跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳佳
研究生(外文):Chia-Chia Lin
論文名稱:利用化學改質生物炭改良芹菜連作障礙
論文名稱(外文):Inhibition of Continuous Cropping Obstacle of Celery by Chemically Modified Biochar
指導教授:鄒裕民
指導教授(外文):Yu-Min Tzou
口試委員:劉雨庭王尚禮簡士濠莊愷瑋賴鴻裕莊雅惠
口試日期:2024-01-25
學位類別:博士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:107
中文關鍵詞:酚酸連作障礙生物炭芹菜
外文關鍵詞:phenolic acidscontinuous cropping obstaclesbiocharcelery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
酚酸為常見之自毒/毒他物質,並被認為是多種作物連作障礙主要成因之一。酚酸可能影響植物的細胞分裂、水分及離子的吸收、抑制光合作用、干擾ATP的合成等,也可能刺激病原菌之生長或改變土壤微生物結構。前人研究發現,活性炭的施用可改善水耕及土壤中作物的自毒性,但一般活性炭價格高昂,並不適用於大面積之田間操作。相較於活性炭,生物炭可利用各類農業廢棄物製造,使廢棄物轉為可用資源回歸土壤並改善土壤,有助於土地的永續利用。而生物炭多孔之特性使其具有吸附有機物之能力,且可經由材料選擇、改變裂解條件、或利用不同改質方式提升其孔隙率及表面積,當施用於土壤中,應有助於解決連作障礙問題。本研究目的為:(1) 利用不同農業廢棄物及裂解條件製備與篩選對酚酸具高吸附性之生物炭;(2) 利用芹菜連作盆栽試驗評估所製備生物炭對連作障礙改良之效益;(3) 分析連作芹菜時,目標酚酸於土壤中之濃度變化;(4) 評估生物炭對土壤中微生物之影響。結果顯示,以木屑加磷酸 (1:1.5,w/w) 在400°C下裂解製備的生物炭 (WP400) 具最高之比表面積 (1273 m2 g-1),並且對測試酚酸 (包括苯甲酸衍伸物及肉桂酸衍伸物) 有最高之吸附。WP400之吸附能力可能與其有較高的比表面積和含氧官能基有關,其對酚酸之吸附隨pH上升而降低。WP400可降低土壤之水可萃取總酚濃度,可能為土壤尖孢鐮刀菌 (Fusarium oxysporum) 密度下降並改善連作病害之原因。在第一作以0.2%左右之用量施用WP400可增加第一作之芹菜乾重,並可減少連作時之罹病率及死亡率。但WP400可能影響植物對氮、磷、鈣及鎂之吸收,施用時須評估土壤元素之有效濃度及肥料之施用。利用LC-QTOF/MS對酚酸進行定量,結果顯示,p-coumaric acid是所定量的土壤酚酸中唯一有累積趨勢的酚酸,且WP400的施用增加了累積幅度,顯示了WP400對此酚酸具有的較高的親和力。利用Mass Profiler以及Metlin資料庫搜尋芹菜連作下其他可疑毒他物發現,連作下有明顯累積趨勢的疑似物多為脂肪酸相關之化合物,而脂肪酸為前人研究植物毒他物中的一個類群。土壤中的微生物亦可能受毒他物影響而轉為不利作物生長之族群結構。本研究發現,WP400除了可降低尖孢鐮刀菌在芹菜連作土中之族群密度,且其施用改變了微生物對碳源的利用模式 (對胺類的利用率降低),顯示此生物炭改變了土壤中一些碳源的可利用性,並影響了土壤微生物族群結構。
Phenolic acids are common autotoxins/allelochemicals and are considered a cause of obstacles in continuous cropping for various crops. Phenolic acids may affect plant cell division, water and ion absorption, inhibit photosynthesis, interfere with ATP synthesis, stimulate the growth of pathogens, or alter soil microbial structure. Previous studies have found that the application of activated carbon can improve the autotoxicity of crops in hydroponic and soil systems. However, activated carbon is generally expensive and not suitable for large-scale field operations. In comparison to activated carbon, biochar can be produced from various agricultural waste materials, converting waste into a reusable resource for soil improvement, contributing to sustainable land use. The porous nature of biochar provides it with the ability to adsorb organic com-pounds, and its porosity and surface area can be enhanced through feedstock selection, modification methods, and changes in pyrolysis conditions. The objectives of this study are: (1) to prepare and select biochar with high adsorption capacity for phenolic acids using different agricultural waste materials and pyrolysis conditions; (2) to evaluate the benefits of the prepared biochar in alleviating continuous cropping obstacles through celery continuous cropping pot