跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品甄
研究生(外文):Pin-Jhen Chen
論文名稱:使用本土砂石材料之超高性能纖維混凝土配比研究
論文名稱(外文):Study on the Proportion of Ultra-High Performance Fiber-Reinforced Concrete Using Local Aggregate
指導教授:陳豪吉陳豪吉引用關係
指導教授(外文):How-Ji Chen
口試委員:黃建維楊元吉
口試委員(外文):Jian-Wei HuangYuan-Ji Yang
口試日期:2024-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:134
中文關鍵詞:超高性能纖維混凝土經濟性河砂粒徑分布混合利料鋼纖維韌性
外文關鍵詞:UHPFRCeconomic efficiencyriver sandparticle size distributionmixed aggregatessteel fiberstoughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超高性能纖維混凝土(ultra-high performance fiber-reinforced concrete, UHPFRC)以其卓越的性能和廣泛運用的前景,在國內外已進行了大量的研究和實際應用。然而台灣並非石英砂的主要生產地,進口石英砂的國際運輸不僅會產生大量碳排放,還會帶來高昂的成本,這對超高性能纖維混凝土的大規模生產與應用造成了限制,並對永續發展極為不利。因此如何降低成本、維持優異的力學性能、確保材料的易取得性,從而使國內預拌廠能夠穩定量產,成為亟待解決的首要課題。
本研究實驗方法包括使用台灣天然河砂取代國外進口之石英砂,以及使用飛灰取代部分矽灰,並以各比例(20%、40%、60%、80%、100%)之石英砂取代天然砂探討其對UHPFRC力學性能之影響。在水泥材料選擇上,採用低水化熱的卜特蘭II型水泥及研磨細化過的超微細水泥取代卜特蘭I型水泥,探討水化熱、水泥粒徑及比表面積對混凝土流動性及力學性能的影響。此外使用四種型式的鋼纖維,透過其製作時之結球狀況評估大規模生產之可行性,並分析不同纖維型式對UHPFRC的工作性及力學性能的影響。
經試驗結果得知,使用台灣天然河砂取代石英砂於UHPFRC中,強度並未下降,隨著所使用天然河砂粒徑的增大,其抗壓強度有良好的表現,最大粒徑為4.76mm(通過4號篩)的試體於28天抗壓強度可達180.4MPa,遠高於國際上對UHPFRC抗壓強度需大於150MPa的性能指標,然而在抗拉及抗彎試驗中呈現相反的趨勢,其相反之結果顯示粒料之粒經分布對UHPFRC影響的重要性。將天然河砂與石英砂按不同比例混合後做為粒料的試驗中,發現由於石英砂含量愈高時,混凝土流動性愈好,但對於抗壓、抗拉及抗彎性能方面,使用單一粒料種類的效果更佳。
在水泥材料試驗中,以卜特蘭II型水泥與超微細水泥取代卜特蘭I型水泥均有良好之試驗結果,28天齡期分別可達到189.1MPa及202.9MPa,可得知在提升UHPFRC性能中,除了改變粒料及卜作蘭材料外,水泥材料的選擇也至關重要。
纖維型式對超高性能纖維混凝土的工作性及抗壓、抗彎表現也有明顯之差異,值得關注的是,較細短的鋼纖維在混凝土拌製過程中易有結球現象產生,雖能大幅提升力學性能,在28天齡期抗壓、抗拉及抗彎強度分別達到197.1MPa、7.3MPa及10.4MPa,但對於預拌廠大量生產不利。
Ultra-high performance fiber-reinforced concrete (UHPFRC) has garnered significant research and practical application both domestically and internationally due to its excellent performance and promising application prospects. However, Taiwan is not a major producer of quartz sand. The international transportation of imported quartz sand not only results in significant carbon emissions but also incurs high costs, which limit the large-scale production and application of UHPFRC and are highly detrimental to sustainable development. Therefore, reducing costs, maintaining excellent mechanical properties, ensuring material availability, and enabling domestic ready-mix plants to produce stably are urgent issues that need to be addressed.
