跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹榮恩
研究生(外文):TSAO, JUNG-EN
論文名稱:高功率脈衝磁控濺射鋁鉻鈦鋯鎢及氮化鋁鉻鈦鋯鎢高熵合金薄膜之微結構與特性研究
論文名稱(外文):Microstructure and Performances of AlCrTiZrW and AlCrTiZrWN High Entropy Alloy Coating by High Power Impulse Magnetron Sputtering
指導教授:張奇龍張奇龍引用關係
指導教授(外文):CHANG,CHI-LUNG
口試委員:張奇龍張麗君吳宛玉唐健富
口試委員(外文):CHANG,CHI-LUNGCHANG,LI-CHUNWU,WAN-YUTANG,JIAN-FU
口試日期:2024-06-26
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:137
中文關鍵詞:AlCrTiZrW/N 高熵合金薄膜高功率脈衝磁控濺鍍抗菌性耐腐蝕性高溫穩定性
外文關鍵詞:AlCrTiZrW/N high-entropy alloy thin filmhigh-power impulse magnetron sputteringantibacterial propertycorrosion resistancehigh temperature stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用高功率脈衝磁控濺射(High Power Impulse Magnetron Sputtering, HiPIMS)系統搭配五5支單一元素鋁、鉻、鈦、鋯、鎢靶材沉積高熵合金薄膜與氮化高熵合金薄膜於高速鋼(SKH-9)、不鏽鋼(SUS304)與(100)矽晶片。探討AlCrTiZrW與AlCrTiZrWN高熵合金薄膜不同成分比例下的微結構與機械性質、抗腐蝕、抗菌性、高溫穩定影響。
I.等莫爾比與非等莫爾比之AlCrTiZrW高熵合金薄膜效應
本研究第一階段採用高功率脈衝磁控濺鍍技術沉積AlCrTiZrW高熵合金薄膜,為了獲得接近等摩爾的高熵合金塗層,透過改變Al和Cr靶材的輸出功率(Zr、Ti、W靶材功率固定)進行調整。對所得薄膜的微觀結構、機械性能和耐腐蝕性與抗菌性能進行了詳細的研究。發現在Al、Cr靶功率為2 kW時有最接近等莫爾比參數之Al22Cr22Ti17Zr16W18,透過FE-SEM影像獲得厚度為1.0 μm的AlCrTiZrW塗層。 XRD結果顯示薄膜皆呈現非晶結構。此外AlCr 2kW薄膜水接觸角 90.12°、硬度值 9.1GPa、極化阻抗(RP) 9.4 × 105 Ωcm2、抗菌率(AR) 96% 為最佳參數。
II.氮氣流量對AlCrTiZrWN高熵合金薄膜效應
第二階段透過不同氮氣與氬氣流量比(10/100~150/100 sccm)沉積AlCrTiZrWN使其成為氮化高熵合金薄膜,研究氮氣對薄膜的結構、性質與抗菌性能的影響。發現XRD 分析顯示在 70 sccm 氮氣流量下具有 (111) 取向的 FCC 結構。將氮氣流量增加至 90 sccm優取向轉移至 (200) 方向。在70 sccm的氮氣流量下獲得最高的水接觸角(113°)和最高的硬度值(27.6 GPa),而在110 sccm的氮氣流量下獲得最佳的Rp值(22.7 × 105 Ω·cm2 )。薄膜的抗菌性超過SUS304基材,總體評論添加反應氣體氮對薄膜形成氮化物薄膜後有性質的提升。
III.TGA 熱重分析
第三階段為第一階段與第二階段最佳參數做TGA熱重分析,研究高熵合金薄膜是否能在高溫環境下工作,能抵抗氧化腐蝕能力,研究發現在經過1200 °C 連續升溫後AlCr 2kW與 70 sccm薄膜僅增重0.405和0.247 mg,在SEM分析中薄膜的明顯增加1μm,氮化高熵合金薄膜貼於基材沒有分離情況,EDS中氮化高熵合金薄膜元素擴散範圍較小,總體添加反應氣體氮能使薄膜在高溫的穩定性加強。


This research utilizes the High Power Impulse Magnetron Sputtering (HiPIMS) system in conjunction with single-element aluminum, chromium, titanium, zirconium, and tungsten targets to deposit high entropy alloy films and nitrogenated high entropy alloy films on high-speed steel (SKH-9), stainless steel (SUS304), and (100) silicon wafers. The study investigates the microstructure, mechanical properties, corrosion resistance, antibacterial properties, and high temperature stability of AlCrTiZrW and AlCrTiZrWN high entropy alloy films with varying elemental compositions. Effects of AlCrTiZrW high entropy alloy films with equi-molar and non-equi-molar ratios.