experiments; (3) to analyze the concentration changes of target phenolic acids in the soil; (4) to assess the impact of biochar on microorganisms. The results showed that biochar prepared by pyrolyzing wood soaked with phosphoric acid (1:1.5, w/w) at 400°C (WP400) had the highest specific surface area (1273 m2 g-1) and exhibited the highest adsorption for tested phenolic acids, including derivatives of benzoic acid and cinnamic acid). The adsorption capacity of WP400 may be attributed to its higher specific surface area and oxygen-containing functional groups. The adsorption of phenolic acids by WP400 decreased as pH in-creases. WP400 could reduce the water-extractable total phenol concentration in the soil, this could be the reason for the decrease in the density of Fusarium oxysporum in the soil and the improvement of issues related to continuous cropping. At an application rate of around 0.2% in the first crop, it increased celery dry weight and reduced disease incidence and mortality in continuous cropping of celery. However, WP400 may affect the plant's uptake of nitrogen, phosphorus, calcium, and magnesium, and soil element concentrations need to be evaluated during the application. Quantitative analysis of phenolic acids using LC-QTOF/MS revealed that an accumulating trend solely for p-coumaric acid in the soil upon the application of WP400, highlighting the specific adsorption capability of WP400 for these phenolic acids. Using Mass Profiler and the Metlin database, other suspected allelopathic substances were identified, most of which were fatty acid-related compounds, suggesting a potential role of fatty acids as allelopathic compounds. Microorganisms in the soil may be influenced by allelopathic substances and shift towards a community structure detrimental to crop growth. This study found that WP400 can reduce the population density of Fusarium oxysporum in continuous cropping soil and alter microbial utilization patterns of car-bon sources (reducing the utilization rates of amines), indicating that this biochar changed the availability of some carbon sources in the soil and affect the soil microbial community structure.
摘要 ⅰ
ABSTRACT ⅲ
目錄 ⅴ
表目錄 ⅸ
圖目錄 ⅹ

第一章 前言與文獻回顧 1
1.1研究背景與動機 1
1.2 連作障礙與其成因 3
1.3 自毒/毒他作用 4
1.4 微生物與連作障礙 5
1.5 生物炭 6
1.5.1 生物炭之原料 7
1.5.2 生物炭之裂解溫度 7
1.5.3 生物炭改質方式 8
1.6 酚酸與連作障礙 10
1.7研究目標 13
第二章 生物炭的製備與篩選 14
摘要 14
2.1 前言 15
2.2 材料與方法 16
2.2.1生物炭之製備 16
2.2.2 原料與生物炭特性檢定 17
2.2.3 酚酸吸附試驗 19
2.3 結果與討論 21
2.3.1 未改質生物炭之基本特性 21
2.3.2 改質生物炭之基本特性 27
2.3.3 生物炭吸附酚酸之能力 32
2.3.4 WP400對酚酸之等溫與動力吸附 33
2.3.5 WP400對酚酸之可能吸附機制 37
2.4 結論 39
第三章 盆栽試驗 40
摘要 40
3.1 前言 41
3.2 材料與方法 42
3.2.1 試驗作物 42
3.2.2 WP400之製備 42
3.2.3 生物炭特性檢定 42
3.2.4 盆栽試驗 43
3.2.5 土壤分析 44
3.2.6 植體分析 46
3.2.7 芹菜病原真菌鑑定 46
3.2.8 黃萎病罹病度計算 46
3.2.9 統計分析 47
3.3 結果與討論 47
3.3.1 第一次盆栽試驗 47
3.3.2 第二次盆栽試驗 56
3.4. 結論 61
第四章 酚酸之定量以及可疑毒他物之搜尋 62
