021/acsomega.2c04576.
[184]M. Li et al., “Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism,” J Colloid Interface Sci, vol. 555, pp. 770–782, 2019, doi: https://doi.org/10.1016/j.jcis.2019.08.035.
[185]M. Hasham Firooz, A. Naderi, M. Moradi, and R. R. Kalantary, “Enhanced tetracycline degradation with TiO2/natural pyrite S-scheme photocatalyst,” Sci Rep, vol. 14, no. 1, p. 4954, 2024, doi: 10.1038/s41598-024-54549-0.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top