This study includes experimental methods using Taiwan's natural river sand to replace imported quartz sand and using fly ash to replace part of the silica fume. It investigates the impact of various proportions (20%, 40%, 60%, 80%, 100%) of quartz sand replacing natural sand on the mechanical properties of UHPFRC. In terms of cement materials, Type II Portland cement with low hydration heat and ultra-fine ground cement were used to replace Type I Portland cement to explore the effects of hydration heat, cement particle size, and specific surface area on the fluidity and mechanical properties of concrete. Additionally, four types of steel fibers were used to evaluate the feasibility of large-scale production based on their tendency to ball during production, and to analyze the impact of different fiber types on the workability and mechanical properties of UHPFRC.
The test results indicate that replacing quartz sand with Taiwan's natural river sand in UHPFRC does not reduce strength. As the particle size of the natural river sand increases, the compressive strength shows good performance, with specimens having a maximum particle size of 4.76mm (passing through a #4 sieve) achieving a 28-day compressive strength of 180.4MPa, which is significantly higher than the international UHPFRC compressive strength requirement of over 150MPa. However, the tensile and flexural tests showed opposite trends, highlighting the importance of particle size distribution on UHPFRC performance. In tests where natural river sand and quartz sand were mixed in different proportions as aggregates, it was found that higher quartz sand content improved concrete fluidity, but using a single type of aggregate yielded better compressive, tensile, and flexural performance.
In the cement material tests, replacing Type I Portland cement with Type II Portland cement and ultra-fine cement both showed good results, with 28-day strengths reaching 189.1MPa and 202.9MPa, respectively. This indicates that in addition to changing aggregates and Portland materials, the choice of cement material is also crucial in enhancing UHPFRC performance.
The type of fiber also significantly affects the workability and compressive, tensile, and flexural performance of UHPFRC. Notably, finer and shorter steel fibers tend to ball during the mixing process, although they can greatly enhance mechanical properties, achieving 28-day compressive, tensile, and flexural strengths of 197.1MPa, 7.3MPa, and 10.4MPa, respectively. However, this is unfavorable for large-scale production in ready-mix plants.
摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究方法 3
第二章 文獻回顧 5
2.1 水泥 5
2.1.1 水泥種類及基本性質 5
2.1.2 I型及II型水泥對混凝土力學性能的影響 7
2.1.3 水泥細度對混凝土的影響 8
2.2 矽灰 10
2.2.1 矽灰基本性質 10
2.2.2 矽灰添加於混凝土之相關規範 11
2.2.3 矽灰對混能土的影響 12