摘要 62
4.1 前言 63
4.2 材料與方法 63
4.2.1 WP400與土壤對混合酚酸的吸附 63
4.2.2 土壤 (吸附態) 酚酸之萃取 (QuEChERS) 64
4.2.3 酚酸濃度分析 64
4.2.4 芹菜可疑毒他物之搜尋 (未知物分析) 66
4.2.5 統計分析 68
4.3 結果與討論 68
4.3.1 WP400與土壤對混合酚酸之吸附 68
4.3.2 土壤酚酸萃取與定量 69
4.3.3 可能之毒他物搜尋 71
4.4 結論 73
第五章 土壤微生物之變化 74
摘要 74
5.1 前言 75
5.2 材料與方法 76
5.2.1 土壤真菌鑑定 76
5.2.2 Ecoplates群落分析 76
5.2.3 統計分析 77
5.3 結果與討論 79
5.3.1 生物炭 (WP400) 對Fo及其他土壤真菌之影響 79
5.3.2 土壤微生物Ecoplates群落分析 80
5.4 結論 86
第六章 總結 87
第七章 參考文獻 90
行政院環境保護署環境檢驗所。2018。土壤中重金屬檢測方法-微波輔助王水
消化法(NIEA S301.61B)。
吳俊德。1996。酚類化合物之生物分解。碩士論文,國立中興大學,台中,台
灣。
李仁傑、王培成、李茂榮。2011。新前處理技術-QuEChERS之簡介。科儀新
知33: 67-74。
陳世輝,1985。蘆筍田土壤之植物毒物質之萃取與鑑定。碩士論文,國立中興
大學,台中,台灣。
陳玉雯。2001。芹菜連作障礙之研究。碩士論文,國立中興大學,台中,台
灣。
陳良宇、鄭建瑋、王志玄、林志璋、張云力、李瑞玲、游欣、梁致遠。2012。
鹼催化對Folin-Ciocalteu試劑檢測總多酚含量的影響。銘傳大學生技學報4:10-19。
陳涵葳、杜元凱、陳敬文、曾清山。2016。EcoPlateTM 在土壤微生物群落組成分析之應用。農業試驗所技術服務季刊。107: 13–16.
費雯綺、王喻其編。2007。植物保護手冊─蔬菜篇,第63頁,台中,台灣。
劉曜德。2015。發展改善芹菜連作障礙之策略。臺灣大學植物醫學碩士學位學
程學位論文,國立台灣大學,台北,台灣。
Acosta-Martínez, V., Burow, G., Zobeck, T.M., Allen, V.G., 2010. Soil microbial communities and function in alternative systems to continuous cotton. Soil Sci. Soc. Am. J. 74, 1181–1192.
Akhter, A., Hage-Ahmed, K., Soja, G., Steinkellner, S., 2016. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil 406, 425–440.
Alsaadawi, I.S., Rice, E.L., Karns, T.K.B., 1983. Allelopathic effects of Polygonum aviculare L. III. Isolation, characterization, and biological activities of phytotoxins other than phenols. J. Chem. Ecol. 9, 761–774.
Altman, A., Levin, N., 1993. Interactions of polyamines and nitrogen nutrition in plants. Physiol. Plant. 89, 653–658.
Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenck, F.J., 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86, 412–431.
Asaduzzaman, M., Asao, T., 2012. Autotoxicity in beans and their allelochemicals. Sci. Hortic. (Amsterdam). 134, 26–31.
Asao, T., Kitazawa, H., Ban, T., MHR, P., Matsui, Y., Hosoki, T., 2004. Search of autotoxic substances in some leaf vegetables. J. Japanese Soc. Hortic. Sci. 73, 247–249.
Atucha, A., Litus, G., 2015. Effect of biochar amendments on peach replant disease. HortScience 50, 863–868.
Badu, E., Kaba, J., Abunyewa, A., Dawoe, E., Agbenyega, O., Barnes, R., 2019. Biochar and inorganic nitrogen fertilizer effects on maize ( Zea mays L.) nitrogen use and yield in moist semi-deciduous forest zone of Ghana. J. Plant Nutr. 1–16. https://doi.org/10.1080/01904167.2019.1659347
Bai, Y., Wang, G., Cheng, Y., Shi, P., Yang, C., Yang, H., Xu, Z., 2019. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Sci. Rep. 9, 12499.
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266.
Bao, L., Liu, Y., Ding, Y., Shang, J., Wei, Y., Tan, Y., Zi, F., 2022. Interactions between phenolic acids and microorganisms in rhizospheric soil from continuous cropping of Panax notoginseng. Front. Microbiol. 13, 791603.
