跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐瑋伶
研究生(外文):HSU,WEI-LING
論文名稱:阿茲海默病理與運動認知風險症候群間之相關性
論文名稱(外文):The Association between Alzheimer’s Disease Pathology and Motoric Cognitive Risk Syndrome
指導教授:鄭方瑜
指導教授(外文):CHENG,FANG-YU
口試委員:葉淑惠陳培豪
口試委員(外文):YEH,HU- HUICHEN,PEI-HAO
口試日期:2024-01-15
學位類別:碩士
校院名稱:馬偕醫學院
系所名稱:長期照護研究所長期照護跨領域碩士在職專班
學門:醫藥衛生學門
學類:護理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:81
中文關鍵詞:阿茲海默病運動認知風險症候群血漿生物標記認知功能步態表現
外文關鍵詞:Alzheimer's diseaseMotor cognitive risk syndromePlasma biomarkersCognitionGait
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
背景
運動認知風險症候群的定義為同時存在主觀認知障礙和走路速度緩慢的老年族群,許多研究證實此族群會增加罹患失智症的機率。阿茲海默病是目前最常見的失智症,大腦內Aβ42澱粉樣蛋白和Tau蛋白的沉積被證實是導致阿茲海默病的主要病理原因之一,然而目前並沒有研究探討運動認知風險症候群和阿茲海默病理間的相關性,故本研究的目的為比較健康者、運動認知風險症候群與阿茲海默病患者的神經心理功能、步態表現以及血漿中阿茲海默病理相關的生物標記,並探討臨床表現和血漿生物標記之間的相關性。
研究方法
本研究為橫斷性研究,以方便取樣方式於台灣北部的一家醫學中心進行收案,共納入69位60歲以上的長者,依神經心理測試和行走速度分成健康者(n=22)、運動認知風險症候群(n=21)及輕度的阿茲海默病患者(n=26)三組,評估的項目包含神經心理功能、步態表現、血漿中阿茲海默病理相關的生物標記。研究工具評估及檢測項目包含臨床失智量表、簡易心智量表、蒙特利爾認知評估、路徑描繪測驗、數字符號測驗、波士頓命名測驗、短版加州口語測驗、判斷直線方向測驗、步態儀測試及血漿中Tau蛋白和Aβ42類澱粉蛋白含量。
研究結果
本研究發現在認知方面,阿茲海默病組的整體認知功能顯著較其他兩組差,而注意力、語言能力、記憶力和視覺空間能力顯著較健康組差,運動認知風險症候群組的臨床失智量表和數字符號測驗顯著較健康組差。在步態表現方面,運動認知風險症候群和阿茲海默病組的步速、步輻和步頻都顯著較健康組差。在生物標記方面,三個群組的血漿中Aβ42澱粉樣蛋白和Tau蛋白含量無顯著差異,且血漿中的Aβ42澱粉樣蛋白和Tau蛋白含量與認知功能和步態表現之間,於不同組別的相關性多有不同,在健康組和運動認知風險症候群皆未看到顯著差異,僅在阿茲海默病組顯示血漿中的Aβ42類澱粉樣蛋白和Tau蛋白含量和認知功能與步頻間的相關性。
結論
運動認知風險症候群的認知和步態表現顯著較健康人差,但血漿中Aβ42澱粉樣蛋白和Tau蛋白的含量與其他兩組無顯著差異。此外本研究亦發現血漿中的Aβ42澱粉樣蛋白和Tau蛋白含量與認知功能和步態表現之間的關係,僅在阿茲海默病組呈現顯著相關,這顯示疾病可能影響生物標記的表現,而運動認知風險症候群的病理原因可能與阿茲海默病理的關係較低。


Abstract
Background
Motor Cognitive Risk (MCR) syndrome is defined as the simultaneous existence of subjective cognitive impairment and slow gait speed in older adults. Many studies indicated that MCR is associate with an increased risk of developing dementia. Alzheimer’s disease (AD) is the most common form of dementia, and the deposition of Aβ and Tau protein in the brain have been confirmed to be one of the main causes of AD pathology. However, the association between AD pathology and MCR remains uncertain. Therefore, the purposes of this study were to compare the differences among healthy older adults, MCR and AD on cognitive function, gait performance and plasma biomarkers, and also aimed to identify the relationships between plasma AD biomarkers and clinical characteristics in each group.