1.Effect of target power on AlCrTiZrW high-entropy alloy thin films
In this study, AlCrTiZrW high entropy alloy films were deposited using the high power impulse magnetron sputtering with adjustments made to the output power of aluminum and chromium targets (with zirconium, titanium, and tungsten targets held constant) to achieve near equi-molar high entropy alloy coatings. The obtained films were extensively studied for their microstructure, mechanical performance, corrosion resistance, and antibacterial properties. The film with the closest equi-molar composition (Al22Cr22Ti17Zr16W18) was achieved at Al and Cr target powers of 2 kW each, resulting in a 1.0 μm thick AlCrTiZrW coating. XRD results indicated an amorphous structure for all films. The AlCr 2 kW film exhibited the best parameters with a water contact angle of 90.12°, hardness of 9.1 GPa, corrosion resistance (RP) of 9.4 × 105 Ωcm2, and antibacterial rate (AR) of 96%.
2.Effect of nitrogen flow on AlCrTiZrWN high-entropy alloy thin films
In the second part, AlCrTiZrWN was deposited through different nitrogen and argon flow ratios (10/100~150/100 sccm) to form a nitrided high-entropy alloy film, and the effect of nitrogen on the structure, properties and antibacterial properties of the film was studied. XRD analysis was found to show an FCC structure with (111) orientation at 70 sccm nitrogen flow. Increase the nitrogen flow to 90 sccm to shift the preferred orientation to the (200) direction. The highest water contact angle (113°) and the highest hardness value (27.6 GPa) were obtained at a nitrogen flow rate of 70 sccm, while the best Rp value (22.7 × 10 5 Ω·cm 2 ). The antibacterial properties of the film exceed those of the SUS304 substrate. Overall, adding reactive gas nitrogen improves the properties of the film after forming a nitride film.
3.TGA Thermogravimetric Analysis
The third part is a TGA thermogravimetric analysis of the optimal parameters of the first and second stages to study whether the high-entropy alloy film can work in a high-temperature environment and resist oxidative corrosion. The study found that after continuous heating of 1200 °C, AlCr The weight of the 2kW and 70 sccm films only increased by 0.405 and 0.247 mg. In SEM analysis, the thickness of the film increased significantly by 1 μm. The nitrided high-entropy alloy film was attached to the substrate without separation. In EDS, the element diffusion range of the nitrided high-entropy alloy film was small. , the overall addition of reaction gas nitrogen can enhance the stability of the film at high temperatures.

