行政院環境保護署環境檢驗所。2018。土壤中重金屬檢測方法-微波輔助王水
消化法(NIEA S301.61B)。
吳俊德。1996。酚類化合物之生物分解。碩士論文,國立中興大學,台中,台灣。
李仁傑、王培成、李茂榮。2011。新前處理技術-QuEChERS之簡介。科儀新
知33: 67-74。
陳世輝,1985。蘆筍田土壤之植物毒物質之萃取與鑑定。碩士論文,國立中興大學,台中,台灣。
陳玉雯。2001。芹菜連作障礙之研究。碩士論文,國立中興大學,台中,台灣。
陳良宇、鄭建瑋、王志玄、林志璋、張云力、李瑞玲、游欣、梁致遠。2012。
鹼催化對Folin-Ciocalteu試劑檢測總多酚含量的影響。銘傳大學生技學報4:10-19。
陳涵葳、杜元凱、陳敬文、曾清山。2016。EcoPlateTM 在土壤微生物群落組成分析之應用。農業試驗所技術服務季刊。107: 13–16.
費雯綺、王喻其編。2007。植物保護手冊─蔬菜篇,第63頁,台中,台灣。
劉曜德。2015。發展改善芹菜連作障礙之策略。臺灣大學植物醫學碩士學位學程學位論文,國立台灣大學,台北,台灣。
Acosta-Martínez, V., Burow, G., Zobeck, T.M., Allen, V.G., 2010. Soil microbial communities and function in alternative systems to continuous cotton. Soil Sci. Soc. Am. J. 74, 1181–1192.
Akhter, A., Hage-Ahmed, K., Soja, G., Steinkellner, S., 2016. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil 406, 425–440.
Alsaadawi, I.S., Rice, E.L., Karns, T.K.B., 1983. Allelopathic effects of Polygonum aviculare L. III. Isolation, characterization, and biological activities of phytotoxins other than phenols. J. Chem. Ecol. 9, 761–774.
Altman, A., Levin, N., 1993. Interactions of polyamines and nitrogen nutrition in plants. Physiol. Plant. 89, 653–658.
Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenck, F.J., 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86, 412–431.
Asaduzzaman, M., Asao, T., 2012. Autotoxicity in beans and their allelochemicals. Sci. Hortic. (Amsterdam). 134, 26–31.
Asao, T., Kitazawa, H., Ban, T., MHR, P., Matsui, Y., Hosoki, T., 2004. Search of autotoxic substances in some leaf vegetables. J. Japanese Soc. Hortic. Sci. 73, 247–249.
Atucha, A., Litus, G., 2015. Effect of biochar amendments on peach replant disease. HortScience 50, 863–868.
Badu, E., Kaba, J., Abunyewa, A., Dawoe, E., Agbenyega, O., Barnes, R., 2019. Biochar and inorganic nitrogen fertilizer effects on maize ( Zea mays L.) nitrogen use and yield in moist semi-deciduous forest zone of Ghana. J. Plant Nutr. 1–16. https://doi.org/10.1080/01904167.2019.1659347
Bai, Y., Wang, G., Cheng, Y., Shi, P., Yang, C., Yang, H., Xu, Z., 2019. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Sci. Rep. 9, 12499.
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266.
Bao, L., Liu, Y., Ding, Y., Shang, J., Wei, Y., Tan, Y., Zi, F., 2022. Interactions between phenolic acids and microorganisms in rhizospheric soil from continuous cropping of Panax notoginseng. Front. Microbiol. 13, 791603.
Bates, R.G., 1973. Determination of pH: Theory and practice, A Wiley Interscience. John Wiley & Sons.
Batish, D.R., Lavanya, K., Pal Singh, H., Kohli, R.K., 2007. Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). J. Agron. Crop Sci. 193, 37–44. https://doi.org/10.1111/j.1439-037x.2006.00243.x
Batish, D.R., Singh, H.P., Kaur, S., Kohli, R.K., Yadav, S.S., 2008. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 165, 297–305.
Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486.
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., Rillig, M.C., Stock, W.D., Tibbett, M., Zobel, M., 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478.
Blum, U., 2019. Plant-Plant Allelopathic Interactions III. Springer.
Blum, U., 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24, 685–708.
Blum, U., 1996. Allelopathic interactions involving phenolic acids. J. Nematol. 28, 259–267.
Blum, U., Dalton, B.R., Shann, J.R., 1985. Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J. Chem. Ecol. 11, 619–641.
