跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永翔
研究生(外文):CHEN, YUNG-HSIANG
論文名稱:由回收PET瓶製備MIL101(Cr)-SO3H 並應用於染料吸附及CO2吸附
論文名稱(外文):Preparation of MIL101(Cr)-SO3H from recycled PET bottles and used in dye adsorption and CO2 adsorption
指導教授:李國通李國通引用關係
指導教授(外文):LI, GUO-TONG
口試委員:翁文彬黃錦鴻李國通
口試委員(外文):Weng, Wen-PinNG, KIM-HOONGLI, GUO-TONG
口試日期:2024-05-23
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:金屬有機框架物PET回收使用MIL-101(Cr)-SO3H製備染料吸附CO2吸附
外文關鍵詞:Metal organic frameworksPET recyclingMIL-101(Cr)-SO3H preparationdye adsorptionCO2 adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PET廢棄物廣泛來自一次性飲料瓶和食品包裝等源頭,儘管PET具有高度可回收性,但不當處理會產生污染而可能對環境造成嚴重危害。PET廢棄物的處理方法包括改進生產環境、提高回收率和開發環保材料。隨工業發展快速,二氧化碳造成的溫室現象,染料廢水造成的環境問題對地球已造成嚴重威脅,從廢棄PET中回收資源,能最大程度地減少污染並增加其供應,這是環境可持續性的重要一環。
本研究利用廢棄保特瓶製作金屬有機框架物PET-MIL101(Cr),接著為提高應用效能而進一步合成帶有磺酸官能基的金屬有機框架物PET-MIL101(Cr)-SO3H,以達到廢棄物資源化的目的。另外,製備二個對照組作為比較;PET先磺酸鹽化為sPET-Na,再與CrCl3或CrO3分別合成框架物sPET-MIL101-CrCl3或sPET-MIL101-CrO3。
本研究應用實驗室製備的三種吸附劑PET-MIL101(Cr)、PET-MIL101(Cr)-SO3H、sPET-MIL101-CrCl3,吸附水中陽離子型染料亞甲基藍(MB)、陰離子型染料甲基橙(MO),以及進行CO2吸附,實驗顯示PET-MIL101(Cr) 吸附劑對亞甲基藍(MB)吸附量達 ~90%,sPET-MIL101-CrCl3吸附劑的吸附量更達 ~94%,兩者都有良好的吸附效能。sPET-MIL101-CrCl3 中的磺酸官能基對陽離子染料具有進一步地吸附作用。而在吸附劑對甲基橙(MO) ~72.9%,sPET-MIL101-CrCl3吸附劑的吸附量下降~62.4%,說明磺酸官能基對陰離子染料效果不佳。在CO2吸附方面,PET-MIL101(Cr)和sPET-MIL101(Cr)-CrCl3皆表現良好的吸附效果。

PET waste mainly comes from disposable beverage bottles and food packaging, among other sources. Although PET is highly recyclable, improper disposal can lead to pollution and serious environmental hazards. Methods for dealing with PET waste include improving production environments, increasing recycling rates, and developing eco-friendly materials. With rapid industrial development, carbon dioxide emissions causing greenhouse effects and dye wastewater causing environmental issues pose serious threats to the Earth. Recovering resources from discarded PET can greatly reduce pollution and increase its supply, which is crucial for environmental sustainability.
This study utilizes waste PET bottles to produce a metal-organic framework material PET-MIL101(Cr), followed by further synthesis of PET-MIL101(Cr)-SO3H with sulfonic acid functional groups to enhance application efficiency and achieve waste resource utilization. Additionally, two control groups were prepared for comparison; PET was first sulfonated to sPET-Na, and then combined with CrCl3 or CrO3 to synthesize framework materials sPET-MIL101-CrCl3 or sPET-MIL101-CrO3.