Methods
This was a cross-sectional designed study conducted at a medical center in northern Taiwan using convenient sampling. A total of 69 participants over 60 years old were recruited and divided into healthy controls (n=22), MCR (n=21), and AD (n=26) based on neuropsychological tests and walking speed. The assessments included the Clinical Dementia Rating Scale, Mini-Mental State Examination, Montreal Cognitive Assessment, Trail Making Test, Digit Symbol Test, Boston Naming Test, Short-form California Verbal Learning Test, Judgment of Line Orientation Test, gait performance, and plasma levels of Tau protein and Aβ42 amyloid protein.
Results
This study found that in terms of cognition, the general cognitive function of the AD group was significantly worse than the other two groups. Attention, language, memory, and visuospatial performance were also significantly worse compared to the healthy controls. In addition, the Clinical Dementia Rating Scale and Digit Symbol Test scores were significantly worse in the MCR group compared to the healthy controls. In terms of gait performance, gait speed, cadence, and stride length were significantly worse in both the MCR and AD groups compared to the healthy controls. Regarding biomarkers, there were no significant differences in plasma β-amyloid and Tau protein levels among the three groups. Furthermore, Finally, the correlation between plasma biomarkers and cognitive function/gait performance varied among groups. No significant correlations were observed in the healthy control and MCR groups, while significant correlations between plasma biomarker levels and cognitive function/cadence were only seen in the AD group.
Conclusion
The cognitive function and gait performance were significantly worse in the MCR group compared to healthy controls, but plasma Aβ42 and Tau levels showed no significant differences from the other two groups. In addition, correlations between plasma Aβ42/Tau levels and cognitive function/gait measures were only significant in the AD group, indicating disease effects on biomarker manifestation and the underlying pathology of MCR may be less related to AD pathology.


中文摘要 VII
英文摘要 X
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究假設 4
第二章 文獻查證 5
第一節 失智症常見的種類 5
第二節 阿茲海默病的病理 7
第三節 運動認知風險症候群的定義 10
第四節 運動認知風險症候群的盛行率和可能機轉 11
第五節 阿茲海默病與運動認知風險症候群間的相關性 13
第三章 研究方法 15
第一節 研究設計和流程 15
第二節 研究對象與場所 15
第三節 研究工具 16
第四節 研究統計方法 22
第四章 研究結果 24
第一節 健康族群、運動認知風險症候群與阿茲海默病族群間基本資料分析結果 24
第二節 健康族群、運動認知風險症候群與阿茲海默病族群神經心理功能分析結果 26
第三節 健康族群、運動認知風險症候群與阿茲海默病族群步態表現分析結果 27
第四節 健康族群、運動認知風險症候群與阿茲海默病族群血漿中Aβ42與T tau蛋白與認知功能間的相關性 28
第五章 討論 30
第一節 運動認知風險症候群與阿茲海默病血漿中Aβ42澱粉樣蛋白和T tau蛋白含量 32
第二節 運動認知風險症候群與阿茲海默病神經心理檢查的表現 34
第三節 運動認知風險症候群與阿茲海默病步態的表現差異 36
第四節 運動認知風險症候群與阿茲海默病患者的神經心理功能、步態表現以及血漿中阿茲海默病理生物標記之間的相關性 39
第五節 研究限制與臨床建議 40
第六章 結論 42
參考文獻 57
中文部分 57
英文部分 59
附件 72
表目錄
表格1受試者基本參數 (N=69) 43
表格2受試者在神經認知功能的表現 (N=69) 44
表格3受試者步態表現(N=69) 45
表格4健康組血漿T tau蛋白與Aβ42類澱粉蛋白認知功能之間的相關性(N=22) 46
表格5運動認知風險症候群組血漿T tau蛋白與Aβ42類澱粉蛋白認知功能之間的相關性(N=21) 47
表格6阿茲海默病組血漿 T tau 蛋白與Aβ42類澱粉蛋白認知功能之間的相關性(N=26) 48
表格7健康組血漿T tau蛋白與Aβ42類澱粉蛋白步態之間相關性 (N=22) 49
表格8運動認知風險症候群組血漿T tau蛋白與Aβ42類澱粉蛋白步態之間的相關性 (N=21) 50
表格9阿茲海默病組血漿T tau蛋白與Aβ42類澱粉蛋白步態之間的相關性(N=26) 51
圖目錄
圖 1研究流程圖 52
圖 2阿茲海默組T tau蛋白與MMSE的相關性 53
圖 3阿茲海默組T tau蛋白與MOCA的相關性 53
圖 4阿茲海默組T tau蛋白與TMT-A的相關性 54