Blum, U., Shafer, S.R., 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20, 793–800. https://doi.org/10.1016/0038-0717(88)90084-3
Blum, U., Wentworth, T.R., Klein, K., Worsham, A.D., King, L.D., Gerig, T.M., Lyu, S.W., 1991. Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol. 17, 1045–1068. https://doi.org/10.1007/BF01402933
Blum, U.D.O., Weed, S.B., Dalton, B.R., 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98, 111–130.
Börne, H., 2014. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26, 393–424.
Börner, H., 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26, 393–424.
Bustin, R.M., Guo, Y., 1999. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int. J. Coal Geol. 38, 237–260. https://doi.org/10.1016/S0166-5162(98)00025-1
Cai, Y.F., Barber, P., Dell, B., O’brien, P., Williams, N., Bowen, B., Hardy, G., 2010. Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. For. Ecol. Manage. 260, 1047–1057.
Campos‐Soriano, L., Bundó, M., Bach‐Pages, M., Chiang, S., Chiou, T., San Segundo, B., 2020. Phosphate excess increases susceptibility to pathogen infection in rice. Mol. Plant Pathol. 21, 555–570.
Cao, P.R., Liu, C.Y., Li, D., 2011. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath. J. 28.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., Almeida, V.C., 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174, 117–125.
Cecchi, A.M., Koskinen, W.C., 2004. Sorption–desorption of phenolic acids as affected by soil properties. Biol Fertil Soils 39, 235–242. https://doi.org/10.1007/s00374-003-0710-6
Cely, P., Tarquis, A.M., Paz-Ferreiro, J., Méndez, A., Gascó, G., 2014. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 5, 585–594. https://doi.org/10.5194/se-5-585-2014
Cesarano, G., Zotti, M., Antignani, V., Marra, R., Scala, F., Bonanomi, G., 2017. Soil sickness and negative plant-soil feedback: A reappraisal of hypotheses. J. plant Pathol. 99, 545–570.
Chapelle, E., Mendes, R., Bakker, P.A.H.M., Raaijmakers, J.M., 2016. Fungal invasion of the rhizosphere microbiome. ISME J. 10, 265–268.
Chen, H., Yao, J., Wang, F., Choi, M.M.F., Bramanti, E., Zaray, G., 2009. Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J. Hazard. Mater. 167, 846–851.
Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M., Zhang, F., Shen, Q., 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89, 1653–1663.
Chen, M., Li, X., Yang, Q., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M., Yu, S., 2012. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected. PLoS One 7, e40659. https://doi.org/10.1371/journal.pone.0040659
Chen, S., Yu, H., Zhou, X., Wu, F., 2018. Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid. Front. Microbiol. 9, 2195.
Chen, S., Zhou, B., Lin, S., Li, X., Ye, X., 2011. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. African J. Biotechnol. 10, 2659–2665.
Chen, Y., Yang, L., Zhang, L., Li, J., Zheng, Y., Yang, W., Deng, L., Gao, Q., Mi, Q., Li, X., Zeng, W., Ding, X., Xiang, H., 2023. Autotoxins in continuous tobacco cropping soils and their management. Front. Plant Sci. 14, 1106033. https://doi.org/10.3389/fpls.2023.1106033
Chi, W.-C., Chen, Y.-A., Hsiung, Y.-C., Fu, S.-F., Chou, C.-H., Trinh, N.N., Chen, Y.-C., Huang, H.-J., 2013. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid. BMC Genomics 14, 351. https://doi.org/10.1186/1471-2164-14-351
Chou, C.-H., 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. CRC. Crit. Rev. Plant Sci. 18, 609–636.
Chou, C.-H., Lee, Y.-F., 1991. Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J. Chem. Ecol. 17, 2267–2281.
Chou, C.-H., Lin, H.-J., 1976. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2, 353–367.
Chou, C.-H., Patrick, Z.A., 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2, 369–387. https://doi.org/10.1007/BF00988283
Chuang, Y.-H., Liu, C.-H., Sallach, J.B., Hammerschmidt, R., Zhang, W., Boyd, S.A., Li, H., 2019. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environ. Int. 131, 104976.
Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S., 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 32, 331–339.
Clough, T.J., Condron, L.M., Kammann, C., Müller, C., 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3, 275–293.
Daasch, L.W., Smith, D.C., 1951. Infrared spectra of phosphorus compounds. Anal. Chem. 23, 853–868. https://doi.org/10.1021/ac60054a008
Daffalla, S.B., Mukhtar, H., Shaharun, M.S., 2010. Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption.
Datnoff, L.E., Elmer, W.H., Huber, D.M., 2007. Mineral nutrition and plant disease. American Phytopathological Society (APS Press).