Three adsorbents prepared in the laboratory, PET-MIL101(Cr), PET-MIL101(Cr)-SO3H, and sPET-MIL101-CrCl3, were applied to adsorb cationic dye methylene blue (MB), anionic dye methyl orange (MO), and for CO2 adsorption. The experiments showed that PET-MIL101(Cr) adsorbent achieved ~90% adsorption of MB, while sPET-MIL101-CrCl3 reached ~94% adsorption, both demonstrating good adsorption efficiency. The sulfonic acid functional group in sPET-MIL101-CrCl3 further enhanced adsorption of cationic dyes. However, the adsorption of MO by the adsorbents decreased to ~72.9% for PET-MIL101(Cr) and ~62.4% for sPET-MIL101-CrCl3, indicating poor performance of the sulfonic acid functional group for anionic dyes. In terms of CO2 adsorption, both PET-MIL101(Cr) and sPET-MIL101(Cr)-CrCl3 exhibited good adsorption effects.

目錄
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 xi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3論文實驗的魚骨圖 2
第二章 文獻回顧 3
2.1 PET廢棄物 3
2.1.1 PET 3
2.1.2 PET對環境影響 4
2.1.3 回收PET 4
2.2 染料廢水 5
2.2.1染料種類 6
2.2.2水中染料的去除法 9
2.2.3染料發色原理 11
2.3 金屬有機框架物(MOFs) 13
2.3.1 MOFs的背景 13
2.3.2 MOFs的製備 14
2.3.3 MOFs的應用 15
2.4 MIL-101(Cr)-SO3H 17
2.4.1 MIL-101(Cr) 17
2.4.2 MIL-101(Cr)的磺酸化方式 18
2.4.3 MIL101(Cr) -SO3H的應用 19
第三章 實驗材料與方法 21
3.1實驗材料 21
3.2實驗設備 22
3.3實驗步驟 26
3.3.1 PET的磺酸鹽化 27
3.3.2 合成PET-MIL101(Cr)-SO3H 27
3.3.3染料吸附性能測試 27
第四章 結果與討論 29
4.1磺酸化與酯化的反應順序比較 29
4.1.1 PET的磺酸化 29
4.1.2 sTA-Na的酯化 31
4.2製備吸附劑 33
4.2.1 前驅物sPET-Na 與CrCl3反應 33
4.2.2 前驅物sPET-Na 與CrO3反應 37
4.2.3 前驅物PET-MIL101(Cr)的製備 41
4.2.4 PET-MIL101(Cr)-SO3H 的製備 45
4.2.5 吸附劑比較 52
4.3吸附劑應用 53
4.3.1離子型染料的吸附分離 53
4.3.2 磺酸官能基效應 55
4.3.3 pH 值效應 57
4.3.3染料吸附劑再生 59
4.3.3吸附二氧化碳 61
第五章 結論 63
參考文獻 64
圖目錄
圖2-1 PET的結構圖 4
圖 2 2 PET解聚產生化合物的結構 5
圖 2 3亞甲基藍分子結構 8
圖 2 4亞甲基藍吸收光譜圖 8
圖 2 5甲基橙分子結構 9
圖 2 6 甲基橙分子吸收光譜圖 9
圖 2 7染料發色原理 12
圖 2 8 MOF對陽離子/陰離子染料的吸附機制 17
圖 2 9 MIL101的晶體結構示意圖 18
圖 2 10前製法與後製法合成MIL101(Cr)-SO3H的反應結構 19
圖 4-1 PET瓶的解聚 29
圖 4 2 sPET-Na與sTA-Na 的FT-IR 分析圖 30
圖 4-3 sPET-Na的TGA 分析圖 30
圖 4 4酯化反應的產物照片 32
圖 4 5酯化反應的產物與sTA-Na的FTIR分析圖 32
圖 4 6 sPET-MIL101(Cr)-CrCl3的N2吸脫附曲線圖 34
圖 4 7 sPET-MIL101(Cr)-CrCl3的FTIR分析圖 34
圖 4 8 sPET-MIL101(Cr)-CrCl3分析圖 35
圖 4 9 sPET-MIL101(Cr)-CrCl3分析圖 36
圖 4 10 sPET-MIL101(Cr)-CrCl3的TEM分析圖 37
圖 4 11 sPET-MIL101(Cr)-CrCl3的TGA分析圖 37
圖 4 12 sPET-MIL101-CrO3的FTIR官能基分析圖 39
圖 4 13 sPET-MIL101-CrO3的低角度XRD分析圖 39