2.3 飛灰 15
2.3.1 飛灰基本性質 15
2.3.2 飛灰添加於混凝土之相關規範 16
2.3.3 飛灰對混凝土的影響 17
2.4 台灣天然河砂 19
2.4.1 台灣天然河砂基本性質及種類 19
2.4.2 粒料粒徑對混凝土的影響 21
2.5 鋼纖維 23
2.5.1 鋼纖維形狀對混凝土的影響 23
2.5.2 鋼纖維長徑比對混凝土的影響 24
2.5.3 鋼纖維方向的影響 26
第三章 實驗方法與規劃 28
3.1 實驗設備 28
3.2 實驗材料與來源 36
3.3 先導實驗 46
3.3.1 先導實驗配比 46
3.3.2 以同體積矽灰取代超細矽粉末對抗壓強度的影響 49
3.3.3 使用大里溪河砂取代石英砂對抗壓強度的影響 50
3.3.4 不同天然砂粒徑對抗壓強度的影響 52
3.3.5 調整S/A(膠結材/粒料)比例對抗壓強度的影響 54
3.3.6 以飛灰取代部分矽灰對抗壓強度的影響 55
3.3.7 不同天然河砂來源對抗壓強度的影響 56
3.4 試驗規劃與試體製作 59
3.5 試驗方法 68
3.5.1 坍度試驗 69
3.5.2 流度試體 69
3.5.3 抗壓試驗 70
3.5.4 抗拉試驗 71
3.5.5 抗彎試驗 71
第四章 試驗結果與討論 76
4.1 UHPFRC新拌性質試驗結果 76
4.1.1 流度 78
4.1.2 坍度 81
4.2 UHPFRC抗壓試驗結果 87
4.3 UHPFRC抗拉試驗結果 93
4.4 UHPFRC抗彎試驗結果 98
4.4.1 試驗數據及平均載重-撓度曲線 98
4.4.2 等效抗彎強度 108
4.4.3 韌性 114
4.5 本土砂石於UHPFRC成本分析 119
4.6 SEM微觀觀察 120
第五章 結論與建議 127
5.1 結論 127
5.2 建議 129
參考文獻 131
[1]劉光晏、廖文正、葉智強,〈添加高強度端鉤型鋼纖維之高強度鋼筋混凝土橋柱之耐震行為研究〉,第42卷,第6期,頁34–39,2015年12月。
[2]廖文正、王又德、蘇韋如等〈以高流動性應變硬化鋼纖維混凝土取代New RC 梁柱接頭箍筋之設計及驗證〉,台灣高強度鋼筋混凝土(Taiwan New RC)結構施工技術與構件耐震性能研討會,國家地震工程研究中心,2017。
[3]M. H. Akeed et al., “Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials,” Case Stud. Constr. Mater., vol. 17, p. e01290, Dec. 2022.
[4]F. Toutlemonde and J. Resplendino, Introduction: What is a UHPFRC?, 1st ed. John Wiley & Sons, Ltd, 2011.
[5]N. Bertola, P. Schiltz, E. Denarié, and E. Brühwiler, “A Review of the Use of UHPFRC in Bridge Rehabilitation and New Construction in Switzerland,” Front. Built Environ., vol. 7, 2021.
[6]E. Brühwiler, “UHPFRC technology to enhance the performance of existing concrete bridges,” Struct. Infrastruct. Eng., vol. 16, no. 1, pp. 94–105, Jan. 2020.
[7]Y. Tanaka, K. Maekawa, Y. Kameyama, A. Ohtake, H. Musha, and N. Watanabe, “The innovation and application of UHPFRC bridges in Japan,” Des. Build. UHPFRC, pp. 149–188, 2011.
[8]C.-C. Hung, H. Li, and H.-C. Chen, “High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications,” Eng. Struct., vol. 141, pp. 59–74, Jun. 2017.
[9]M. AlHamaydeh, M. E. Elkafrawy, M. Kyaure, M. Elyas, and F. Uwais, “Cost Effectiveness of UHPC Ductile Coupled Shear Walls for High-Rise Buildings in UAE Subjected to Seismic Loading,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), Feb. 2022, pp. 1–6.
[10]M. Amran, S.-S. Huang, A. M. Onaizi, N. Makul, H. S. Abdelgader, and T. Ozbakkaloglu, “Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects,” Constr. Build. Mater., vol. 352, p. 129029, Oct. 2022.
[11]P. Richard and M. H. Cheyrezy, “Reactive powder concretes with high ductility and 200-800 mpa compressive strength,” presented at the American Concrete Institute, ACI Special Publication, 1994, pp. 507–518.
[12]S. L. Yang, S. G. Millard, M. N. Soutsos, S. J. Barnett, and T. T. Le, “Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC),” Constr. Build. Mater., vol. 23, no. 6, pp. 2291–2298, Jun. 2009.