Dean, R., VanKan, J.A.L., Pretorius, Z.A., Hammond‐Kosack, K.E., DiPietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430.
Deng, G.Z., Wang, X.Y., Shi, X.Y., Hong, Q.Q., 2013. Adsorption characteristics of phenol in aqueous solution by Pinus massoniana biochar. Appl. Mech. Mater. 295, 1154–1160.
Derry, A.M., Staddon, W.J., Kevan, P.G., Trevors, J.T., 1999. Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers. Conserv. 8, 205–221.
Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.de, Melo, L.C.A., Magriotis, Z.M., Sanchez-Monedero, M.A., 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12, e0176884.
Dong, L., Xu, J., Feng, G., Li, X., Chen, S., 2016. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6, 31802.
Edel-Hermann, V., Lecomte, C., 2019. Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109, 512–530.
Erida, G., Saidi, N., Hasanuddin, H., Syafruddin, S., 2021. Herbicidal effects of ethyl acetate extracts of billygoat weed (Ageratum conyzoides L.) on spiny amaranth (Amaranthus spinosus L.) growth. Agronomy 11, 1991.
Essandoh, M., Kunwar, B., Pittman Jr, C.U., Mohan, D., Mlsna, T., 2015. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227.
Fan, Y., Wang, B., Yuan, S., Wu, X., Chen, J., Wang, L., 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour. Technol. 101, 7661–7664.
Flynn, T.M., Koval, J.C., Greenwald, S.M., Owens, S.M., Kemner, K.M., Antonopoulos, D.A., 2017. Parallelized, aerobic, single carbon-source enrichments from different natural environments contain divergent microbial communities. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.02321
Fuller, M.E., Scow, K.M., Lau, S., Ferris, H., 1997. Trichloroethylene (TCE) and toluene effects on the structure and function of the soil community. Soil Biol. Biochem. 29, 75–89.
Galhetas, M., Mestre, A.S., Pinto, M.L., Gulyurtlu, I., Lopes, H., Carvalho, A.P., 2014. Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid Interface Sci. 433, 94–103.
Gao, Y., Liu, B., Wang, J., He, F., Liang, W., Xu, D., Zhang, L., Wu, Z., 2011. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa. J. Lake Sci. 23, 761–766.
Garland, J.L., Mills, A.L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351–2359.
Gomez, E., Ferreras, L., Toresani, S., 2006. Soil bacterial functional diversity as influenced by organic amendment application. Bioresour. Technol. 97, 1484–1489. https://doi.org/10.1016/j.biortech.2005.06.021
Gomez, E., Garland, J., Conti, M., 2004. Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl. Soil Ecol. 26, 21–30.
Gryta, A., Frąc, M., Oszust, K., 2014. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol. 174, 1434–1443.
Guo, J., Xu, W.S., Chen, Y.L., Lua, A.C., 2005. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid Interface Sci. 281, 285–290. https://doi.org/https://doi.org/10.1016/j.jcis.2004.08.101
Haig, T., 2001. Application of hyphenated chromatography–mass spectrometry techniques to plant allelopathy research. J. Chem. Ecol. 27, 2363–2396.
Halhouli, K.A., Darwish, N.A., Al-Dhoon, N.M., 1995. Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal. Sep. Sci. Technol. 30, 3313–3324.
Hall, K.E., Calderon, M.J., Spokas, K.A., Cox, L., Koskinen, W.C., Novak, J., Cantrell, K., 2014. Phenolic acid sorption to biochars from mixtures of feedstock materials. Water, Air, Soil Pollut. 225, 1–9.
Han, L., Gao, X., Xia, T., Zhang, X., Li, X., Gao, W., 2019. Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO‐1 signaling pathways against Dexamethasone. J. Food Biochem. 43, e12875.
Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M., Chang, J., 2013. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage. 118, 196–204. https://doi.org/10.1016/j.jenvman.2013.01.001
Hao, F., Zhao, X., Ouyang, W., Lin, C., Chen, S., Shan, Y., Lai, X., 2013. Molecular structure of corncob-derived Biochars and the mechanism of Atrazine sorption. Agron. J. 105, 773–782. https://doi.org/10.2134/agronj2012.0311
He, C.N., Gao, W.W., Yang, J.X., Bi, W., Zhang, X.S., Zhao, Y.J., 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318, 63–72.
Huang, L.-F., Song, L.-X., Xia, X.-J., Mao, W.-H., Shi, K., Zhou, Y.-H., Yu, J.-Q., 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242.
