|
1.Abd El-Razek, M., Abd El-Motaleb, M., & Bayoumy, M. (2003). Scour reduction around bridge piers using internal openings through the pier. Alexandria Engineering Journal, 42(2), 241-248.. 2.Baker, C. J. (1979). The laminar horseshoe vortex. Journal of Fluid Mechanics, 95(02), 347-367. 3.Baker, C.J. (1980). The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics, 6, 9-23. 4.Berkooz, G., Holmes, P., & Lumley, J. L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. Annual review of fluid mechanics, 25(1), 539-575. 5.Chen, Q., Yang, Z., & Wu, H. (2019). Evolution of turbulent horseshoe vortex system in front of a vertical circular cylinder in open channel. Water, 11(10), 2079. 6.Cuissa, J. C., & Steiner, O. (2022). Innovative and automated method for vortex identification-I. Description of the SWIRL algorithm. Astronomy & Astrophysics, 668, A118. 7.Chiew, Y. M. (1992). Scour protection at bridge piers. Journal of Hydraulic Engineering, 118(9), 1260-1269. 8.Dey, S., Sarkar, S., & Solari, L. (2011). Near-bed turbulence characteristics at the entrainment threshold of sediment beds. Journal of Hydraulic Engineering, 137(9), 945-958. 9.Devenport, W. J., & Simpson, R. L. (1990). Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics, 210, 23-55. 10.Ettema, R., Melville, B. W., & Constantinescu, G. (2011). Evaluation of bridge scour research: Pier scour processes and predictions. Washington, DC, USA: Transportation Research Board of the National Academies. 11.Garg, V., Setia, B., & Verma, D. V. S. (2005). Reduction of scour around a bridge pier by multiple collar plates. ISH Journal of Hydraulic Engineering, 11(3), 66-80. 12.Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637-654. 13.Guan, D., Chiew, Y. M., Wei, M., & Hsieh, S. C. (2019). Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. International journal of sediment research, 34(2), 118-124. 14.Gupta, A. K. (1987). Hydrodynamic modification of the horseshoe vortex at a vertical pier junction with ground. Physics of fluids, 30(4), 1213-1215. 15.Huang, R. F., Hsu, C. M., & Lin, W. C. (2014). Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate. Experimental Thermal and Fluid Science, 55, 187-199. 16.Izadinia, E., Heidarpour, M., & Schleiss, A. J. (2013). Investigation of turbulence flow and sediment entrainment around a bridge pier. Stochastic Environmental Research and Risk Assessment, 27, 1303-1314. 17.Jenssen, U. P. (2019). Experimental study of the flow field around a scouring bridge pier. Technische Universität München Institutional Repository. 18.Jenssen, U., & Manhart, M. (2020). Flow around a scoured bridge pier: a stereoscopic PIV analysis. Experiments in Fluids, 61, 1-18.. 19.Lang, A. W. (2020). The speedy secret of shark skin. Physics Today, 73(4), 58-59. 20.Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation, 166-178. 21.Misuriya, G., Eldho, T. I., & Mazumder, B. S. (2023a). Turbulent Flow Field around a Cylindrical Pier on a Gravel Bed. Journal of Hydraulic Engineering, 149(10), 04023040. 22.Misuriya, G., & Eldho, T. I. (2023b). Turbulent structures and local scour around a cylindrical pier under unsteady flows. Environmental Fluid Mechanics, 23, 1359-1380. 23.Paik, J., Escauriaza, C., & Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids, 19(4). 24.Ranjbar-Zahedani, M., Keshavarzi, A., Khabbaz, H., & Ball, J. (2019, April). Flow structures around a circular bridge pier with a submerged prism at upstream. In World Congress on Civil, Structural, and Environmental Engineering, Rome. 25.Ranjbar-Zahedani, M. (2019). Introducing, Examining and Optimising Flow Diversion Structure as an Innovative Countermeasure against Local Scour around Bridge Piers. 26.Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics, 656, 5-28. 27.Shrestha, C. K. (2015). Bridge pier flow interaction and its effect on the process of scouring. 28.Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 45(3), 561-571. 29.Tafarojnoruz, A., Gaudio, R., & Dey, S. (2010). Flow-altering countermeasures against scour at bridge piers: a review. Journal of hydraulic research, 48(4), 441-452. 30.Vittal, N., Kothyari, U. C., & Haghighat, M. (1994). Clear-water scour around bridge pier group. Journal of Hydraulic Engineering, 120(11), 1309-1318. 31.Weiss, J. (2019). A tutorial on the proper orthogonal decomposition. In AIAA aviation 2019 forum.
|