圖 5阿茲海默病組T tau蛋白與CVLT的相關性 54
圖 6阿茲海默病組T tau蛋白與波士頓命名的相關性 55
圖 7阿茲海默組Aβ42類澱粉蛋白與憂鬱量表的相關性 55
圖 8阿茲海默組Aβ42類澱粉蛋白與步態步頻的相關性 56



中文部分:
林美蓮、陳俞成、林高章、錢才瑋(2014)。電腦化進行醫院臨床失智評量表之可行性分析-以南部某醫學中心檢查紀錄為例。醫務管理期刊,15(4),306-326。https://doi.org/10.6174/jhm2014.15(4).306
林依儂、官玫秀、方喬玲、楊淑瑜、劉建良(2019)。失智症病人之精神行為問題的藥物治療。臺灣臨床藥學雜誌,27(4),267-273。https://doi.org/10.6168/FJCP.201910\\_27(4).0002
曾煥裕(2020)。失智症家庭照顧者人口特質、社會支持需求與長期照顧服務需求之關係初探。福祉科技與服務管理學刊,8(2),148-176。https://doi.org/10.6283/jocsg.202006\\_8(2).148
伊佳奇(2017)。別讓記憶說再見:全方位認識失智症。台北市:天下。
邱鈺茹(2008)。波士頓命名測驗在台北市國小的常模。國立臺灣大學心理學研究所碩士論文,台北市。https://hdl.handle.net/11296/3u5n74
蕭耀燦、呂欣善(2021)。運動對失智症患者認知表現之探討。運動知識學報(18),1-10。
徐榮隆(2016)。失智症常見種類與檢查。長庚醫訊,37 (8),17-20。
楊雨哲、孫承洲(2014)。阿茲海默症的成因及治療。藥學雜誌
Desk Reference to the Diagnostic Criteria、台灣精神醫學會(譯) (2014)。DSM-5精神疾病診斷準則手冊 五版。台北市:合記。
英文部分:
AAIC 2023: Discoveries propel Alzheimer’s diagnosis and clinical care. (2023). Alzheimer’s & Dementia, 19(10), 4772-4778. https://doi.org/https://doi.org/10.1002/alz.13487
Ayers, E., & Verghese, J. (2014). Diagnosing motoric cognitive risk syndrome to predict progression to dementia. Neurodegenerative Disease Management, 4(5), 339-342.https://doi.org/10.2217/nmt.14.39
Ayers, E., & Verghese, J. (2019). Gait dysfunction in motoric cognitive risk syndrome. Journal of Alzheimer's Disease, 71(s1), S95-S103. https://doi.org/10.3233/JAD-181227
Bahureksa, L., Najafi, B., Saleh, A., Sabbagh, M., Coon, D., Mohler, M. J., & Schwenk, M. (2017). The impact of mild cognitive impairment on gait and balance: a systematic review and meta-analysis of studies using instrumented ssessment. Gerontology, 63(1), 67-83. https://doi.org/10.1159/000445831
Beauchet, O., Sekhon, H., Cooper-Brown, L., Launay, C. P., Gaudreau, P., Morais, J. A., & Allali, G. (2021). Motoric cognitive risk syndrome and incident dementia in older adults from the Québec NuAge cohort. Age and Ageing, 50(3), 969-973. https://doi.org/10.1093/ageing/afaa235
Benedetti, A., Wu, Y., Levis, B., Wilchesky, M., Boruff, J., Ioannidis, J. P. A., Patten, S. B., Cuijpers, P., Shrier, I., Gilbody, S., Ismail, Z., McMillan, D., Mitchell, N., Ziegelstein, R. C., & Thombs, B. D. (2018). Diagnostic accuracy of the Geriatric Depression Scale-30, Geriatric Depression Scale-15, Geriatric Depression Scale-5 and Geriatric Depression Scale-4 for detecting major depression: protocol for a systematic review and individual participant data meta-analysis. BMJ Open, 8(12), e026598. https://doi.org/10.1136/bmjopen-2018-026598
Bommarito, G., Garibotto, V., Frisoni, G. B., Ribaldi, F., Stampacchia, S., Assal, F., Armand, S., Allali, G., & Griffa, A. (2022). The biological substrate of the motoric cognitive risk syndrome: a pilot study using amyloid-/tau-PET and MR imaging. Journal of Alzheimer's disease : , 87(4), 1483-1490.https://doi.org/10.3233/JAD-215461
Bortone, I., Griseta, C., Battista, P., Castellana, F., Lampignano, L., Zupo, R., Sborgia, G., Lozupone, M., Moretti, B., Giannelli, G., Sardone, R., & Panza, F.(2021). Physical and cognitive profiles in motoric cognitive risk syndrome in an older population from Southern Italy. European Journal of Neurology, 28(8), 2565-2573. https://doi.org/10.1111/ene.14882
Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on alzheimer's disease: causes and treatment. Molecules , 25(24), 5789. https://doi.org/10.3390/molecules25245789