[13]吳禺澄,《超高性能混凝土早期齡期之工程行為研究》,碩士論文,國立中興大學土木工程學系所,2019。
[14]CNS 61 R2001 卜特蘭水泥
[15]黃兆龍,《混凝土性質與行為》,第一版,臺北巿:詹氏書局,1997。
[16]顏聰,《土木材料》,第五版,台中市:顏聰,2017。
[17]姜馨雅,《水泥混凝土抗彎強度影響因素之研究》,碩士論文,高苑科技大學土木工程研究所,2020。
[18]湯朝旭,《添加卜作嵐材料於波特蘭Ⅰ、Ⅱ型水泥混凝土耐久性質之研究》,碩士論文,國立屏東科技大學土木工程系所,2009。
[19]S. L. Sarkar and J. Wheeler, “Important properties of an ultrafine cement — Part I,” Cem. Concr. Res., vol. 31, no. 1, pp. 119–123, Jan. 2001.
[20]蔡咏翰,《添加超微粒水泥對水泥混凝土工程性質之影響》,碩士論文,國立臺灣科技大學營建工程系,2012。
[21]F. Kontoleontos, P. Tsakiridis, A. Marinos, N. Katsiotis, V. Kaloidas, and M. Katsioti, “Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization,” Mater. Res., vol. 16, 2013.
[22] 湛淵源、陳駟侑,〈本土化矽灰混凝土工程上之應用〉,台灣省土木技師公會-技師報,第1435期, 2020年7月。
[23] 陳純森,〈循環經濟材料再利用-矽灰〉,台灣省土木技師公會-技師報,第1404期,2023年8月。
[24]CNS 15648 A2308 膠結混合料用矽灰。
[25]O. A. Ahmad, “Production of high-performance silica fume concrete,” Am. J. Appl. Sci., vol. 14, no. 11, pp. 1031–1038, 2017.
[26]Z. Wu, K. H. Khayat, and C. Shi, “Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content,” Cem. Concr. Res., vol. 123, p. 105786, Sep. 2019.
[27]Y.-W. Chan and S.-H. Chu, “Effect of silica fume on steel fiber bond characteristics in reactive powder concrete,” Cem. Concr. Res., vol. 34, no. 7, pp. 1167–1172, Jul. 2004.
[28]CNS 3036 A2040 混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料。
[29]陳純森,〈談循環經濟材料再利用-飛灰〉,台灣省土木技師公會-技師報,第1402期,2024年6月。
[30]結構混凝土施工規範,中華民國110年7月3日。
[31]公共工程飛灰混凝土使用手冊.,行政院公共工程委員會,,1999。
[32] 施能豪,《飛灰燒失量對高摻量飛灰混凝土性質之影響》,博士論文,國立中興大學土木工程學系所,2019。
[33]K. Hwang, T. Noguchi, and F. Tomosawa, “Prediction model of compressive strength development of fly-ash concrete,” Cem. Concr. Res., vol. 34, no. 12, pp. 2269–2276, Dec. 2004.
[34] 楊韙誠、張俊鴻,〈河川砂石調查與分級〉,營建知訊,第422期,2018年3月。
[35]CNS 1240 A2029 混凝土粒料。
[36]P. K. Mehta and P. Monteiro, Concrete: microstructure, properties, and materials. 2006.
[37]L. Yujing, Z. Wenhua, W. Fan, W. Peipei, Z. Weizhao, and Y. Fenghao, “Static mechanical properties and mechanism of C200 ultra-high performance concrete (UHPC) containing coarse aggregates,” Sci. Eng. Compos. Mater., vol. 27, no. 1, pp. 186–195, 2020.
[38]A. E. Naaman, “New fiber technology (cement, ceramic, and polymeric composites),” Concr. Int., vol. 20, no. 7, pp. 57–62, 1998.
[39]K. Wille and A. E. Naaman, “Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete.,” ACI Mater. J., vol. 109, no. 4, 2012.
[40]K. Wille, D. J. Kim, and A. E. Naaman, “Strain-hardening UHP-FRC with low fiber contents,” Mater. Struct., vol. 44, pp. 583–598, 2011.