Huang, X.X., Bie, Z.L., Huang, Y., 2010. Identification of autotoxins in rhizosphere soils under the continuous cropping of cowpea. Allelopath. J 25, 383–392.
Huang, Y.Q., Han, X.R., Yang, J.F., Liang, C.H., Zhan, X.M., 2013. Autotoxicity of peanut and identification of phytotoxic substances in rhizosphere soil. Allelopath. J. 31, 297.
Huber, D.M., Haneklaus, S., 2007. Managing nutrition to control plant disease. Landbauforsch. Volkenrode 57, 313.
Huguenin, J., Hamady, S.O.S., Bourson, P., 2015. Monitoring deprotonation of gallic acid by Raman spectroscopy. J. Raman Spectrosc. 46, 1062–1066. https://doi.org/10.1002/jrs.4752
Iannucci, A., Fragasso, M., Platani, C., Papa, R., 2013. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front. Plant Sci. 4, 509. https://doi.org/10.3389/fpls.2013.00509
Inderjit, 2005. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 227–236.
Inderjit, Streibig, J.C., Olofsdotter, M., 2002. Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol. Plant. 114, 422–428.
Iriarte-Velasco, U., Ayastuy, J.L., Zudaire, L., Sierra, I., 2014. An insight into the reactions occurring during the chemical activation of bone char. Chem. Eng. J. 251, 217–227.
Jagtoyen, M., Derbyshire, F., 1998. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon N. Y. 36, 1085–1097.
Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., Kapoor, R., 2021. Secreted in xylem genes: drivers of host adaptation in Fusarium oxysporum. Front. Plant Sci. 12, 628611. https://doi.org/10.3389/fpls.2021.628611
Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., Ma, S., 2013. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta 113, 481–489.
John, J., Sarada, S., 2012. Role of phenolics in allelopathic interactions. Allelopath. J. 29.
John, J., Shirmila, J., Sarada, S., Anu, S., 2010. Role of allelopathy in vegetables crops production. Allelopath. J. 25.
Jung, C., Boateng, L.K., Flora, J.R.V, Oh, J., Braswell, M.C., Son, A., Yoon, Y., 2015. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chem. Eng. J. 264, 1–9.
Jung, C., Park, J., Lim, K.H., Park, S., Heo, J., Her, N., Oh, J., Yun, S., Yoon, Y., 2013. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater. 263, 702–710.
Kamilova, F., Kravchenko, L.V, Shaposhnikov, A.I., Azarova, T., Makarova, N., Lugtenberg, B., 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19, 250–256.
Kato-Noguchi, H., Ino, T., Ota, K., 2008. Secretion of momilactone A from rice roots to the rhizosphere. J. Plant Physiol. 165, 691–696.
Kaur, H., Kaur, R., Kaur, S., Baldwin, I.T., 2009. Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4, e4700.
Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., Dong, R., 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 505, 102–112.
Kong, C.H., Hu, F., 2001. Allelopathy and its application.
Kong, C.H., Wang, P., Gu, Y., Xu, X.H., Wang, M.L., 2008. Fate and Impact on Microorganisms of Rice Allelochemicals in Paddy Soil. J. Agric. Food Chem. 56, 5043–5049. https://doi.org/10.1021/jf8004096
Kooti, W., Daraei, N., 2017. A review of the antioxidant activity of celery (Apium graveolens L.). J. Evid. Based. Complementary Altern. Med. 22, 1029–1034.
Kremer, R.J., Ben-Hammouda, M., 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L). Allelopath. J. 24.
Kuiters, A.T., 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl. 39, 329–348.
Laosinwattana, C., Yoneyama, K., Takeuchi, Y., Ogawsawara, M., Konnai, M., 1999. Purification of allelopathic compounds from manila grass (Zoysia matrella (L.) Merr.) palnts. 芝草研究 28, 27–36.
Lattanzio, V., n.d. Phenolic Compounds: Introduction. https://doi.org/10.1007/978-3-642-22144-6
LeThi, H., Lin, C.-H., Smeda, R.J., Leigh, N.D., Wycoff, W.G., Fritschi, F.B., 2014. Isolation and identification of an allelopathic phenylethylamine in rice. Phytochemistry 108, 109–121.
Lee, S.-M., Radhakrishnan, R., Kang, S.-M., Kim, J.-H., Lee, I.-Y., Moon, B.-K., Yoon, B.-W., Lee, I.-J., 2015. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol. Environ. Saf. 122, 230–237.
