[1]劉光晏、廖文正、葉智強,〈添加高強度端鉤型鋼纖維之高強度鋼筋混凝土橋柱之耐震行為研究〉,第42卷,第6期,頁34–39,2015年12月。
[2]廖文正、王又德、蘇韋如等〈以高流動性應變硬化鋼纖維混凝土取代New RC 梁柱接頭箍筋之設計及驗證〉,台灣高強度鋼筋混凝土(Taiwan New RC)結構施工技術與構件耐震性能研討會,國家地震工程研究中心,2017。
[3]M. H. Akeed et al., “Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials,” Case Stud. Constr. Mater., vol. 17, p. e01290, Dec. 2022.
[4]F. Toutlemonde and J. Resplendino, Introduction: What is a UHPFRC?, 1st ed. John Wiley & Sons, Ltd, 2011.
[5]N. Bertola, P. Schiltz, E. Denarié, and E. Brühwiler, “A Review of the Use of UHPFRC in Bridge Rehabilitation and New Construction in Switzerland,” Front. Built Environ., vol. 7, 2021.
[6]E. Brühwiler, “UHPFRC technology to enhance the performance of existing concrete bridges,” Struct. Infrastruct. Eng., vol. 16, no. 1, pp. 94–105, Jan. 2020.
[7]Y. Tanaka, K. Maekawa, Y. Kameyama, A. Ohtake, H. Musha, and N. Watanabe, “The innovation and application of UHPFRC bridges in Japan,” Des. Build. UHPFRC, pp. 149–188, 2011.
[8]C.-C. Hung, H. Li, and H.-C. Chen, “High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications,” Eng. Struct., vol. 141, pp. 59–74, Jun. 2017.
[9]M. AlHamaydeh, M. E. Elkafrawy, M. Kyaure, M. Elyas, and F. Uwais, “Cost Effectiveness of UHPC Ductile Coupled Shear Walls for High-Rise Buildings in UAE Subjected to Seismic Loading,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), Feb. 2022, pp. 1–6.
[10]M. Amran, S.-S. Huang, A. M. Onaizi, N. Makul, H. S. Abdelgader, and T. Ozbakkaloglu, “Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects,” Constr. Build. Mater., vol. 352, p. 129029, Oct. 2022.
[11]P. Richard and M. H. Cheyrezy, “Reactive powder concretes with high ductility and 200-800 mpa compressive strength,” presented at the American Concrete Institute, ACI Special Publication, 1994, pp. 507–518.
[12]S. L. Yang, S. G. Millard, M. N. Soutsos, S. J. Barnett, and T. T. Le, “Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC),” Constr. Build. Mater., vol. 23, no. 6, pp. 2291–2298, Jun. 2009.
[13]吳禺澄,《超高性能混凝土早期齡期之工程行為研究》,碩士論文,國立中興大學土木工程學系所,2019。[14]CNS 61 R2001 卜特蘭水泥
[15]黃兆龍,《混凝土性質與行為》,第一版,臺北巿:詹氏書局,1997。
[16]顏聰,《土木材料》,第五版,台中市:顏聰,2017。
[17]姜馨雅,《水泥混凝土抗彎強度影響因素之研究》,碩士論文,高苑科技大學土木工程研究所,2020。[18]湯朝旭,《添加卜作嵐材料於波特蘭Ⅰ、Ⅱ型水泥混凝土耐久性質之研究》,碩士論文,國立屏東科技大學土木工程系所,2009。[19]S. L. Sarkar and J. Wheeler, “Important properties of an ultrafine cement — Part I,” Cem. Concr. Res., vol. 31, no. 1, pp. 119–123, Jan. 2001.
[20]蔡咏翰,《添加超微粒水泥對水泥混凝土工程性質之影響》,碩士論文,國立臺灣科技大學營建工程系,2012。[21]F. Kontoleontos, P. Tsakiridis, A. Marinos, N. Katsiotis, V. Kaloidas, and M. Katsioti, “Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization,” Mater. Res., vol. 16, 2013.
[22] 湛淵源、陳駟侑,〈本土化矽灰混凝土工程上之應用〉,台灣省土木技師公會-技師報,第1435期, 2020年7月。
[23] 陳純森,〈循環經濟材料再利用-矽灰〉,台灣省土木技師公會-技師報,第1404期,2023年8月。
[24]CNS 15648 A2308 膠結混合料用矽灰。
[25]O. A. Ahmad, “Production of high-performance silica fume concrete,” Am. J. Appl. Sci., vol. 14, no. 11, pp. 1031–1038, 2017.
[26]Z. Wu, K. H. Khayat, and C. Shi, “Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content,” Cem. Concr. Res., vol. 123, p. 105786, Sep. 2019.
[27]Y.-W. Chan and S.-H. Chu, “Effect of silica fume on steel fiber bond characteristics in reactive powder concrete,” Cem. Concr. Res., vol. 34, no. 7, pp. 1167–1172, Jul. 2004.