Briggs, R., Kennelly, S. P., & O'Neill, D. (2016). Drug treatments in alzheimer's disease. Clinical Medicine , 16(3), 247-253. https://doi.org/10.7861/clinmedicine.16-3-247
Burnham, S. C., Faux, N. G., Wilson, W., Laws, S. M., Ames, D., Bedo, J., Bush, A. I., Doecke, J. D., Ellis, K. A., Head, R., Jones, G., Kiiveri, H., Martins, R. N., Rembach, A., Rowe, C. C., Salvado, O., Macaulay, S. L., Masters, C. L., Villemagne, V. L., Alzheimer’s Disease Neuroimaging Initiative, … Australian Imaging, Biomarkers and Lifestyle Study Research Group (2014). A blood-based predictor for neocortical Aβ burden in alzheimer's disease: results from the AIBL study. Molecular Psychiatry, 19(4), 519-526. https://doi.org/10.1038/mp.2013.40
Cha, H., Farina, M. P., & Hayward, M. D. (2021). Socioeconomic status across the life course and dementia-status life expectancy among older Americans. SSM - Population Health, 15, 100921. https://doi.org/10.1016/j.ssmph.2021.100921
Chen, T. B., Lee, Y. J., Lin, S. Y., Chen, J. P., Hu, C. J., Wang, P. N., & Cheng, I. H. (2019). Plasma Aβ42 and total tau predict cognitive decline in amnestic mild cognitive impairment. Scientific Reports, 9(1), 13984.
https://doi.org/10.1038/s41598-019-50315-9
Chiu, M. J., Chen, T. F., Hu, C. J., Yan, S. H., Sun, Y., Liu, B. H., Chang, Y. T., Yang, C. C., & Yang, S. Y. (2020). Nanoparticle-based immunomagnetic assay of plasma biomarkers for differentiating dementia and prodromal states of alzheimer's disease - a cross-validation study. Nanomedicine : Nanotechnology, Biology, and Medicine, 28, 102182.https://doi.org/10.1016/j.nano.2020.102182
Chiu, M. J., Yang, S. Y., Horng, H. E., Yang, C. C., Chen, T. F., Chieh, J. J., Chen, H. H., Chen, T. C., Ho, C. S., Chang, S. F., Liu, H. C., Hong, C. Y., & Yang, H. C. (2013). Combined plasma biomarkers for diagnosing mild cognition impairment and alzheimer's disease. ACS Chemical Neuroscience, 4(12), 1530-1536.
https://doi.org/10.1021/cn400129p
Cohen, J. A., & Verghese, J. (2019). Gait and dementia. Handbook of Clinical Neurology, 167, 419-427.https://doi.org/10.1016/B978-0-12-804766-8.00022-4
Doi, T., Shimada, H., Park, H., Makizako, H., Tsutsumimoto, K., Uemura, K., Nakakubo, S., Hotta, R., & Suzuki, T. (2015). Cognitive function and falling among older adults with mild cognitive impairment and slow gait. Geriatrics & Gerontology International, 15(8), 1073-1078. https://doi.org/10.1111/ggi.12407
Durant, J., Berg, J. L., Banks, S. J., Kaylegian, J., & Miller, J. B. (2021). Comparing the boston naming test with the neuropsychological assessment battery-naming subtest in a neurodegenerative disease clinic population. Sage Journals, 28(5), 1256-1266. https://doi.org/10.1177/1073191119872253
Edsbagge, M., Andreasson, U., Ambarki, K., Wikkelsø, C., Eklund, A., Blennow, K., Zetterberg, H., & Tullberg, M. (2017). Alzheimer's disease-associated cerebrospinal fluid (CSF) biomarkers do not correlate with CSF volumes or CSF production rate. Journal of Alzheimer's Disease : JAD, 58(3), 821-828.https://doi-org.autorpa.mmh.org.tw/10.3233/JAD-161257
Elwood R. W. (1995). The california verbal learning test: psychometric characteristics and clinical application. Neuropsychology Review, 5(3), 173-201.