目錄
口試委員會審定書i
致謝ii
中文摘要iii
英文摘要v
目錄viii
圖目錄xii
表目錄xvii
第一章 緒論1
1.1 前言1
1.2 研究動機2
第二章 文獻回顧4
2.1 高熵合金介紹4
2.1.2 高熵效應5
2.1.3 晶格畸變效應6
2.1.4 緩慢擴散效應8
2.1.5 雞尾酒效應8
2.1.6 鋁元素滲雜高熵合金效應8
2.1.7 鉻元素滲雜高熵合金效應10
2.1.8 鎢元素滲雜高熵合金效應12
2.1.9 高熵合金氮化物薄膜12
2.2 磁控濺鍍技術發展13
2.2.1 非平衡磁控濺鍍技術14
2.2.2 高功率脈衝磁控濺鍍技術(High-Power Impulse Megnetiron Sputtering)17
2.2.3 高功率脈衝磁控濺鍍運作原理18
2.2.4 高功率脈衝磁控濺鍍薄膜性質21
2.3 薄膜生長機制24
第三章 實驗方法與步驟28
3.1 實驗規畫28
3.2 實驗步驟與方法30
3.2.1 試片規格與前處理30
3.2.2 實驗鍍膜系統31
3.2.3 實驗參數與流程32
3.3 薄膜性質分析39
3.3.1化學計量分析39
3.3.2統計分析41
3.3.3表面與截面形貌分析42
3.3.4晶體結構分析46
3.3.5硬度分析49
3.3.6 親疏水性分析50
3.3.7 耐腐蝕性分析51
3.3.8 抗菌性分析52
3.3.9 高溫分析53
第四章 結果與討論55
4.1 AlCrTiZrW膜層之探討:改變不同鋁、鉻靶輸出功率55
4.1.1化學計量成分分析55
4.1.2統計分析60
4.1.3 晶體結構分析62
4.1.4 TEM結構分析64
4.1.5 表面與截面形貌分析67
4.1.7 AFM表面粗糙度分析75
4.1.6 親疏水分析79
4.1.8 硬度分析84
4.1.9 抗腐蝕分析86
4.1.10 抗微生物分析89
4.2 AlCrTiZrW膜層之探討:氮氣流量變化91
4.2.1化學計量成分分析91
4.2.2晶體結構分析94
4.2.3TEM結構分析97
4.2.4表面與截面形貌分析100
4.2.6 AFM表面粗糙度分析103
4.2.5親疏水性分析106
4.2.7 硬度分析108
4.2.8 抗腐蝕分析110
4.2.9 抗微生物分析113
4.3 AlCrTiZrW膜層之探討:TGA熱重分析115
4.3.1 TGA熱重分析115
4.3.2 熱重分析-SEM表截面分析118
4.3.2 熱重分析-EDS分析121
4.3.4 熱重分析-晶體結構分析126
第五章 結論127
第六章 參考文獻130

圖目錄
圖2.1 (a)、(b)混合熵合金的區間(c)高熵合金晶體結構[7]5
圖2.2 高熵合金晶體結構示意圖[10]7
圖2.3 4AlxCoCrFeNi 高熵合金薄膜硬度[18]9
圖2.4 AlxCo1Cu1Cr1Fe1Ni1 ( x = 0和2.5)高熵合金薄膜的高溫穩定性[19]10
圖2.5 (CrAlTiNbV)Nx高熵合金薄膜不同偏壓下的磨耗率[20]11
圖2.6 V-Nb-Mo-Ta-W添加Cr、B高熵合金薄膜的動電位極化曲線[21]11
圖2.7 靶材磁場示意圖[36]15
圖2.8 (a)平衡磁控濺鍍(磁場強度相同)、(b)非平衡磁控濺鍍(內圈磁場增強)、(c)非平衡磁控濺鍍(外圈磁場增強)與電漿分佈圖[37]16
圖2.9 (a)為封閉式(兩支靶相鄰)、(b)為閉場式(兩支靶對靶配置)、(c)為鏡像式[37]17
圖2.10 HiPIMS電源供應系統配置圖[46]19
圖2.11 HiPIMS與DCMS電源之靶材電流密度和靶材電壓關係圖[46]20
圖2.12 (a)單極脈衝(Unipolar)與(b)雙極脈衝(Bipolar)輸出波型[47]21
圖2.13 DCMS與HiPIMS之CrN結構緻密性比較圖[48]22
圖2.14 DCMS與HiPIMS之CrN硬度、彈性模數比較圖[48]23
圖2.15 (a)DCMS沉積AlTiN薄膜截面圖、(b)HiPIMS沉積AlTiN薄膜截面圖[49]24
圖2.16 薄膜生長機制[50]25
圖 2.17 顯示了Thornton之SZM模型的示意圖[53]27
圖3.1實驗流程規圖28
圖3.2 實驗流程與材料分析30
圖3.3 試片清潔流程31
圖3.4 製備AlCrTiZrW及AlCrTiZrWN高熵合金薄膜設備示意圖32
圖3.5 AlCrTiZrW/N薄膜結構示意圖34
圖 3.6 高解析場發射電子微探儀40
圖3.7Sheng Guo等人透過計算統計出多組高熵合金的結構圖[54]41
圖3.8 熱電子型場發射掃描式電子顯微鏡(FE-SEM)43
圖3.9 高解析穿透式電子顯微鏡(TEM)44
圖3.10 原子力顯微鏡(AFM)45
圖3.11 X熱射儀(X-ray diffraction)47
圖3.12 X-ray繞射原理之示意圖47
圖3.13 奈米壓痕儀(Nanoidenter)49
圖3.14影像式接觸角量測儀50
圖3.15 水接觸角親疏水性示意圖[59]50
圖3.16 恆電位儀 (Potentiostat)51
圖3.17 無菌操作台52
圖3.18 綜合熱分析儀 (Themys)54
圖4.1 (a)Al靶、(b) Cr靶 不同輸出功率沉積AlCrTiZrW高熵合金薄膜化學成分分析57
圖4.2 改變AlCr靶輸出功率沉積AlCrTiZrW高熵合金薄膜成分分析59
圖4.3 改變Al與Cr靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜統計分析60
圖4.4 高功率脈衝磁控濺射沉積AlCrTiZrW高熵合金薄膜之GIXRD繞射圖63
圖4.5 AlCr 2 kW沉積AlCrTiZrW高熵合金薄膜TEM電子繞射圖65
圖4.6 AlCr 2 kW沉積AlCrTiZrW高熵合金薄膜TEM明場暗場65
圖4.7 AlCr 2 kW沉積AlCrTiZrW高熵合金薄膜TEM高倍率影像66
圖4.8 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜SEM表面與斷面形貌68