Bates, R.G., 1973. Determination of pH: Theory and practice, A Wiley Interscience. John Wiley & Sons.
Batish, D.R., Lavanya, K., Pal Singh, H., Kohli, R.K., 2007. Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). J. Agron. Crop Sci. 193, 37–44. https://doi.org/10.1111/j.1439-037x.2006.00243.x
Batish, D.R., Singh, H.P., Kaur, S., Kohli, R.K., Yadav, S.S., 2008. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 165, 297–305.
Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486.
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., Rillig, M.C., Stock, W.D., Tibbett, M., Zobel, M., 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478.
Blum, U., 2019. Plant-Plant Allelopathic Interactions III. Springer.
Blum, U., 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24, 685–708.
Blum, U., 1996. Allelopathic interactions involving phenolic acids. J. Nematol. 28, 259–267.
Blum, U., Dalton, B.R., Shann, J.R., 1985. Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J. Chem. Ecol. 11, 619–641.
Blum, U., Shafer, S.R., 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20, 793–800. https://doi.org/10.1016/0038-0717(88)90084-3
Blum, U., Wentworth, T.R., Klein, K., Worsham, A.D., King, L.D., Gerig, T.M., Lyu, S.W., 1991. Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol. 17, 1045–1068. https://doi.org/10.1007/BF01402933
Blum, U.D.O., Weed, S.B., Dalton, B.R., 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98, 111–130.
Börne, H., 2014. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26, 393–424.
Börner, H., 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26, 393–424.
Bustin, R.M., Guo, Y., 1999. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int. J. Coal Geol. 38, 237–260. https://doi.org/10.1016/S0166-5162(98)00025-1
Cai, Y.F., Barber, P., Dell, B., O’brien, P., Williams, N., Bowen, B., Hardy, G., 2010. Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. For. Ecol. Manage. 260, 1047–1057.
Campos‐Soriano, L., Bundó, M., Bach‐Pages, M., Chiang, S., Chiou, T., San Segundo, B., 2020. Phosphate excess increases susceptibility to pathogen infection in rice. Mol. Plant Pathol. 21, 555–570.
Cao, P.R., Liu, C.Y., Li, D., 2011. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath. J. 28.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., Almeida, V.C., 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174, 117–125.
Cecchi, A.M., Koskinen, W.C., 2004. Sorption–desorption of phenolic acids as affected by soil properties. Biol Fertil Soils 39, 235–242. https://doi.org/10.1007/s00374-003-0710-6
Cely, P., Tarquis, A.M., Paz-Ferreiro, J., Méndez, A., Gascó, G., 2014. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 5, 585–594. https://doi.org/10.5194/se-5-585-2014
Cesarano, G., Zotti, M., Antignani, V., Marra, R., Scala, F., Bonanomi, G., 2017. Soil sickness and negative plant-soil feedback: A reappraisal of hypotheses. J. plant Pathol. 99, 545–570.
Chapelle, E., Mendes, R., Bakker, P.A.H.M., Raaijmakers, J.M., 2016. Fungal invasion of the rhizosphere microbiome. ISME J. 10, 265–268.
Chen, H., Yao, J., Wang, F., Choi, M.M.F., Bramanti, E., Zaray, G., 2009. Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J. Hazard. Mater. 167, 846–851.
Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M., Zhang, F., Shen, Q., 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89, 1653–1663.
Chen, M., Li, X., Yang, Q., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M., Yu, S., 2012. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected. PLoS One 7, e40659. https://doi.org/10.1371/journal.pone.0040659
Chen, S., Yu, H., Zhou, X., Wu, F., 2018. Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid. Front. Microbiol. 9, 2195.
Chen, S., Zhou, B., Lin, S., Li, X., Ye, X., 2011. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. African J. Biotechnol. 10, 2659–2665.
Chen, Y., Yang, L., Zhang, L., Li, J., Zheng, Y., Yang, W., Deng, L., Gao, Q., Mi, Q., Li, X., Zeng, W., Ding, X., Xiang, H., 2023. Autotoxins in continuous tobacco cropping soils and their management. Front. Plant Sci. 14, 1106033. https://doi.org/10.3389/fpls.2023.1106033
Chi, W.-C., Chen, Y.-A., Hsiung, Y.-C., Fu, S.-F., Chou, C.-H., Trinh, N.N., Chen, Y.-C., Huang, H.-J., 2013. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid. BMC Genomics 14, 351. https://doi.org/10.1186/1471-2164-14-351
Chou, C.-H., 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. CRC. Crit. Rev. Plant Sci. 18, 609–636.