https://doi.org/10.1007/BF02214761
Erazo, M., Fors, M., Mullo, S., González, P., & Viada, C. (2020). Internal consistency of yesavage geriatric depression scale (GDS 15-Item Version) in ecuadorian older adults. Inquiry : A Journal of Medical Care Organization, Provision and Financing, 57, 46958020971184. https://doi.org/10.1177/0046958020971184
Gasser, A. I., Descloux, V., von Siebenthal, A., Cordonier, N., Rossier, P., & Zumbach, S. (2020). Benton judgment of line orientation test: examination of four short forms. The Clinical Neuropsychologist, 34(3), 580-590. https://doi.org/10.1080/13854046.2019.1611927
GBD 2019 Dementia Forecasting Collaborators (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease Study 2019. The Lancet. Public Health, 7(2), e105-e125.https://doi.org/10.1016/S2468-2667(21)00249-8
Glymour, M. M., Brickman, A. M., Kivimaki, M., Mayeda, E. R., Chêne, G., Dufouil, C., & Manly, J. J. (2018). Will biomarker-based diagnosis of alzheimer's disease maximize scientific progress? evaluating proposed diagnostic criteria. European Journal of Epidemiology, 33(7), 607-612. https://doi-org.autorpa.mmh.org.tw/10.1007/s10654-018-0418-4
Grande, G., Haaksma, M. L., Rizzuto, D., Melis, R. J. F., Marengoni, A.,Onder, G., Welmer, A. K., Fratiglioni, L., & Vetrano, D. L. (2019). Co-occurrence of cognitive impairment and physical frailty, and incidence of dementia: Systematic review and meta-analysis. Neuroscience and Biobehavioral reviews, 107, 96–103.https://doi-org.autorpa.mmh.org.tw/10.1016/j.neubiorev.2019.09.001
Hooghiemstra, A. M., Ramakers, I. H. G. B., Sistermans, N., Pijnenburg, Y. A. L., Aalten, P., Hamel, R. E. G., Melis, R. J. F., Verhey, F. R. J., Olde Rikkert, M. G. M., Scheltens, P., van der Flier, W. M., & 4C Study Group (2017). Gait speed and grip strength reflect cognitive impairment and are modestly related to incident cognitive decline in memory clinic patients with subjective cognitive decline and mild cognitive impairment: findings from the 4C study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(6), 846-854.https://doi.org/10.1093/gerona/glx003
Ismail, Z., McGirr, A., Gill, S., Hu, S., Forkert, N. D., & Smith, E. E. (2021). Mild behavioral impairment and subjective cognitive decline predict cognitive and functional decline. Journal of Alzheimer's Disease , 80(1), 459-469.https://doi.org/10.3233/JAD-201184
Jack, C. R., Jr, Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S.,Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010).Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade. The Lancet. Neurology, 9(1), 119-128.https://doi.org/10.1016/S1474-4422(09)70299-6
Jack, C. R., Jr, Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in alzheimer's disease: an updated hypothetical model of dynamic biomarkers. The Lancet. Neurology, 12(2), 207-216.
https://doi.org/10.1016/S1474-4422(12)70291-0
Jamour, M., Becker, C., Synofzik, M., & Maetzler, W. (2012). Gangveränderungen als frühindikator einer demenz [gait changes as an early indicator of dementia]. Zeitschrift für Gerontologie und Geriatrie, 45(1), 40-44.
https://doi.org/10.1007/s00391-011-0260-8
Mahoney, J., Drinka, T. J., Abler, R., Gunter-Hunt, G., Matthews, C., Gravenstein, S., & Carnes, M. (1994). Screening for depression: single question versus GDS. Journal of the American Geriatrics Society, 42(9), 1006–1008.