圖4.9 Al靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率69
圖4.10 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜SEM表面與斷面形貌70
圖4.11 Cr靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率71
圖4.12 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜SEM表面與斷面形貌73
圖4.13 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率74
圖4.14 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜AFM分析表面形貌76
圖4.15 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜AFM分析表面形貌76
圖4.16 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜之AFM分析表面形貌77
圖4.17 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角實際變化圖80
圖4.18 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角曲線圖80
圖4.19 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角實際變化圖81
圖4.20 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角曲線圖81
圖4.21 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角實際變化圖。82
圖4.22 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜時間與水接觸角曲線圖83
圖4.23 水接觸角的6組AlCrTiZrW高熵合金薄膜硬度分析圖85
圖4.24 改變Al與Cr靶和同時改變AlCr靶輸出功率沉積AlCrTiZrW高熵合金薄膜動電位極化曲線圖 87
圖4.25 改變Al與Cr靶與同時改變AlCr靶輸出功率沉積AlCrTiZrW高熵合金薄膜抗菌性90
圖4.26 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜成分分析92
圖4.27 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜晶體結構分析95
圖4.28 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜之電子繞射圖98
圖4.29 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜之明場暗場及高倍影相99
圖4.30 不同氮氣流量沉積AlCrTiZrWN高熵合金表面與截面形貌101
圖4.31 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜厚度與沉積速率分析101
圖4.32 不同氮氣流量沉積AlCrTiZrWN高熵合金AFM表面形貌分析104
圖4.33 不同氮氣流量沉積AlCrTiZrWN高熵合金水接觸角分析106
圖4.34不同氮氣流量沉積AlCrTiZrWN高熵合金水接觸角實際分析107
圖4.35 不同氮氣流量沉積AlCrTiZrWN高熵合金硬度分析109
圖4.36 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜之動電位極化曲線分析111
圖4.37 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜之抗微生物性114
圖4.38 TGA熱重分析升溫與時間曲線(動態模式)116
圖4.39 1200 °C下AlCrTiZrW/N薄膜的重量增加與時間關係116
圖4.40 1200 °C下AlCrTiZrW/N薄膜與純矽晶片實際燒結圖片117
圖4.41 1200 °C下AlCrTiZrW薄膜SEM表截面影像119
圖4.42 1200 °C下AlCrTiZrWN薄膜SEM表截面影像120
圖4.43 1200 °C下AlCrTiZrW薄膜EDS-表面面掃描分析122
圖4.44 1200 °C下AlCrTiZrW薄膜EDS-截面面掃描分析123
圖4.45 1200 °C下AlCrTiZrWN薄膜EDS-表面面掃描分析124
圖4.46 1200 °C下AlCrTiZrWN薄膜EDS-截面面掃描分析125
圖4.47 1200 °C下AlCrTiZrWN薄膜晶體結構分析126

表目錄
表3.1AlCrTiZrW薄膜製程參數表(改變Al靶功率)35
表3.2 AlCrTiZrW薄膜製程參數表(改變Cr靶功率)36
表3.3 AlCrTiZrW薄膜製程參數表(改變Al、Cr靶功率)37
表3.4 AlCrTiZrWN薄膜製程參數表(不同氮氣流量)38
表4.1 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜成分分析57
表4.2 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜成分分析58
表4.3 改變AlCr靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜成分分析59
表4.4 改變Al與Cr靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜統計分析61