Lehmann, J., Joseph, S., 2009. Biochar for environmental management: An introduction. Biochar Environ. Manag. Sci. Technol. 1–12.
Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem. 43, 1812–1836.
Leng, L., Xiong, Q., Yang, L., Li, Hui, Zhou, Y., Zhang, W., Jiang, S., Li, Hailong, Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 763, 144204.
Li, H.Q., Zhang, L.L., Jiang, X.W., Liu, Q.Z., 2015. Allelopathic effects of phenolic acids on the growth and physiological characteristics of strawberry plants. Allelopath. J. 35, 61–76.
Li, J., Yu, G., Pan, L., Li, C., You, F., Xie, S., Wang, Y., Ma, J., Shang, X., 2018. ScienceDirect Study of ciprofloxacin removal by biochar obtained from used tea leaves 3, 20–30. https://doi.org/10.1016/j.jes.2017.12.024
Li, X., Ding, C., Hua, K., Zhang, T., Zhang, Y., Zhao, L., Yang, Y., Liu, J., Wang, X., 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol. Biochem. 78, 149–159.
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., Chen, H., 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels 28, 5119–5127.
Li, Z.-F., Yang, Y.-Q., Xie, D.-F., Zhu, L.-F., Zhang, Z.-G., Lin, W.-X., 2012. Identification of autotoxic compounds in fibrous roots of Rehmannia (Rehmannia glutinosa Libosch.). PLoS One 7, e28806.
Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., Jiang, D.-A., 2010. Phenolics and plant allelopathy. Molecules 15, 8933–8952.
Liebl, R.A., Worsham, A.D., 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 9, 1027–1043.
Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A., 2003. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon N. Y. 41, 267–275.
Lin, C.-C., Liu, Y.-T., Chang, P.-H., Hsieh, Y.-C., Tzou, Y.-M., 2023. Inhibition of continuous cropping obstacle of celery by chemically modified biochar: An efficient approach to decrease bioavailability of phenolic allelochemicals. J. Environ. Manage. 348, 119316.
Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87, 151–157.
Liu, J., Chang, Y., Sun, L., Du, F., Cui, J., Liu, X., Li, N., Wang, W., Li, J., Yao, D., 2021. Abundant allelochemicals and the inhibitory mechanism of the phenolic acids in water dropwort for the control of Microcystis aeruginosa blooms. Plants 10, 2653.
Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W., Yu, H.Q., 2012. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 121, 235–240. https://doi.org/10.1016/j.biortech.2012.06.085
Liu, Y.-T., Yang, I.-C., Lin, N.-C., 2020. Evaluation of biocontrol potential for Fusarium yellows of celery by antagonistic and gallic acid-degrading bacteria. Biol. Control 146, 104268.
Liu, Y., Lin, N., 2017. Allelopathic effects of celery on Fusarium oxysporum f. sp., apii. Taiwan. J. Agric. Chem. Food Sci. 55, 146–152.
Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R., Ruocco, M., Pascale, A., d’Errico, G., 2018. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant-Microbe Interact. 31, 982–994.
Ma, Zhimin, Guan, Z., Liu, Q., Hu, Y., Liu, L., Wang, B., Huang, L., Li, H., Yang, Y., Han, M., Gao, Z., Saleem, M., 2023. Chapter Four - Obstacles in continuous cropping: Mechanisms and control measures, in: Sparks, D.L.B.T.-A. in A. (Ed.),. Academic Press, pp. 205–256.
Ma, Zheng, Li, P., Yang, C., Feng, Z., Feng, H., Zhang, Y., Zhao, L., Zhou, J., Zhu, H., Wei, F., 2023. Soil bacterial community response to continuous cropping of cotton. Front. Microbiol. 14. https://doi.org/10.3389/fmicb.2023.1125564
Macías, F.A., Galindo, J.C.G., Molinillo, J.M.G., 2003. Allelopathy: chemistry and mode of action of allelochemicals. CRC Press.
Mallon, C.A., Elsas, J.D.van, Salles, J.F., 2015. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729.
Mandal, S.M., Chakraborty, D., Dey, S., Mandal, S.M., Chakraborty, D., Dey, S., 2017. Phenolic acids act as signaling molecules in plant- microbe symbioses Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2324, 359–368. https://doi.org/10.4161/psb.5.4.10871
Mao, H., Zhou, D., Hashisho, Z., Wang, S., Chen, H., Wang, H.H., 2015. Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions. BioResources 10, 809–821.
Mark, G.L., Dow, J.M., Kiely, P.D., Higgins, H., Haynes, J., Baysse, C., Abbas, A., Foley, T., Franks, A., Morrissey, J., 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc. Natl. Acad. Sci. 102, 17454–17459.