https://doi.org/10.1111/j.1532-5415.1994.tb06597.x
Meiner, Z., Ayers, E., Bennett, D. A., Wang, C., & Verghese, J. (2021). Risk factors for the progression of motoric cognitive risk syndrome to dementia: Retrospective cohort analysis of two populations. European Journal of Neurology, 28(6), 1859-1867. https://doi.org/10.1111/ene.14841
Meiner, Z., Ayers, E., & Verghese, J. (2020). Motoric cognitive risk syndrome: a risk factor for cognitive impairment and dementia in different populations. Annals of Geriatric Medicine and Research, 24(1), 3-14.
https://doi.org/10.4235/agmr.20.0001
Merchant, R. A., Goh, J., Chan, Y. H., Lim, J. Y., & Vellas, B. (2021). Slow gait, subjective cognitive decline and motoric cognitive risk syndrome: prevalence and associated factors in community dwelling older adults. The Journal of Nutrition, Health & Aging, 25(1), 48-56. https://doi.org/10.1007/s12603-020-1525-y
Montero-Odasso, M., & Hachinski, V. (2014). Preludes to brain failure: executive dysfunction and gait disturbances. Neurological Sciences : official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(4), 601-604. https://doi.org/10.1007/s10072-013-1613-4
Montero-Odasso, M., Oteng-Amoako, A., Speechley, M., Gopaul, K., Beauchet, O., Annweiler, C., & Muir-Hunter, S. W. (2014). The motor signature of mild cognitive impairment: results from the gait and brain study. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(11), 1415–1421. https://doi.org/10.1093/gerona/glu155
Montero-Odasso, M., Speechley, M., Muir-Hunter, S. W., Sarquis-Adamson, Y., Sposato, L. A., Hachinski, V., Borrie, M., Wells, J., Black, A., Sejdić, E., Bherer, L., Chertkow, H., & Canadian Gait and Cognition Network (2018). Motor and cognitive trajectories before dementia: results from gait and brain study. Journal of the American Geriatrics Society, 66(9), 1676-1683.https://doi.org/10.1111/jgs.15341
Naseri, N. N., Wang, H., Guo, J., Sharma, M., & Luo, W. (2019). The complexity of Tau in alzheimer's disease. Neuroscience Letters, 705, 183-194.https://doi.org/10.1016/j.neulet.2019.04.022
Park, J. E., Gunasekaran, T. I., Cho, Y. H., Choi, S. M., Song, M. K., Cho, S. H., Kim, J., Song, H. C., Choi, K. Y., Lee, J. J., Park, Z. Y., Song, W. K., Jeong, H. S., Lee, K. H., Lee, J. S., & Kim, B. C. (2022). Diagnostic blood biomarkers in alzheimer's Disease. Biomedicines, 10(1), 169. https://doi.org/10.3390/biomedicines10010169
Roberts, K. F., Elbert, D. L., Kasten, T. P., Patterson, B. W., Sigurdson, W. C., Connors, R. E., Ovod, V., Munsell, L. Y., Mawuenyega, K. G., Miller-Thomas, M. M., Moran, C. J., Cross, D. T., 3rd, Derdeyn, C. P., & Bateman, R. J. (2014). Amyloid-β efflux from the central nervous system into the plasma. Annals of Neurology, 76(6), 837-844. https://doi.org/10.1002/ana.24270
Rosano, C., Newman, A. B., Katz, R., Hirsch, C. H., & Kuller, L. H. (2008). Association between lower digit symbol substitution test score and slower gait and greater risk of mortality and of developing incident disability in well-functioning older adults. Journal of the American Geriatrics Society, 56(9), 1618-1625.https://doi.org/10.1111/j.1532-5415.2008.01856.x
Sekhon, H., Allali, G., Launay, C. P., Barden, J., Szturm, T., Liu-Ambrose, T., Chester, V. L., Wong, C. H., Beauchet, O., & Canadian Gait Consortium (2019). Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas, 123, 45-54. https://doi.org/10.1016/j.maturitas.2019.02.006
Shin, C., Park, M. H., Lee, S. H., Ko, Y. H., Kim, Y. K., Han, K. M., Jeong, H. G., & Han, C. (2019). Usefulness of the 15-item geriatric depression scale (GDS-15) for classifying minor and major depressive disorders among community-dwelling elders. Journal of Affective Disorders,259, 370-375.https://doi.org/10.1016/j.jad.2019.08.053
Silva, R. D. N., Afonso, S. V., Felipe, L. R., Oliveira, R. A., Patrizzi Martins, L. J., & Pascucci Sande de Souza, L. A. (2021). Dual-task intervention based on trail making test: Effects on parkinson's disease. Journal of Bodywork and Movement Therapies, 27, 628-633. https://doi.org/10.1016/j.jbmt.2021.04.013
Tombaugh T. N. (2004). Trail making test A and B: normative data stratified by age and education. Archives of Clinical Neuropsychology : the Official Journal of the National Academy of Neuropsychologists, 19(2), 203-214.