表4.5 Al靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率69
表4.6 Cr靶調整不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率71
表4.7 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜之薄膜厚度與沉積率74
表4.8 Al靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜AFM分析76
表4.9 Cr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜AFM分析76
表4.10 AlCr靶不同輸出功率沉積AlCrTiZrW高熵合金薄膜AFM分析78
表4.11 水接觸角的6組AlCrTiZrW高熵合金薄膜硬度分析85
表4.12 改變Al與Cr靶和同時改變AlCr靶輸出功率沉積AlCrTiZrW高熵合金薄膜動電位極化曲線參數88
表4.13 改變Al與Cr靶輸出功率與同時改變AlCr靶輸出功率沉積AlCrTiZrW高熵合金薄膜抗菌性 90
表4.14 不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜成分分析93
表4.15不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜晶粒大小與晶格常數參數96
表4.16不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜厚度與沉積速率102
表4.17不同氮氣流量沉積AlCrTiZrWN高熵合金AFM表面數據分析105
表4.18不同氮氣流量沉積AlCrTiZrWN高熵合金水接觸角分析107
表4. 19不同氮氣流量沉積AlCrTiZrWN高熵合金硬度分析109
表4. 20不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜動之電位極化曲線分析112
表4. 21不同氮氣流量沉積AlCrTiZrWN高熵合金薄膜之抗微生物性114


[1]J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
[2]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.
[3]Y. Xu, G. Li, Y. Xia, Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS, Appl. Surf. Sci. 523 (2020) 146529.
[4]C.-H. Chang, C.-B. Yang, C.-C. Sung, C.-Y. Hsu, Structure and tribological behavior of (AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering, Thin Solid Films 668 (2018) 63–68.
[5]S.K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, J.-W. Lee, Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics, J. Alloys Compd. 873 (2021) 159605.
[6]J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (2013) 1759–1771.
[7]Y. Wang, Y. Wang, High-entropy alloys in catalyses and supercapacitors: Progress, prospects, Nano Energy 104 (2022) 107958.
[8]W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2–22.
[9]S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.
[10]Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater. 10 (2008) 534–538.
[11]C. Cheng, H. Li, C. Zhang, C. Guo, J. Li, H. Zhang, S. Lin, Q. Wang, Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating, Surf. Coat. Technol. 467 (2023) 129692.
[12]S. Liu, C. Liu, Z. Yang, L. He, G. Zeng, W. Zhang, J. Long, H. Chang, Microstructure, high-temperature corrosion resistance and oxidation properties of (TiVZrCrAl)N high entropy nitride coatings with different N2/Ar ratios, Surf. Coat. Technol. 476 (2024) 130226.
[13]Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys | Journal of Applied Physics | AIP Publishing, (n.d.).
[14]C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des. 109 (2016) 425–433.
