|
[1]J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303. [2]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218. [3]Y. Xu, G. Li, Y. Xia, Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS, Appl. Surf. Sci. 523 (2020) 146529. [4]C.-H. Chang, C.-B. Yang, C.-C. Sung, C.-Y. Hsu, Structure and tribological behavior of (AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering, Thin Solid Films 668 (2018) 63–68. [5]S.K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, J.-W. Lee, Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics, J. Alloys Compd. 873 (2021) 159605. [6]J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (2013) 1759–1771. [7]Y. Wang, Y. Wang, High-entropy alloys in catalyses and supercapacitors: Progress, prospects, Nano Energy 104 (2022) 107958. [8]W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2–22. [9]S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446. [10]Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater. 10 (2008) 534–538. [11]C. Cheng, H. Li, C. Zhang, C. Guo, J. Li, H. Zhang, S. Lin, Q. Wang, Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating, Surf. Coat. Technol. 467 (2023) 129692. [12]S. Liu, C. Liu, Z. Yang, L. He, G. Zeng, W. Zhang, J. Long, H. Chang, Microstructure, high-temperature corrosion resistance and oxidation properties of (TiVZrCrAl)N high entropy nitride coatings with different N2/Ar ratios, Surf. Coat. Technol. 476 (2024) 130226. [13]Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys | Journal of Applied Physics | AIP Publishing, (n.d.). [14]C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des. 109 (2016) 425–433. [15]M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317. [16]Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics 84 (2017) 153–157. [17]C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd. 583 (2014) 162–169. [18]X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films, Scr. Mater. 139 (2017) 71–76. [19]Z.F. Wu, X.D. Wang, Q.P. Cao, G.H. Zhao, J.X. Li, D.X. Zhang, J.-J. Zhu, J.Z. Jiang, Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x=0 and 2.5) high-entropy alloy films, J. Alloys Compd. 609 (2014) 137–142. [20]X. Lu, C. Zhang, X. Zhang, X. Cao, J. Kang, X. Sui, J. Hao, W. Liu, Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant, Ceram. Int. 47 (2021) 27342–27350. [21]S.-B. Hung, C.-J. Wang, Y.-Y. Chen, J.-W. Lee, C.-L. Li, Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings, Surf. Coat. Technol. 375 (2019) 802–809. [22]D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, Mater. Chem. Phys. 210 (2018) 71–77. [23]D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform. 27 (2018) 4481–4488. [24]D. Kumar, V.K. Sharma, Y.V.S.S. Prasad, V. Kumar, Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys, J. Mater. Res. 34 (2019) 767–776. [25]T. Stasiak, P. Souček, V. Buršíková, N. Koutná, Z. Czigány, K. Balázsi, P. Vašina, Synthesis and characterization of the ceramic refractory metal high entropy nitride thin films from Cr-Hf-Mo-Ta-W system, Surf. Coat. Technol. 449 (2022) 128987. [26]I. Milošev, H.-H. Strehblow, B. Navinšek, Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation, Thin Solid Films 303 (1997) 246–254. [27]D. Arias, A. Devia, J. Velez, Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique, Surf. Coat. Technol. 204 (2010) 2999–3003. [28]P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature, Thin Solid Films 281–282 (1996) 298–301. [29]H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, J.-W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx, Surf. Coat. Technol. 206 (2012) 4106–4112. [30]W. Chen, A. Yan, X. Meng, D. Wu, D. Yao, D. Zhang, Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing, Appl. Surf. Sci. 462 (2018) 1017–1028. [31]L. Chen, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, H. Zhou, X. Liu, Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering, Vacuum 181 (2020) 109706. [32]K. Yalamanchili, F. Wang, I.C. Schramm, J.M. Andersson, M.P. Johansson Jöesaar, F. Tasnádi, F. Mücklich, N. Ghafoor, M. Odén, Exploring the high entropy alloy concept in (AlTiVNbCr)N, Thin Solid Films 636 (2017) 346–352. [33]M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, J.-W. Yeh, Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings, Surf. Coat. Technol. 