圖 4 14 sPET-MIL101-CrO3的SEM圖 40
圖 4-15 sPET-MIL101-CrO3的N2吸脫附曲線圖 41
圖 4-16 不同反應時間製備PET-MIL101(Cr)的FTIR分析圖 42
圖 4 17 不同反應時間製備PET-MIL101(Cr)的TGA分析圖 42
圖 4-18 不同反應時間製備PET-MIL101(Cr)的N2吸脫附曲線圖 45
圖 4 19 不同反應時間製備PET-MIL101(Cr)的XRD分析圖 46
圖 4-20 不同反應時間製備PET-MIL101(Cr)的SEM圖 47
圖 4-21 18小時PET-MIL101(Cr)的TEM分析圖 47
圖 4-22 PET-MIL101(Cr)-SO3H 的FTIR分析圖 48
圖 4 23 PET-MIL101(Cr)-SO3H的N2吸脫附曲線圖 49
圖 4-24 PET-MIL101(Cr)-SO3H的SEM分析圖 50
圖 4 25 PET-MIL101(Cr) -SO3H的XRD分析圖 51
圖 4-26 PET-MIL101(Cr)-SO3H的TGA分析圖 51
圖 4-27 PET-MIL 101(Cr)對亞甲基藍(MB)和甲基橙(MO)的動態吸附圖 53
圖 4-28 不同製程時間PET-MIL 101(Cr)對亞甲基藍(MB)的吸附百分比圖 54
圖 4-29 磺酸官能基對亞甲基藍染料的動態吸附圖 55
圖 4-30 磺酸官能基對甲基橙染料的動態吸附圖 56
圖 4-31 PET-MIL101(Cr)在不同的 pH 值對亞甲基藍的動態吸附圖 57
圖 4-32 PET-MIL101(Cr)在不同的 pH 值對甲基橙的動態吸附圖 58
圖 4-33 MB回收再生染料吸附圖表 59
圖 4-34 MO回收再生染料吸附圖表 60
圖 4-35 PET-MIL101(Cr) 的CO2吸脫附曲線圖 61
圖 4-36 sPET-MIL101(Cr)-CrCl3 的CO2吸脫附曲線圖 62



表目錄
表 2 1發色團之種類 12
表 2 2助色團之種類 12
表 3 1實驗藥品 21
表 3 2實驗設備 22
表 4 1不同配方下對sTA-Na酯化 31
表 4 2 sPET-MIL101(Cr)-CrCl3的比表面積與孔洞 34
表 4 3 sPET-MIL101(Cr)-CrO3 40
表 4 4 PET-MIL101(Cr)的比表面積與孔洞 43
表 4 5 PET-MIL101(Cr)-SO3H 的比表面積與孔洞 46
表 4 6吸附劑比較分析圖 52
表 4 7 CO2最大吸附量表 62

參考文獻
1.S. Nanda, F.A. Berruti, Technical review of bioenergy and resource recovery from municipal solid waste, J. Hazard. Mater. 403 (2021)
2.A.M. Al-Sabagh, F.Z. Yehia, G. Eshaq, A.M. Rabie, A.E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet. 25 (1) (2016) 53–64
3.Peng, P. Wu, A.T. Schartup, Y. Zhang, Plastic waste release caused by covid19 and its fate in the global ocean, Proc. Natl. A
4.F. Awaja and D. Pavel, “Recycling of PET,” European Polymer Journal, vol. 41, no. 7. pp. 1453–1477, Jul. 2005. doi: 10.1016/j.eurpolymj.2005.02.005.
5.Hailong Wang;Qi-Long Zhu;Ruqiang Zou;Qiang Xu. Metal-Organic Frameworks for Energy Applications. Chem.Volume 2, Issue 1, 2017, Pages 52-80.
6.G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol. 97 (9) (2006) 1061–1085.
7.Hegyesi, N.; Vad, R. T.; Pukánszky, B. Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Applied Clay Science 2017,146,50-55.
8.Sha, Y.; Mathew, I.; Cui, Q.; Clay, M.; Gao, F.; Zhang, X. J.; Gu, Z. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 2016,144,1530-1535
9.Zhai, L.; Bai, Z.; Zhu, Y.; Wang, B.; Luo, W. Fabrication of chitosan microspheres for efficient adsorption of methyl orange. 2017.