[15]M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317.
[16]Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics 84 (2017) 153–157.
[17]C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd. 583 (2014) 162–169.
[18]X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films, Scr. Mater. 139 (2017) 71–76.
[19]Z.F. Wu, X.D. Wang, Q.P. Cao, G.H. Zhao, J.X. Li, D.X. Zhang, J.-J. Zhu, J.Z. Jiang, Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x=0 and 2.5) high-entropy alloy films, J. Alloys Compd. 609 (2014) 137–142.
[20]X. Lu, C. Zhang, X. Zhang, X. Cao, J. Kang, X. Sui, J. Hao, W. Liu, Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant, Ceram. Int. 47 (2021) 27342–27350.
[21]S.-B. Hung, C.-J. Wang, Y.-Y. Chen, J.-W. Lee, C.-L. Li, Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings, Surf. Coat. Technol. 375 (2019) 802–809.
[22]D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, Mater. Chem. Phys. 210 (2018) 71–77.
[23]D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform. 27 (2018) 4481–4488.
[24]D. Kumar, V.K. Sharma, Y.V.S.S. Prasad, V. Kumar, Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys, J. Mater. Res. 34 (2019) 767–776.
[25]T. Stasiak, P. Souček, V. Buršíková, N. Koutná, Z. Czigány, K. Balázsi, P. Vašina, Synthesis and characterization of the ceramic refractory metal high entropy nitride thin films from Cr-Hf-Mo-Ta-W system, Surf. Coat. Technol. 449 (2022) 128987.
[26]I. Milošev, H.-H. Strehblow, B. Navinšek, Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation, Thin Solid Films 303 (1997) 246–254.
[27]D. Arias, A. Devia, J. Velez, Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique, Surf. Coat. Technol. 204 (2010) 2999–3003.
[28]P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature, Thin Solid Films 281–282 (1996) 298–301.
[29]H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, J.-W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx, Surf. Coat. Technol. 206 (2012) 4106–4112.
[30]W. Chen, A. Yan, X. Meng, D. Wu, D. Yao, D. Zhang, Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing, Appl. Surf. Sci. 462 (2018) 1017–1028.
[31]L. Chen, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, H. Zhou, X. Liu, Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering, Vacuum 181 (2020) 109706.
[32]K. Yalamanchili, F. Wang, I.C. Schramm, J.M. Andersson, M.P. Johansson Jöesaar, F. Tasnádi, F. Mücklich, N. Ghafoor, M. Odén, Exploring the high entropy alloy concept in (AlTiVNbCr)N, Thin Solid Films 636 (2017) 346–352.
[33]M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, J.-W. Yeh, Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings, Surf. Coat. Technol. 221 (2013) 118–123.
[34]A. Kretschmer, A. Kirnbauer, V. Moraes, D. Primetzhofer, K. Yalamanchili, H. Rudigier, P.H. Mayrhofer, Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying, Surf. Coat. Technol. 416 (2021) 127162.
[35]X. Zhang, X. Zeng, Y. Liu, J. Liu, A. Pogrebnjak, V. Pelenovich, Q. Wan, X. Liu, H. Wang, Y. Lei, B. Yang, Effects of RF magnetron sputtering power on the structure and nanohardness of high-entropy alloys (TiVCrNbSiTaBY)N hard coatings, Ceram. Int. 49 (2023) 33418–33424.
[36]C.-H. Lai, S.-J. Lin, J.-W. Yeh, S.-Y. Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol. 201 (2006) 3275–3280.
[37]G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Magnetron sputtering – Milestones of 30 years, Vacuum 84 (2010) 1354–1359.
[38]P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159–172.
[39]A.S. Penfold, Early days of magnetron sputtering—an enigma, Thin Solid Films 171 (1989) 99–108.
[40]B. Window, N. Savvides, Unbalanced dc magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A 4 (1986) 453–456.
[41]Charged particle fluxes from planar magnetron sputtering sources | Journal of Vacuum Science & Technology A | AIP Publishing, (n.d.).