Mayakaduwa, S.S., Vithanage, M., Karunarathna, A., Mohan, D., Ok, Y.S., 2016. Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 28, 110–118. https://doi.org/10.1080/09542299.2016.1198928
Mazzola, M., 1999. Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots. Phytopathology 89, 920–927. https://doi.org/10.1094/PHYTO.1999.89.10.920
Mazzola, M., Manici, L., 2012. Apple replant disease: role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65.
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416.
Mendes, R., Kruijt, M., deBruijn, I., Dekkers, E., van derVoort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980
Meng, L., Xia, Z., Lv, J., Liu, G., Tan, Y., Li, Q., 2022. Extraction and GC-MS analysis of phenolic acids in rhizosphere soil of Pinellia ternate. J. Radiat. Res. Appl. Sci. 15, 40–45. https://doi.org/https://doi.org/10.1016/j.jrras.2022.05.015
Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B., 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science (80-. ). 250, 1004–1006.
Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., Nakanishi, T., 2005. Removal of Nitrate–Nitrogen from Drinking Water Using Bamboo Powder Charcoal. Bioresour. Technol. 95, 255–257. https://doi.org/10.1016/j.biortech.2004.02.015
Moreno-Castilla, C., Carrasco-Marı́n, F., López-Ramón, M.V., Alvarez-Merino, M.A., 2001. Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon N. Y. 39, 1415–1420.
Nayyar, A., Hamel, C., Lafond, G., Gossen, B.D., Hanson, K., Germida, J., 2009. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43, 115–121. https://doi.org/https://doi.org/10.1016/j.apsoil.2009.06.008
Nguyen, B.T., Lehmann, J., Hockaday, W.C., Joseph, S., Masiello, C.A., 2010. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331.
Ni, J., Pignatello, J.J., Xing, B., 2011. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol. 45, 9240–9248.
Ni, X., Jin, C., Liu, A., Chen, Y., Hu, Y., 2021. Physiological and transcriptomic analyses to reveal underlying phenolic acid action in consecutive monoculture problem of Polygonatum odoratum. BMC Plant Biol. 21, 362.
Nutter Forrest, J., Teng, P., Shokes, F.M., 1991. Disease assessment terms and concepts. Plant Dis. 75, 1187–1188.
Otani, S., Challinor, V.L., Kreuzenbeck, N.B., Kildgaard, S., Krath Christensen, S., Larsen, L.L.M., Aanen, D.K., Rasmussen, S.A., Beemelmanns, C., Poulsen, M., 2019. Disease-free monoculture farming by fungus-growing termites. Sci. Rep. 9, 8819. https://doi.org/10.1038/s41598-019-45364-z
Peng, P., Lang, Y.-H., Wang, X.-M., 2016. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol. Eng. 90, 225–233.
Peters, N., Verma, D., 1990. Phenolic compounds as regulators of gene expression in plant-microbe relations. Mol. Plant. Microbe. Interact. 3, 4–8.
Pietro, A.Di, Madrid, M.P., Caracuel, Z., Delgado-Jarana, J., Roncero, M.I., 2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol. 4, 315–325.
Power, J.F., Follett, R.F., 1987. Monoculture. Sci. Am. 256, 78–87.
Pradhan, B.K., Sandle, N.K., 1999. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon N. Y. 37, 1323–1332. https://doi.org/https://doi.org/10.1016/S0008-6223(98)00328-5
Prati, D., Bossdorf, O., 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91, 285–288.
Qian, L., Chen, B., 2014. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J. Agric. Food Chem. 62, 373–380.
Qu, X.H., Wang, J.G., 2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 39, 172–179.
Quayyum, H.A., Mallik, A.U., Orr, D.E., Lee, P.F., 1999. Allelopathic potential of aquatic plants associated with wild rice: II. Isolation and identification of allelochemicals. J. Chem. Ecol. 25, 221–228.
Rajapaksha, A.U., Chen, S.S., Tsang, D.C.W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148, 276–291. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.01.043
Rajkovich, S.R., Enders, A., Hanley, K.L., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284.
Rodríguez-Reinoso, F., Molina-Sabio, M., 1992. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon N. Y. 30, 1111–1118. https://doi.org/10.1016/0008-6223(92)90143-K
Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y., Baldwin, I.T., 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. U. S. A. 112, E5013-20. https://doi.org/10.1073/pnas.1505765112
Sasse, J., Martinoia, E., Northen, T., 2018. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41.