Chou, C.-H., Lee, Y.-F., 1991. Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J. Chem. Ecol. 17, 2267–2281.
Chou, C.-H., Lin, H.-J., 1976. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2, 353–367.
Chou, C.-H., Patrick, Z.A., 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2, 369–387. https://doi.org/10.1007/BF00988283
Chuang, Y.-H., Liu, C.-H., Sallach, J.B., Hammerschmidt, R., Zhang, W., Boyd, S.A., Li, H., 2019. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environ. Int. 131, 104976.
Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S., 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 32, 331–339.
Clough, T.J., Condron, L.M., Kammann, C., Müller, C., 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3, 275–293.
Daasch, L.W., Smith, D.C., 1951. Infrared spectra of phosphorus compounds. Anal. Chem. 23, 853–868. https://doi.org/10.1021/ac60054a008
Daffalla, S.B., Mukhtar, H., Shaharun, M.S., 2010. Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption.
Datnoff, L.E., Elmer, W.H., Huber, D.M., 2007. Mineral nutrition and plant disease. American Phytopathological Society (APS Press).
Dean, R., VanKan, J.A.L., Pretorius, Z.A., Hammond‐Kosack, K.E., DiPietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430.
Deng, G.Z., Wang, X.Y., Shi, X.Y., Hong, Q.Q., 2013. Adsorption characteristics of phenol in aqueous solution by Pinus massoniana biochar. Appl. Mech. Mater. 295, 1154–1160.
Derry, A.M., Staddon, W.J., Kevan, P.G., Trevors, J.T., 1999. Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers. Conserv. 8, 205–221.
Domingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.de, Melo, L.C.A., Magriotis, Z.M., Sanchez-Monedero, M.A., 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12, e0176884.
Dong, L., Xu, J., Feng, G., Li, X., Chen, S., 2016. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6, 31802.
Edel-Hermann, V., Lecomte, C., 2019. Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109, 512–530.
Erida, G., Saidi, N., Hasanuddin, H., Syafruddin, S., 2021. Herbicidal effects of ethyl acetate extracts of billygoat weed (Ageratum conyzoides L.) on spiny amaranth (Amaranthus spinosus L.) growth. Agronomy 11, 1991.
Essandoh, M., Kunwar, B., Pittman Jr, C.U., Mohan, D., Mlsna, T., 2015. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227.
Fan, Y., Wang, B., Yuan, S., Wu, X., Chen, J., Wang, L., 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour. Technol. 101, 7661–7664.
Flynn, T.M., Koval, J.C., Greenwald, S.M., Owens, S.M., Kemner, K.M., Antonopoulos, D.A., 2017. Parallelized, aerobic, single carbon-source enrichments from different natural environments contain divergent microbial communities. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.02321
Fuller, M.E., Scow, K.M., Lau, S., Ferris, H., 1997. Trichloroethylene (TCE) and toluene effects on the structure and function of the soil community. Soil Biol. Biochem. 29, 75–89.
Galhetas, M., Mestre, A.S., Pinto, M.L., Gulyurtlu, I., Lopes, H., Carvalho, A.P., 2014. Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid Interface Sci. 433, 94–103.
Gao, Y., Liu, B., Wang, J., He, F., Liang, W., Xu, D., Zhang, L., Wu, Z., 2011. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa. J. Lake Sci. 23, 761–766.
Garland, J.L., Mills, A.L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351–2359.
Gomez, E., Ferreras, L., Toresani, S., 2006. Soil bacterial functional diversity as influenced by organic amendment application. Bioresour. Technol. 97, 1484–1489. https://doi.org/10.1016/j.biortech.2005.06.021
Gomez, E., Garland, J., Conti, M., 2004. Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl. Soil Ecol. 26, 21–30.
Gryta, A., Frąc, M., Oszust, K., 2014. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol. 174, 1434–1443.
Guo, J., Xu, W.S., Chen, Y.L., Lua, A.C., 2005. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid Interface Sci. 281, 285–290. https://doi.org/https://doi.org/10.1016/j.jcis.2004.08.101
Haig, T., 2001. Application of hyphenated chromatography–mass spectrometry techniques to plant allelopathy research. J. Chem. Ecol. 27, 2363–2396.