[42]S.P. Bugaev, N.N. Koval, N.S. Sochugov, A.N. Zakharov, Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, in: Proc. 17th Int. Symp. Disch. Electr. Insul. Vac., 1996: pp. 1074–1076 vol.2.
[43]I.K. Fetisov, A.A. Filippov, G.V. Khodachenko, D.V. Mozgrin, A.A. Pisarev, Impulse irradiation plasma technology for film deposition, Vacuum 53 (1999) 133–136.
[44]D.V. Mozgrin, I.K. Fetisov, G.V. Khodachenko, High-current low-pressure quasi-stationary discharge in a magnetic field: Experimental research, Plasma Phys. Rep. 21 (1995) 400–409.
[45]V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 290–293.
[46]K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol. 204 (2010) 1661–1684.
[47]R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 170–176.
[48]D. Zhang, X. Zuo, Z. Wang, H. Li, R. Chen, A. Wang, P. Ke, Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques, Surf. Coat. Technol. 394 (2020) 125890.
[49]K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, R. Cremer, Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology, J. Mater. Process. Technol. 209 (2009) 165–170.
[50]I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117–S128.
[51]K. Reichelt, Nucleation and growth of thin films, Vacuum 38 (1988) 1083–1099.
[52]J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11 (1974) 666–670.
[53]A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518 (2010) 4087–4090.
[54]S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96–103.
[55]A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829.
[56]W.L. Bragg, The Structure of Some Crystals as Indicated by Their Diffraction of X-rays, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 89 (1913) 248–277.
[57]Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, (n.d.).
[58]A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1–11.
[59]Appendix C: Contact Angle Goniometry, in: Surf. Des. Appl. Biosci. Nanotechnol., John Wiley & Sons, Ltd, 2009: pp. 471–473.
[60]H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, C.-C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol. 202 (2008) 3360–3366.
[61]V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Mater. Chem. Phys. 117 (2009) 142–147.
[62]M. Yasuyuki, K. Kunihiro, S. Kurissery, N. Kanavillil, Y. Sato, Y. Kikuchi, Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli, Biofouling 26 (2010) 851–858.
[63]H. Wen, D. Tang, Y. Lin, J. Zou, Z. Liu, P. Zhou, X. Wang, Enhancement of water barrier and antimicrobial properties of chitosan/gelatin films by hydrophobic deep eutectic solvent, Carbohydr. Polym. 303 (2023) 120435.
[64]X. Lu, C. Zhang, C. Wang, X. Cao, R. Ma, X. Sui, J. Hao, W. Liu, Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant, Appl. Surf. Sci. 557 (2021) 149813.
[65]K. Bobzin, T. Brögelmann, C. Kalscheuer, T. Liang, High-rate deposition of thick (Cr,Al)ON coatings by high speed physical vapor deposition, Surf. Coat. Technol. 322 (2017) 152–162.
[66]M.C. Gao, J. Qiao, High-Entropy Alloys (HEAs), Metals 8 (2018) 108.
[67]D.E. Touaibia, S. Achache, A. Bouissil, J. Ghanbaja, S. Migot, M.A.P. Yazdi, F. Schuster, B. Panicaud, F. Sanchette, M. El Garah, Oxidation resistance and mechanical properties of AlTiZrHfTa(-N) high entropy films deposited by reactive magnetron sputtering, J. Alloys Compd. 969 (2023) 172397.
[68]S.-Y. Chang, C.-E. Li, S.-C. Chiang, Y.-C. Huang, 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects, J. Alloys Compd. 515 (2012) 4–7.
[69]K. Han, G. Lin, C. Dong, Y. Liu, Nitrogen concentration dependent mechanical properties of TiNx single-phase films (0.75≤ x≤ 0.99), Ceramics International, 42 (2016) 10332-10337.
[70]W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review, Mater. Res. Lett. 6 (2018) 199–229.
[71]B.E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E.J. Lavernia, Recent Progress in High Entropy Alloy Research, JOM 69 (2017) 2024–2031.