[41]Ş. Yazıcı, G. İnan, and V. Tabak, “Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC,” Constr. Build. Mater., vol. 21, no. 6, pp. 1250–1253, Jun. 2007.
[42]S. P. Shah et al., “Guide for specifying, proportioning, mixing, placing, and finishing steel fiber reinforced concrete,” ACI Mater. J., vol. 90, no. 1, pp. 94–101, 1993.
[43]S. Aydın and B. Baradan, “The effect of fiber properties on high performance alkali-activated slag/silica fume mortars,” Compos. Part B Eng., vol. 45, no. 1, pp. 63–69, Feb. 2013.
[44]I. H. Yang, C. Joh, and B.-S. Kim, “Structural behavior of ultra high performance concrete beams subjected to bending,” Eng. Struct., vol. 32, no. 11, pp. 3478–3487, Nov. 2010.
[45]D.-Y. Yoo, N. Banthia, S.-T. Kang, and Y.-S. Yoon, “Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete,” Compos. Struct., vol. 157, pp. 62–70, Dec. 2016.
[46]B. Boulekbache, M. Hamrat, M. Chemrouk, and S. Amziane, “Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material,” Constr. Build. Mater., vol. 24, no. 9, pp. 1664–1671, Sep. 2010.
[47]D.-Y. Yoo, S.-T. Kang, and Y.-S. Yoon, “Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC,” Constr. Build. Mater., vol. 64, pp. 67–81, Aug. 2014.
[48]CNS 13961 A2269 混凝土拌和用水。
[49]CNS 12833 A2245 流動化混凝土用化學摻料。
[50]顏誠皜、洪崇展,〈超高性能混凝土(UHPC)材料與結構應用及文獻回顧〉,土木水利,第49期,第5卷,頁43–47,2022。
[51]D. Q. Fan et al., “A new design approach of steel fibre reinforced ultra-high performance concrete composites: Experiments and modeling,” Cem. Concr. Compos., vol. 110, 2020.
[52]J. Du et al., “New development of ultra-high-performance concrete (UHPC),” Compos. Part B Eng., vol. 224, 2021.
[53]K. Liu, T. Yin, D. Fan, J. Wang, and R. Yu, “Multiple effects of particle size distribution modulus (q) and maximum aggregate size (Dmax) on the characteristics of Ultra-High Performance concrete (UHPC): Experiments and modeling,” Cem. Concr. Compos., vol. 133, p. 104709, Oct. 2022.
[54]黃兆龍、湛淵源,〈探討「高CSER低碳混凝土」在低碳循環建材中的重要意義(上) 〉,台灣省土木技師公會-技師報,第1397期,2023年9月。
[55]CNS 1176 A3040 混凝土坍度試驗法。
[56]CNS 15992 A3454 水硬性水泥砂漿流度試驗法.。
[57]CNS 1010 R3032 硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體)。
[58]ASTM-C78/C78M: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading)”. American Society for Testing and Materials. West Conshohocken. Pennsylvania.
[59]ASTM C1609/C1609M-10: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-point Loading).
[60]D. joo Kim, A. E. Naaman, and S. El-Tawil, “Comparative flexural behavior of four fiber reinforced cementitious composites,” Cem. Concr. Compos., vol. 30, no. 10, pp. 917–928, Nov. 2008.
[61]M. H. Akeed et al., “Ultra-high-performance fiber-reinforced concrete. Part III: Fresh and hardened properties,” Case Stud. Constr. Mater., vol. 17, p. e01265, Dec. 2022.
[62]S. Kwon, T. Nishiwaki, T. Kikuta, and H. Mihashi, “Development of Ultra-high-performance Hybrid Fiber-reinforced Cement-based Composites,” ACI Mater. J., vol. 111, no. 3, May 2014, Accessed: Jun. 20, 2024.
電子全文 電子全文(網際網路公開日期:20260530)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