Satyanarayana, T., Deshmukh, S.K., Johri, B.N., 2017. Developments in fungal biology and applied mycology. Springer.
Schreiner, O., Reed, H.S., 1907. The production of deleterious excretions by roots. Bull. Torrey Bot. Club 34, 279–303.
Shin, W., 2017. Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis. Environ. earth Sci. 76, 1–9.
Shipton, P.J., 1977. Monoculture and soilborne plant pathogens. Annu. Rev. Phytopathol. 15, 387–407.
Siqueira, J.O., Hammerschmidt, R., Nair, M.G., 1991. Significance of phenolic compounds in plant-soil-microbial systems. CRC. Crit. Rev. Plant Sci. 10, 63–121. https://doi.org/10.1080/07352689109382307
Smith-Becker, J., Marois, E., Huguet, E.J., Midland, S.L., Sims, J.J., Keen, N.T., 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol. 116, 231–238.
Solum, M.S., Pugmire, R.J., Jagtoyen, M., Derbyshire, F., 1995. Evolution of carbon structure in chemically activated wood. Carbon N. Y. 33, 1247–1254. https://doi.org/10.1016/0008-6223(95)00067-N
Song, T.T., Lai, X., Wang, Z.W., Fang, M., Yang, D.L., Ju, X.H., Li, J., Zhang, G.L., 2018. Adsorption of ammonium nitrogen by biochars produced from different biomasses. J. Agro-Environment Sci. 37, 576–584.
Spann, T.M., Schumann, A.W., 2009. The role of plant nutrients in disease development with emphasis on citrus and huanglongbing, in: Proc. Fla. State Hort. Soc. pp. 169–171.
Sparling, G.P., Ord, B.G., Vaughan, D., 1981. Microbial biomass and activity in soils amended with glucose. Soil Biol. Biochem. 13, 99–104.
Stankevičius, M., Akuņeca, I., Jãkobsone, I., Maruška, A., 2010. Analysis of phenolic compounds and radical scavenging activities of spice plants extracts. Maisto Chem. ir Technol. 44, 85–91.
Stowe, L.G., Osborn, A., 1980. The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Can. J. Bot. 58, 1149–1153. https://doi.org/10.1139/b80-142
Tan, X., Liu, Shao-bo, Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., Liu, Shao-heng, Jiang, L., 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 227, 359–372. https://doi.org/10.1016/j.biortech.2016.12.083
Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, Shao-bo, Wang, X., Liu, Si-mian, Li, J., 2016. Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour. Technol. 212, 318–333.
Tan, Z., Qiu, J., Zeng, H., Liu, H., Xiang, J., 2011. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90, 1471–1475.
Tang, C.S., Young, C.C., 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol. 69, 155–160. https://doi.org/10.1104/pp.69.1.155
Tang, S., Zhang, Z., Liu, X., Gao, Z., 2023. Study on screening and degradation effect of autotoxin-degrading bacteria in muskmelon. Agronomy 13, 1334.
Tharayil, N., Bhowmik, P.C., Xing, B., 2006. Preferential sorption of phenolic phytotoxins to soil: Implications for altering the availability of allelochemicals. J. Agric. Food Chem. 54, 3033–3040. https://doi.org/10.1021/jf053167q
Tohma, H., Gülçin, İ., Bursal, E., Gören, A.C., Alwasel, S.H., Köksal, E., 2017. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 11, 556–566. https://doi.org/10.1007/s11694-016-9423-z
Toyomasu, T., Kagahara, T., Okada, K., Koga, J., Hasegawa, M., Mitsuhashi, W., Sassa, T., Yamane, H., 2008. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 72, 562–567.
Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. energy Rev. 55, 467–481.
van deVoorde, T.F.J., Ruijten, M., van derPutten, W.H., Bezemer, T.M., 2012. Can the negative plant–soil feedback of Jacobaea vulgaris be explained by autotoxicity? Basic Appl. Ecol. 13, 533–541.
vanElsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., Salles, J.F., 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. U. S. A. 109, 1159–1164.
Wang, T.S.C., Cheng, S.-Y., Tung, H., 1967. Extraction and analysis of soil organic acids. Soil Sci. 103, 360–366.
Wang, W., Bai, J., Lu, Q., Zhang, G., Wang, D., Jia, J., Guan, Y., Yu, L., 2021. Pyrolysis temperature and feedstock alter the functional groups and carbon sequestration potential of Phragmites australis‐ and Spartina alterniflora‐derived biochars. GCB Bioenergy 13. https://doi.org/10.1111/gcbb.12795
Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C., 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46, 450–456.