[72]C.K. Chung, H.C. Chang, S.C. Chang, M.W. Liao, Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti–Si–N thin films using magnetron reactive co-sputtering, J. Alloys Compd. 537 (2012) 318–322.
[73]J.-F. Tang, C.-Y. Lin, F.-C. Yang, C.-L. Chang, Effects of Input Power Ratio of AlCr/Ti Target on the Microstructural and Mechanical Properties of AlTiCrN Coatings Synthesized by a High-Power Impulse Magnetron Sputtering Process, Coatings 11 (2021) 826.
[74]H. Liu, J.-F. Tang, X. Wang, W. Li, C.-L. Chang, Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering, J. Vac. Sci. Technol. A 37 (2019) 051501.
[75]S. Berg, H. Blom, T. Larsson, C. Nender, Modeling of reactive sputtering of compound materials, J. Vac. Sci. Technol. A 5 (1987) 202–207.
[76]W.D. Sproul, D.J. Christie, D.C. Carter, Control of reactive sputtering processes, Thin Solid Films 491 (2005) 1–17.
[77]K. Strijckmans, F. Moens, D. Depla, Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?, J. Appl. Phys. 121 (2017) 080901.
[78]K. von Fieandt, L. Riekehr, B. Osinger, S. Fritze, E. Lewin, Influence of N content on structure and mechanical properties of multi-component Al-Cr-Nb-Y-Zr based thin films by reactive magnetron sputtering, Surf. Coat. Technol. 389 (2020) 125614.
[79]B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu, Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering, Surf. Coat. Technol. 235 (2013) 764–772.
[80]Y. Tu, X. Liu, J. Zhao, Y. Yuan, B. Cheng, Z. Xie, J. Ye, W. Wang, X. Huang, S. Fu, Structure, composition and mechanical properties of reactively sputtered (TiVCrTaW)Nx high-entropy films, J. Alloys Compd. 925 (2022) 166620.
[81]C.-C. Sun, S.-C. Lee, S.-B. Dai, Y.-S. Fu, Y.-C. Wang, Y.-H. Lee, Surface free energy of CrNx films deposited using closed field unbalanced magnetron sputtering, Appl. Surf. Sci. 252 (2006) 8295–8300.
[82]C.-C. Sun, S.-C. Lee, W.-C. Hwang, J.-S. Hwang, I.-T. Tang, Y.-S. Fu, Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating, Mater. Trans. 47 (2006) 2533–2539.
[83]Y.-S. Yang, T.-P. Cho, C.-F. Huang, Annealing effect on the hydrophobic property of Cr2N coatings, Surf. Coat. Technol. 231 (2013) 107–111.
[84]B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering, Appl. Surf. Sci. 257 (2011) 7172–7178.
[85]H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol. 201 (2006) 2193–2201.
[86]J. Dai, H. Feng, H.-B. Li, Z.-H. Jiang, H. Li, S.-C. Zhang, P. Zhou, T. Zhang, Nitrogen significantly enhances corrosion resistance of 316L stainless steel in thiosulfate-chloride solution, Corros. Sci. 174 (2020) 108792.
[87]X. Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun, Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 516 (2008) 5716–5720.
[88]F.W. Hyde, M. Alberg, K. Smith, Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal, J. Ind. Microbiol. Biotechnol. 19 (1997) 142–149.
[89]L.D. Renner, D.B. Weibel, Physicochemical regulation of biofilm formation, MRS Bull. 36 (2011) 347–355.
[90]W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, Y.S. Chang, Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride, J. Electrochem. Soc. 160 (2013) C531.
[91]A. Bouissil, S. Achache, D.E. Touaibia, B. Panicaud, M.A.P. Yazdi, F. Sanchette, M. El Garah, Properties of a new TiTaZrHfW(N) refractory high entropy film deposited by reactive DC pulsed magnetron sputtering, Surf. Coat. Technol. 462 (2023) 129503.
[92]C. Lenser, Quaternary Self-Passivating Tungsten Alloys, Technische Universität München München, 2009.


電子全文 電子全文(網際網路公開日期:20260901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top