[28]CNS 3036 A2040 混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料。
[29]陳純森,〈談循環經濟材料再利用-飛灰〉,台灣省土木技師公會-技師報,第1402期,2024年6月。
[30]結構混凝土施工規範,中華民國110年7月3日。
[31]公共工程飛灰混凝土使用手冊.,行政院公共工程委員會,,1999。
[32] 施能豪,《飛灰燒失量對高摻量飛灰混凝土性質之影響》,博士論文,國立中興大學土木工程學系所,2019。[33]K. Hwang, T. Noguchi, and F. Tomosawa, “Prediction model of compressive strength development of fly-ash concrete,” Cem. Concr. Res., vol. 34, no. 12, pp. 2269–2276, Dec. 2004.
[34] 楊韙誠、張俊鴻,〈河川砂石調查與分級〉,營建知訊,第422期,2018年3月。
[35]CNS 1240 A2029 混凝土粒料。
[36]P. K. Mehta and P. Monteiro, Concrete: microstructure, properties, and materials. 2006.
[37]L. Yujing, Z. Wenhua, W. Fan, W. Peipei, Z. Weizhao, and Y. Fenghao, “Static mechanical properties and mechanism of C200 ultra-high performance concrete (UHPC) containing coarse aggregates,” Sci. Eng. Compos. Mater., vol. 27, no. 1, pp. 186–195, 2020.
[38]A. E. Naaman, “New fiber technology (cement, ceramic, and polymeric composites),” Concr. Int., vol. 20, no. 7, pp. 57–62, 1998.
[39]K. Wille and A. E. Naaman, “Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete.,” ACI Mater. J., vol. 109, no. 4, 2012.
[40]K. Wille, D. J. Kim, and A. E. Naaman, “Strain-hardening UHP-FRC with low fiber contents,” Mater. Struct., vol. 44, pp. 583–598, 2011.
[41]Ş. Yazıcı, G. İnan, and V. Tabak, “Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC,” Constr. Build. Mater., vol. 21, no. 6, pp. 1250–1253, Jun. 2007.
[42]S. P. Shah et al., “Guide for specifying, proportioning, mixing, placing, and finishing steel fiber reinforced concrete,” ACI Mater. J., vol. 90, no. 1, pp. 94–101, 1993.
[43]S. Aydın and B. Baradan, “The effect of fiber properties on high performance alkali-activated slag/silica fume mortars,” Compos. Part B Eng., vol. 45, no. 1, pp. 63–69, Feb. 2013.
[44]I. H. Yang, C. Joh, and B.-S. Kim, “Structural behavior of ultra high performance concrete beams subjected to bending,” Eng. Struct., vol. 32, no. 11, pp. 3478–3487, Nov. 2010.
[45]D.-Y. Yoo, N. Banthia, S.-T. Kang, and Y.-S. Yoon, “Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete,” Compos. Struct., vol. 157, pp. 62–70, Dec. 2016.
[46]B. Boulekbache, M. Hamrat, M. Chemrouk, and S. Amziane, “Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material,” Constr. Build. Mater., vol. 24, no. 9, pp. 1664–1671, Sep. 2010.
[47]D.-Y. Yoo, S.-T. Kang, and Y.-S. Yoon, “Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC,” Constr. Build. Mater., vol. 64, pp. 67–81, Aug. 2014.
[48]CNS 13961 A2269 混凝土拌和用水。
[49]CNS 12833 A2245 流動化混凝土用化學摻料。
[50]顏誠皜、洪崇展,〈超高性能混凝土(UHPC)材料與結構應用及文獻回顧〉,土木水利,第49期,第5卷,頁43–47,2022。
[51]D. Q. Fan et al., “A new design approach of steel fibre reinforced ultra-high performance concrete composites: Experiments and modeling,” Cem. Concr. Compos., vol. 110, 2020.
[52]J. Du et al., “New development of ultra-high-performance concrete (UHPC),” Compos. Part B Eng., vol. 224, 2021.
[53]K. Liu, T. Yin, D. Fan, J. Wang, and R. Yu, “Multiple effects of particle size distribution modulus (q) and maximum aggregate size (Dmax) on the characteristics of Ultra-High Performance concrete (UHPC): Experiments and modeling,” Cem. Concr. Compos., vol. 133, p. 104709, Oct. 2022.
[54]黃兆龍、湛淵源,〈探討「高CSER低碳混凝土」在低碳循環建材中的重要意義(上) 〉,台灣省土木技師公會-技師報,第1397期,2023年9月。
[55]CNS 1176 A3040 混凝土坍度試驗法。
[56]CNS 15992 A3454 水硬性水泥砂漿流度試驗法.。
[57]CNS 1010 R3032 硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體)。
[58]ASTM-C78/C78M: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading)”. American Society for Testing and Materials. West Conshohocken. Pennsylvania.
[59]ASTM C1609/C1609M-10: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-point Loading).
[60]D. joo Kim, A. E. Naaman, and S. El-Tawil, “Comparative flexural behavior of four fiber reinforced cementitious composites,” Cem. Concr. Compos., vol. 30, no. 10, pp. 917–928, Nov. 2008.
[61]M. H. Akeed et al., “Ultra-high-performance fiber-reinforced concrete. Part III: Fresh and hardened properties,” Case Stud. Constr. Mater., vol. 17, p. e01265, Dec. 2022.
[62]S. Kwon, T. Nishiwaki, T. Kikuta, and H. Mihashi, “Development of Ultra-high-performance Hybrid Fiber-reinforced Cement-based Composites,” ACI Mater. J., vol. 111, no. 3, May 2014, Accessed: Jun. 20, 2024.