Watanabe, F.S., Olsen, S.R., 1965. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil1. Soil Sci. Soc. Am. J. 29, 677. https://doi.org/10.2136/sssaj1965.03615995002900060025x
Wehner, J., Antunes, P.M., Powell, J.R., Mazukatow, J., Rillig, M.C., 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia (Jena). 53, 197–201.
Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., Jousset, A., 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413.
Wu, H.-S., Raza, W., Fan, J.-Q., Sun, Y.-G., Bao, W., Liu, D.-Y., Huang, Q.-W., Mao, Z., Shen, Q.-R., Miao, W.-G., 2008. Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74, 45–50.
Xiao, C.-L., Zheng, J.-H., Zou, L.-Y., Sun, Y., Zhou, Y.-H., Yu, J.Q., 2006. Autotoxic effects of root exudates of soybean. Allelopath. J. 18, 121–127.
Xu, W., Ge, Z., Poudel, D.R., 2015. Application and optimization of biolog ecoplates in functional diversity studies of soil microbial communities, in: MATEC Web of Conferences. EDP Sciences, p. 4015.
Yakout, S.M., Daifullah, A.E.H.M., El-Reefy, S.A., 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environ. Eng. Manag. J. 14. https://doi.org/10.30638/eemj.2015.049
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.
Yao, J., Allen, C., 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188, 3697–3708.
Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471.
Yao, Y., Ren, G., 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci. Technol. 44, 181–185.
Yao, Y., Sang, W., Zhou, M., Ren, G., 2010. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 75, 9–13.
Yi, S., Gao, B., Sun, Y., Wu, J., Shi, X., Wu, B., Hu, X., 2016. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere 150, 694–701. https://doi.org/10.1016/j.chemosphere.2015.12.112
Ying, Y.X., Ding, W.L., Li, Y., 2012. Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng. Biochem. Genet. 50, 848–859. https://doi.org/10.1007/s10528-012-9525-1
Young, C.C., 1984. Autointoxication in root exudates of Asparagus officinalis L. Plant Soil 82, 247–253. https://doi.org/10.1007/BF02220251
Yu, J.Q., Lee, K.S., Matsui, Y., 1993. Effect of the addition of activated charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 39, 13–22. https://doi.org/10.1080/00380768.1993.10416970
Yu, J.Q., Matsui, Y., 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23, 817–827.
Yu, J.Q., Matsui, Y., 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20, 21–31.
Yu, J.Q., Matsui, Y., 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci. Plant Nutr. 39, 691–700. https://doi.org/10.1080/00380768.1993.10419186
Yu, J.Q., Ye, S.F., Zhang, M.F., Hu, W.H., 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139. https://doi.org/10.1016/S0305-1978(02)00150-3
Yuan, J.-H., Xu, R.-K., Zhang, H., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497.
Zeeshan Ul Haq, M., Yu, J., Yao, G., Yang, H., Iqbal, H.A., Tahir, H., Cui, H., Liu, Y., Wu, Y., 2023. A systematic review on the continuous cropping obstacles and control strategies in medicinal plants. Int. J. Mol. Sci. 24, 12470.
Zhang, Bao, Weston, P.A., Gu, L., Zhang, Bingyong, Li, M., Wang, F., Tu, W., Wang, J., Weston, L.A., Zhang, Z., 2019. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem. Plant Soil 441, 439–454.
Zhang, D., Pan, B., Zhang, H., Ning, P., Xing, B., 2010. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol. 44, 3806–3811.
Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., Chen, H., 2014. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chem. Eng. J. 257, 20–27. https://doi.org/10.1016/j.cej.2014.07.024
Zhang, X., Zhang, S., Yang, H., Shao, J., Chen, Y., Feng, Y., Wang, X., Chen, H., 2015. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy 91, 903–910.
Zhang, Z., Lin, W., 2009. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Zhongguo Shengtai Nongye Xuebao/Chinese J. Eco-Agriculture 17, 189–196.
Zhao, R.F., 2001. The mechanism of continuous cropping obstacle in ginseng and American ginseng. Sp Wild Econ Anim Plant Res 1, 40–45.
Zhou, X., Wu, F., 2012a. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 80, 469–478. https://doi.org/10.1111/j.1574-6941.2012.01312.x
Zhou, X., Wu, F., 2012b. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS One 7, e48288.
Zou, W., Bai, H., Gao, S., Li, K., 2013. Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean J. Chem. Eng. 30, 111–122. https://doi.org/10.1007/s11814-012-0096-y