Halhouli, K.A., Darwish, N.A., Al-Dhoon, N.M., 1995. Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal. Sep. Sci. Technol. 30, 3313–3324.
Hall, K.E., Calderon, M.J., Spokas, K.A., Cox, L., Koskinen, W.C., Novak, J., Cantrell, K., 2014. Phenolic acid sorption to biochars from mixtures of feedstock materials. Water, Air, Soil Pollut. 225, 1–9.
Han, L., Gao, X., Xia, T., Zhang, X., Li, X., Gao, W., 2019. Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO‐1 signaling pathways against Dexamethasone. J. Food Biochem. 43, e12875.
Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M., Chang, J., 2013. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage. 118, 196–204. https://doi.org/10.1016/j.jenvman.2013.01.001
Hao, F., Zhao, X., Ouyang, W., Lin, C., Chen, S., Shan, Y., Lai, X., 2013. Molecular structure of corncob-derived Biochars and the mechanism of Atrazine sorption. Agron. J. 105, 773–782. https://doi.org/10.2134/agronj2012.0311
He, C.N., Gao, W.W., Yang, J.X., Bi, W., Zhang, X.S., Zhao, Y.J., 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318, 63–72.
Huang, L.-F., Song, L.-X., Xia, X.-J., Mao, W.-H., Shi, K., Zhou, Y.-H., Yu, J.-Q., 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242.
Huang, X.X., Bie, Z.L., Huang, Y., 2010. Identification of autotoxins in rhizosphere soils under the continuous cropping of cowpea. Allelopath. J 25, 383–392.
Huang, Y.Q., Han, X.R., Yang, J.F., Liang, C.H., Zhan, X.M., 2013. Autotoxicity of peanut and identification of phytotoxic substances in rhizosphere soil. Allelopath. J. 31, 297.
Huber, D.M., Haneklaus, S., 2007. Managing nutrition to control plant disease. Landbauforsch. Volkenrode 57, 313.
Huguenin, J., Hamady, S.O.S., Bourson, P., 2015. Monitoring deprotonation of gallic acid by Raman spectroscopy. J. Raman Spectrosc. 46, 1062–1066. https://doi.org/10.1002/jrs.4752
Iannucci, A., Fragasso, M., Platani, C., Papa, R., 2013. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front. Plant Sci. 4, 509. https://doi.org/10.3389/fpls.2013.00509
Inderjit, 2005. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 227–236.
Inderjit, Streibig, J.C., Olofsdotter, M., 2002. Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol. Plant. 114, 422–428.
Iriarte-Velasco, U., Ayastuy, J.L., Zudaire, L., Sierra, I., 2014. An insight into the reactions occurring during the chemical activation of bone char. Chem. Eng. J. 251, 217–227.
Jagtoyen, M., Derbyshire, F., 1998. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon N. Y. 36, 1085–1097.
Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., Kapoor, R., 2021. Secreted in xylem genes: drivers of host adaptation in Fusarium oxysporum. Front. Plant Sci. 12, 628611. https://doi.org/10.3389/fpls.2021.628611
Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., Ma, S., 2013. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta 113, 481–489.
John, J., Sarada, S., 2012. Role of phenolics in allelopathic interactions. Allelopath. J. 29.
John, J., Shirmila, J., Sarada, S., Anu, S., 2010. Role of allelopathy in vegetables crops production. Allelopath. J. 25.
Jung, C., Boateng, L.K., Flora, J.R.V, Oh, J., Braswell, M.C., Son, A., Yoon, Y., 2015. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chem. Eng. J. 264, 1–9.
Jung, C., Park, J., Lim, K.H., Park, S., Heo, J., Her, N., Oh, J., Yun, S., Yoon, Y., 2013. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater. 263, 702–710.
Kamilova, F., Kravchenko, L.V, Shaposhnikov, A.I., Azarova, T., Makarova, N., Lugtenberg, B., 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19, 250–256.
Kato-Noguchi, H., Ino, T., Ota, K., 2008. Secretion of momilactone A from rice roots to the rhizosphere. J. Plant Physiol. 165, 691–696.
Kaur, H., Kaur, R., Kaur, S., Baldwin, I.T., 2009. Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4, e4700.
Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., Dong, R., 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 505, 102–112.
Kong, C.H., Hu, F., 2001. Allelopathy and its application.
Kong, C.H., Wang, P., Gu, Y., Xu, X.H., Wang, M.L., 2008. Fate and Impact on Microorganisms of Rice Allelochemicals in Paddy Soil. J. Agric. Food Chem. 56, 5043–5049. https://doi.org/10.1021/jf8004096
Kooti, W., Daraei, N., 2017. A review of the antioxidant activity of celery (Apium graveolens L.). J. Evid. Based. Complementary Altern. Med. 22, 1029–1034.
Kremer, R.J., Ben-Hammouda, M., 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L). Allelopath. J. 24.
Kuiters, A.T., 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl. 39, 329–348.
Laosinwattana, C., Yoneyama, K., Takeuchi, Y., Ogawsawara, M., Konnai, M., 1999. Purification of allelopathic compounds from manila grass (Zoysia matrella (L.) Merr.) palnts. 芝草研究 28, 27–36.
Lattanzio, V., n.d. Phenolic Compounds: Introduction. https://doi.org/10.1007/978-3-642-22144-6
LeThi, H., Lin, C.-H., Smeda, R.J., Leigh, N.D., Wycoff, W.G., Fritschi, F.B., 2014. Isolation and identification of an allelopathic phenylethylamine in rice. Phytochemistry 108, 109–121.
Lee, S.-M., Radhakrishnan, R., Kang, S.-M., Kim, J.-H., Lee, I.-Y., Moon, B.-K., Yoon, B.-W., Lee, I.-J., 2015. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol. Environ. Saf. 122, 230–237.
Lehmann, J., Joseph, S., 2009. Biochar for environmental management: An introduction. Biochar Environ. Manag. Sci. Technol. 1–12.
Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem. 43, 1812–1836.
Leng, L., Xiong, Q., Yang, L., Li, Hui, Zhou, Y., Zhang, W., Jiang, S., Li, Hailong, Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 763, 144204.
Li, H.Q., Zhang, L.L., Jiang, X.W., Liu, Q.Z., 2015. Allelopathic effects of phenolic acids on the growth and physiological characteristics of strawberry plants. Allelopath. J. 35, 61–76.
Li, J., Yu, G., Pan, L., Li, C., You, F., Xie, S., Wang, Y., Ma, J., Shang, X., 2018. ScienceDirect Study of ciprofloxacin removal by biochar obtained from used tea leaves 3, 20–30. https://doi.org/10.1016/j.jes.2017.12.024
Li, X., Ding, C., Hua, K., Zhang, T., Zhang, Y., Zhao, L., Yang, Y., Liu, J., Wang, X., 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol. Biochem. 78, 149–159.
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., Chen, H., 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels 28, 5119–5127.
Li, Z.-F., Yang, Y.-Q., Xie, D.-F., Zhu, L.-F., Zhang, Z.-G., Lin, W.-X., 2012. Identification of autotoxic compounds in fibrous roots of Rehmannia (Rehmannia glutinosa Libosch.). PLoS One 7, e28806.
Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., Jiang, D.-A., 2010. Phenolics and plant allelopathy. Molecules 15, 8933–8952.
Liebl, R.A., Worsham, A.D., 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 9, 1027–1043.
Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A., 2003. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon N. Y. 41, 267–275.
Lin, C.-C., Liu, Y.-T., Chang, P.-H., Hsieh, Y.-C., Tzou, Y.-M., 2023. Inhibition of continuous cropping obstacle of celery by chemically modified biochar: An efficient approach to decrease bioavailability of phenolic allelochemicals. J. Environ. Manage. 348, 119316.
Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87, 151–157.
Liu, J., Chang, Y., Sun, L., Du, F., Cui, J., Liu, X., Li, N., Wang, W., Li, J., Yao, D., 2021. Abundant allelochemicals and the inhibitory mechanism of the phenolic acids in water dropwort for the control of Microcystis aeruginosa blooms. Plants 10, 2653.
Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W., Yu, H.Q., 2012. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 121, 235–240. https://doi.org/10.1016/j.biortech.2012.06.085
Liu, Y.-T., Yang, I.-C., Lin, N.-C., 2020. Evaluation of biocontrol potential for Fusarium yellows of celery by antagonistic and gallic acid-degrading bacteria. Biol. Control 146, 104268.