10.D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: a review, Crit. Rev. Environ. Sci. Technol. 47 (19)
(2017)1836-1876
11.M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci. 209 (2014) 172–184
12.葉惟勤; 錢崇濂. 染料發色原理新論(一). 2000.
13.邱永亮; 魏盛德,“染色化學(合訂本)”,徐氏基金會出版部,1984。
14.E. Haque , J. E. Lee , I. T. Jang , Y. K. Hwang , J.-S. Chang , J. Jegal and S. H. J hung , J. Hazard. Mater., 2010, 181 , 535 —542
15.A. A. Adeyemo , I. O. Adeoye and O. S. Bello , Toxicol. Environ. Chem., 2012, 94 , 1846 —1863
16.Mantasha I. , S. Hussain , M. Ahmad and M. Shahid , Sep. Purif. Technol., 2020, 238 , 116413
17.X. P. Luo, S. Y. Fu, Y. M. Du, J. Z. Guo, and B. Li, “Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101,” Microporous and Mesoporous Materials, vol. 237, pp. 268–274, Jan. 2017, do: 10.1016/j.micromeso.2016.09.032.
18.M. Shahnawaz Khan, M. Khalid, M. Shahid, What triggers dye adsorption by metal organic frameworks? The current perspectives, Mater. Adv. 1 (6) (2020) 1575–1601.
19.Gürü, M., Çubuk, M. K., Arslan, D., Farzanian, S. A., & Bilici, I. (2014). An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. Journal of Hazardous Materials, 279, 302–310.
20.Lebedev, O., et al., First direct imaging of giant pores of the metal− organic framework MIL-101. Chemistry of materials, 2005. 17(26): p. 6525-6527
21.Sung Hwa J hung, Jin-Ho Lee, Ji Woong Yoon, Christian Serre, Gérard Férey, and Jong-San Chang. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Advanced Materlals.2007,19, 121–124.
22.羅賢亞, 中性或鹼性環境的MIL-101(Cr)-SO3H製備及應用於酯化合成油酸甲酯, in 化學工程系碩士班. 2022, 明志科技大學: 新北市. p. 65.
23.邱毅霖, MIL-101(Cr)官能畫及玉米感產糖觸媒應用, in 化學工程系碩士班. 2019, 明志科技大學: 新北市.
24.王朝陽.;李鋼..;孫志國.,磺酸官能化金屬-有機骨架吸附脫氮性能。物理化學學報,北京大學
25.劉嘉航(2018)。三段法製備 MIL-101(Cr)-SO3H 並應用於離子型染料吸附。 明志科技大學碩士論文。
26.Y. H. Chen and P. J. Huang, “Sono-assisted rapid dye removal by chromium-based metal organic frameworks derived from waste PET bottles Characterization, kinetics and adsorption isotherms,” J Environ Chem Eng, vol. 9, no. 6, Dec. 2021, do: 10.1016/j.jece.2021.106766.
27.Xi-Ping Luo; Sheng-Yuan Fu; Yi-Ming Du; Jian-Zhong Guo ; Bing Li. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous and Mesoporous Materials Volume 237, 1 2017, Pages 268-274.
28.Tingting Shen; Jinming Luo ;Siyu Zhang; Xubiao Luo .Hierarchically mesostructured MIL-101 metal–organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution Journal of Environmental. Chemical Engineering. Volume 3, Issue 2,2015, Pages 1372-1383
29.K. Munusamy, G. Sethia, D. V. Patil, P. B. Somayajulu Rallapalli, R. S. Somani及H. C. Bajaj, 作者, 「Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies」, Chemical Engineering Journal, P 195–196, 2012, do: 10.1016/j.cej.2012.04.071.
30.X. P. Luo, S. Y. Fu, Y. M. Du, J. Z. Guo and B. Li, 「Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101」, Microporous and Mesoporous Materials, p 237, p 268–274, 1mon 2017, do: 10.1016/j.micromeso.2016.09.032.
31.黃致憲, MIL101(Cr)-SO3H單晶顆粒的製備及水中染料吸附效能的提升, in 化學工程系碩士班. 2020 明志科技大學: 新北市. p. 65.



電子全文 電子全文(網際網路公開日期:20290614)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top