221 (2013) 118–123. [34]A. Kretschmer, A. Kirnbauer, V. Moraes, D. Primetzhofer, K. Yalamanchili, H. Rudigier, P.H. Mayrhofer, Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying, Surf. Coat. Technol. 416 (2021) 127162. [35]X. Zhang, X. Zeng, Y. Liu, J. Liu, A. Pogrebnjak, V. Pelenovich, Q. Wan, X. Liu, H. Wang, Y. Lei, B. Yang, Effects of RF magnetron sputtering power on the structure and nanohardness of high-entropy alloys (TiVCrNbSiTaBY)N hard coatings, Ceram. Int. 49 (2023) 33418–33424. [36]C.-H. Lai, S.-J. Lin, J.-W. Yeh, S.-Y. Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol. 201 (2006) 3275–3280. [37]G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Magnetron sputtering – Milestones of 30 years, Vacuum 84 (2010) 1354–1359. [38]P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159–172. [39]A.S. Penfold, Early days of magnetron sputtering—an enigma, Thin Solid Films 171 (1989) 99–108. [40]B. Window, N. Savvides, Unbalanced dc magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A 4 (1986) 453–456. [41]Charged particle fluxes from planar magnetron sputtering sources | Journal of Vacuum Science & Technology A | AIP Publishing, (n.d.). [42]S.P. Bugaev, N.N. Koval, N.S. Sochugov, A.N. Zakharov, Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, in: Proc. 17th Int. Symp. Disch. Electr. Insul. Vac., 1996: pp. 1074–1076 vol.2. [43]I.K. Fetisov, A.A. Filippov, G.V. Khodachenko, D.V. Mozgrin, A.A. Pisarev, Impulse irradiation plasma technology for film deposition, Vacuum 53 (1999) 133–136. [44]D.V. Mozgrin, I.K. Fetisov, G.V. Khodachenko, High-current low-pressure quasi-stationary discharge in a magnetic field: Experimental research, Plasma Phys. Rep. 21 (1995) 400–409. [45]V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 290–293. [46]K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol. 204 (2010) 1661–1684. [47]R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 170–176. [48]D. Zhang, X. Zuo, Z. Wang, H. Li, R. Chen, A. Wang, P. Ke, Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques, Surf. Coat. Technol. 394 (2020) 125890. [49]K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, R. Cremer, Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology, J. Mater. Process. Technol. 209 (2009) 165–170. [50]I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117–S128. [51]K. Reichelt, Nucleation and growth of thin films, Vacuum 38 (1988) 1083–1099. [52]J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11 (1974) 666–670. [53]A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518 (2010) 4087–4090. [54]S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96–103. [55]A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829. [56]W.L. Bragg, The Structure of Some Crystals as Indicated by Their Diffraction of X-rays, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 89 (1913) 248–277. [57]Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, (n.d.). [58]A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1–11. [59]Appendix C: Contact Angle Goniometry, in: Surf. Des. Appl. Biosci. Nanotechnol., John Wiley & Sons, Ltd, 2009: pp. 471–473. [60]H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, C.-C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol. 202 (2008) 3360–3366. [61]V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Mater. Chem. Phys. 117 (2009) 142–147. [62]M. Yasuyuki, K. Kunihiro, S. Kurissery, N. Kanavillil, Y. Sato, Y. Kikuchi, Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli, Biofouling 26 (2010) 851–858. [63]H. Wen, D. Tang, Y. Lin, J. Zou, Z. Liu, P. Zhou, X. Wang, Enhancement of water barrier and antimicrobial properties of chitosan/gelatin films by hydrophobic deep eutectic solvent, Carbohydr. Polym. 303 (2023) 120435. [64]X. Lu, C. Zhang, C. Wang, X. Cao, R. Ma, X. Sui, J. Hao, W. Liu, Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant, Appl. Surf. Sci. 557 (2021) 149813. [65]K. Bobzin, T. Brögelmann, C. Kalscheuer, T. Liang, High-rate deposition of thick (Cr,Al)ON coatings by high speed physical vapor deposition, Surf. Coat. Technol. 