跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭竣鴻
研究生(外文):Zheng, Jun-Hong
論文名稱:推薦系統的類別特徵工程基於熵驅動的優化
論文名稱(外文):Entropy-driven Optimization of Recommendation Systems through Categorical Feature Engineering
指導教授:周珮婷張育瑋張育瑋引用關係
指導教授(外文):Chou, Pei-TingChang, Yu-Wei
口試委員:梁穎誼
口試委員(外文):Leong, Yin-Yee
口試日期:2024-06-14
學位類別:碩士
校院名稱:國立政治大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:31
中文關鍵詞:類別變數特徵篩選條件熵推薦系統機器學習
外文關鍵詞:Categorical variableFeature selectionConditional entropyRecommendation systemMachine learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
特徵篩選在機器學習中扮演著關鍵角色,它有助於提高模型的準確性和效率,而條件熵是信息理論中一個用於評估特徵相關性的指標,它考慮了特徵之間的條件關係,有助於發現與目標變量密切相關的特徵。本研究旨在探討條件熵作為特徵篩選方法在大量類別型變數資料集的應用。以KKbox音樂資料集為例,利用條件熵在類別變數特徵篩選後的結果,評估篩選後的特徵集對模型性能的影響。我們的實驗結果顯示,我們能夠獲得一個具有較少特徵但仍具有良好性能的模型。這表明條件熵可以作為一種有效的特徵篩選方法,幫助我們發現與用戶聽歌行為密切相關的特徵,從而簡化大量資料集並提升模型的運算效率。
Feature selection plays a crucial role in machine learning as it helps enhance the accuracy and efficiency of models. Conditional entropy is an index from information theory used to evaluate the relevance of features, considering the conditional relationships between them. This helps in identifying features that are closely related to the target variable. This study aims to explore the application of conditional entropy as a feature selection method in datasets with a large number of categorical variables. Taking the KKbox music dataset as an example, we evaluate the impact on model performance by assessing the feature set selected through conditional entropy in categorical variable. Our experimental results show that we were able to obtain a model with fewer features but still maintaining good performance. This demonstrates that conditional entropy can serve as an effective feature selection method, helping us to discover features closely related to user listening behavior, thereby simplifying large datasets and enhancing the computational efficiency of the model.
第一章 Introduction 1

第二章 Literature Review 6
第一節 Feature Selection 6
第二節 ConditionalEntropy 7
第三節 Music Recommendation System 8

第三章 Methodology 10
第一節 Average of Conditional Entropy Interaction 10
第二節 Singular Value Decomposition 12
第三節 LightGBMModel 13

第四章 Empirical Analysis 16
第一節 Data Description and Preprocessing 16
第二節 Feature Engineering 20
第三節 Model Training and Evaluation Result 24

第五章 Conclusion and Future Improvement 28
第一節 Conclusion 28
第二節 Future Improvement 29

References 30
Addison Howard, Arden Chiu, M. M. m. W. K. Y. (2017). Wsdm - kkbox’s music recommendation challenge.
Chang, Y.-F. (2024). Entropy: A join between science and mind-society. change, 15:29.
Darcy, R. and Aigner, H. (1980). The uses of entropy in the multivariate analysis of categorical variables. American Journal of Political Science, 24(1):155–174.
Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 194–201.
KBVresearch (2022). Global recommendation engine market size, share industry trends analysis report by type, by application, by deployment type, by organization size, by end use, by regional outlook, strategy, challenges and forecast, 2021 - 2027. https://www.kbvresearch. com/recommendation-engine-market/.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.
Klema, V. and Laub, A. (1980). The singular value decomposition: Its computation and some applications. IEEE Transactions on Automatic Control, 25(2):164–176.
Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Physical review E, 69(6):066138.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017). Feature selection: A data perspective. ACM Comput. Surv., 50(6).
Li, Q., Kim, B. M., Guan, D. H., and Oh, D. w. (2004). A music recommender based on audio features. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 532–533.
PyPI (2021). python package index - pypi. https://pypi.org/.
Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP- CoNLL), pages 410–420.
Song, Y., Dixon, S., and Pearce, M. (2012). A survey of music recommendation systems and future perspectives. In 9th international symposium on computer music modeling and retrieval, volume 4, pages 395–410. Citeseer.
Statista (2021). Volume of data/information created, captured, copied, and consumed world- wide from 2010 to 2020, with forecasts from 2021 to 2025. https://www.statista.com/ statistics/871513/worldwide-data-created/.
Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1):37–52. Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.
Zhang, J. and Fogelman-Soulié, F. (2018). Kkbox’s music recommendation challenge solution with feature engineering. In 11th ACM International Conference on Web Search and Data Mining WSDM, pages 1–8.
電子全文 電子全文(網際網路公開日期:20290619)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