https://doi.org/10.1016/S0887-6177(03)00039-8
Tsai, C. F., Lee, W. J., Wang, S. J., Shia, B. C., Nasreddine, Z., & Fuh, J. L. (2012). Psychometrics of the montreal cognitive assessment (MoCA) and its subscales: Validation of the taiwanese version of the MoCA and an item response theory analysis. International Psychogeriatrics, 24(4), 651-658.https://doi.org/10.1017/S1041610211002298
Verghese, J., Wang, C., Lipton, R. B., & Holtzer, R. (2013). Motoric cognitive risk syndrome and the risk of dementia. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 68(4), 412-418. https://doi.org/10.1093/gerona/gls191
Verghese, J., Wang, C., Bennett, D. A., Lipton, R. B., Katz, M. J., & Ayers, E. (2019). Motoric cognitive risk syndrome and predictors of transition to dementia: A multicenter study. Alzheimer's & Dementia : the Journal of the Alzheimer's Association, 15(7), 870-877. https://doi.org/10.1016/j.jalz.2019.03.011
World Health Organization.(2023).Dementia.https://www.who.int/news-room/fact-sheets/detail/dementia(Accessed 2024 Jan.10)
Wu, Y., Wang, Z., Yin, J., Yang, B., Fan, J., & Cheng, Z. (2022). Association plasma Aβ42 levels with alzheimer's disease and its influencing factors in chinese elderly population. Neuropsychiatric Disease and Treatment, 18, 1831-1841.https://doi.org/10.2147/NDT.S374722
Xiang, K., Liu, Y., & Sun, L. (2022). Motoric cognitive risk syndrome: symptoms, pathology, diagnosis, and recovery. Frontiers in Aging Neuroscience, 13, 728799.https://doi.org/10.3389/fnagi.2021.728799
Yang, H., Yim, D., & Park, M. H. (2021). Converting from the montreal cognitive assessment to the mini-mental state examination-2. PLOS ONE, 16(7), e0254055.https://doi.org/10.1371/journal.pone.0254055
Yaqub, A., Darweesh, S. K. L., Dommershuijsen, L. J., Vernooij, M. W., Ikram, M. K., Wolters, F. J., & Ikram, M. A. (2022). Risk factors, neuroimaging correlates and prognosis of the motoric cognitive risk syndrome: A population-based comparison with mild cognitive impairment. European Journal of Neurology, 29(6), 1587-1599. https://doi.org/10.1111/ene.15281
Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17(1), 37-49.https://doi.org/10.1016/0022-3956(82)90033-4
Zhang, Y., Zhao, Y., Wang, Z., Gong, H., Ma, L., Sun, D., Yang, C., Li, Y., Cheng, B., Petersen, R. B., Jiang, F., Liu, G., & Huang, K. (2018). Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1-42). Biochimica et Biophysica Acta. General Subjects, 1862(10), 2226-2235.https://doi-org.autorpa.mmh.org.tw/10.1016/j.bbagen.2018.07.019
Zheng, Y., Lang, S., Liang, J., Jiang, Y., Zhao, B., Chen, H., Huang, D., Li, Q., Liu, H., Chen, S., Yilifate, A., Xu, F., Ou, H., & Lin, Q. (2022). Effects of motor-cognitive interaction based on dual-task gait analysis recognition in middle age to aging people with normal cognition and mild cognitive impairment. Frontiers in Aging Neuroscience, 14, 969822.https://doi.org/10.3389/fnagi.2022.969822




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