322 (2017) 152–162. [66]M.C. Gao, J. Qiao, High-Entropy Alloys (HEAs), Metals 8 (2018) 108. [67]D.E. Touaibia, S. Achache, A. Bouissil, J. Ghanbaja, S. Migot, M.A.P. Yazdi, F. Schuster, B. Panicaud, F. Sanchette, M. El Garah, Oxidation resistance and mechanical properties of AlTiZrHfTa(-N) high entropy films deposited by reactive magnetron sputtering, J. Alloys Compd. 969 (2023) 172397. [68]S.-Y. Chang, C.-E. Li, S.-C. Chiang, Y.-C. Huang, 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects, J. Alloys Compd. 515 (2012) 4–7. [69]K. Han, G. Lin, C. Dong, Y. Liu, Nitrogen concentration dependent mechanical properties of TiNx single-phase films (0.75≤ x≤ 0.99), Ceramics International, 42 (2016) 10332-10337. [70]W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review, Mater. Res. Lett. 6 (2018) 199–229. [71]B.E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E.J. Lavernia, Recent Progress in High Entropy Alloy Research, JOM 69 (2017) 2024–2031. [72]C.K. Chung, H.C. Chang, S.C. Chang, M.W. Liao, Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti–Si–N thin films using magnetron reactive co-sputtering, J. Alloys Compd. 537 (2012) 318–322. [73]J.-F. Tang, C.-Y. Lin, F.-C. Yang, C.-L. Chang, Effects of Input Power Ratio of AlCr/Ti Target on the Microstructural and Mechanical Properties of AlTiCrN Coatings Synthesized by a High-Power Impulse Magnetron Sputtering Process, Coatings 11 (2021) 826. [74]H. Liu, J.-F. Tang, X. Wang, W. Li, C.-L. Chang, Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering, J. Vac. Sci. Technol. A 37 (2019) 051501. [75]S. Berg, H. Blom, T. Larsson, C. Nender, Modeling of reactive sputtering of compound materials, J. Vac. Sci. Technol. A 5 (1987) 202–207. [76]W.D. Sproul, D.J. Christie, D.C. Carter, Control of reactive sputtering processes, Thin Solid Films 491 (2005) 1–17. [77]K. Strijckmans, F. Moens, D. Depla, Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?, J. Appl. Phys. 121 (2017) 080901. [78]K. von Fieandt, L. Riekehr, B. Osinger, S. Fritze, E. Lewin, Influence of N content on structure and mechanical properties of multi-component Al-Cr-Nb-Y-Zr based thin films by reactive magnetron sputtering, Surf. Coat. Technol. 389 (2020) 125614. [79]B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu, Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering, Surf. Coat. Technol. 235 (2013) 764–772. [80]Y. Tu, X. Liu, J. Zhao, Y. Yuan, B. Cheng, Z. Xie, J. Ye, W. Wang, X. Huang, S. Fu, Structure, composition and mechanical properties of reactively sputtered (TiVCrTaW)Nx high-entropy films, J. Alloys Compd. 925 (2022) 166620. [81]C.-C. Sun, S.-C. Lee, S.-B. Dai, Y.-S. Fu, Y.-C. Wang, Y.-H. Lee, Surface free energy of CrNx films deposited using closed field unbalanced magnetron sputtering, Appl. Surf. Sci. 252 (2006) 8295–8300. [82]C.-C. Sun, S.-C. Lee, W.-C. Hwang, J.-S. Hwang, I.-T. Tang, Y.-S. Fu, Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating, Mater. Trans. 47 (2006) 2533–2539. [83]Y.-S. Yang, T.-P. Cho, C.-F. Huang, Annealing effect on the hydrophobic property of Cr2N coatings, Surf. Coat. Technol. 231 (2013) 107–111. [84]B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering, Appl. Surf. Sci. 257 (2011) 7172–7178. [85]H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol. 201 (2006) 2193–2201. [86]J. Dai, H. Feng, H.-B. Li, Z.-H. Jiang, H. Li, S.-C. Zhang, P. Zhou, T. Zhang, Nitrogen significantly enhances corrosion resistance of 316L stainless steel in thiosulfate-chloride solution, Corros. Sci. 174 (2020) 108792. [87]X. Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun, Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 516 (2008) 5716–5720. [88]F.W. Hyde, M. Alberg, K. Smith, Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal, J. Ind. Microbiol. Biotechnol. 19 (1997) 142–149. [89]L.D. Renner, D.B. Weibel, Physicochemical regulation of biofilm formation, MRS Bull. 36 (2011) 347–355. [90]W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, Y.S. Chang, Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride, J. Electrochem. Soc. 160 (2013) C531. [91]A. Bouissil, S. Achache, D.E. Touaibia, B. Panicaud, M.A.P. Yazdi, F. Sanchette, M. El Garah, Properties of a new TiTaZrHfW(N) refractory high entropy film deposited by reactive DC pulsed magnetron sputtering, Surf. Coat. Technol. 462 (2023) 129503. [92]C. Lenser, Quaternary Self-Passivating Tungsten Alloys, Technische Universität München München, 2009.
|