Liu, Y., Lin, N., 2017. Allelopathic effects of celery on Fusarium oxysporum f. sp., apii. Taiwan. J. Agric. Chem. Food Sci. 55, 146–152.
Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R., Ruocco, M., Pascale, A., d’Errico, G., 2018. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant-Microbe Interact. 31, 982–994.
Ma, Zhimin, Guan, Z., Liu, Q., Hu, Y., Liu, L., Wang, B., Huang, L., Li, H., Yang, Y., Han, M., Gao, Z., Saleem, M., 2023. Chapter Four - Obstacles in continuous cropping: Mechanisms and control measures, in: Sparks, D.L.B.T.-A. in A. (Ed.),. Academic Press, pp. 205–256.
Ma, Zheng, Li, P., Yang, C., Feng, Z., Feng, H., Zhang, Y., Zhao, L., Zhou, J., Zhu, H., Wei, F., 2023. Soil bacterial community response to continuous cropping of cotton. Front. Microbiol. 14. https://doi.org/10.3389/fmicb.2023.1125564
Macías, F.A., Galindo, J.C.G., Molinillo, J.M.G., 2003. Allelopathy: chemistry and mode of action of allelochemicals. CRC Press.
Mallon, C.A., Elsas, J.D.van, Salles, J.F., 2015. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729.
Mandal, S.M., Chakraborty, D., Dey, S., Mandal, S.M., Chakraborty, D., Dey, S., 2017. Phenolic acids act as signaling molecules in plant- microbe symbioses Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2324, 359–368. https://doi.org/10.4161/psb.5.4.10871
Mao, H., Zhou, D., Hashisho, Z., Wang, S., Chen, H., Wang, H.H., 2015. Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions. BioResources 10, 809–821.
Mark, G.L., Dow, J.M., Kiely, P.D., Higgins, H., Haynes, J., Baysse, C., Abbas, A., Foley, T., Franks, A., Morrissey, J., 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc. Natl. Acad. Sci. 102, 17454–17459.
Mayakaduwa, S.S., Vithanage, M., Karunarathna, A., Mohan, D., Ok, Y.S., 2016. Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 28, 110–118. https://doi.org/10.1080/09542299.2016.1198928
Mazzola, M., 1999. Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots. Phytopathology 89, 920–927. https://doi.org/10.1094/PHYTO.1999.89.10.920
Mazzola, M., Manici, L., 2012. Apple replant disease: role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65.
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416.
Mendes, R., Kruijt, M., deBruijn, I., Dekkers, E., van derVoort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980
Meng, L., Xia, Z., Lv, J., Liu, G., Tan, Y., Li, Q., 2022. Extraction and GC-MS analysis of phenolic acids in rhizosphere soil of Pinellia ternate. J. Radiat. Res. Appl. Sci. 15, 40–45. https://doi.org/https://doi.org/10.1016/j.jrras.2022.05.015
Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B., 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science (80-. ). 250, 1004–1006.
Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., Nakanishi, T., 2005. Removal of Nitrate–Nitrogen from Drinking Water Using Bamboo Powder Charcoal. Bioresour. Technol. 95, 255–257. https://doi.org/10.1016/j.biortech.2004.02.015
Moreno-Castilla, C., Carrasco-Marı́n, F., López-Ramón, M.V., Alvarez-Merino, M.A., 2001. Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon N. Y. 39, 1415–1420.
Nayyar, A., Hamel, C., Lafond, G., Gossen, B.D., Hanson, K., Germida, J., 2009. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43, 115–121. https://doi.org/https://doi.org/10.1016/j.apsoil.2009.06.008
Nguyen, B.T., Lehmann, J., Hockaday, W.C., Joseph, S., Masiello, C.A., 2010. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331.
Ni, J., Pignatello, J.J., Xing, B., 2011. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol. 45, 9240–9248.
Ni, X., Jin, C., Liu, A., Chen, Y., Hu, Y., 2021. Physiological and transcriptomic analyses to reveal underlying phenolic acid action in consecutive monoculture problem of Polygonatum odoratum. BMC Plant Biol. 21, 362.
Nutter Forrest, J., Teng, P., Shokes, F.M., 1991. Disease assessment terms and concepts. Plant Dis. 75, 1187–1188.
Otani, S., Challinor, V.L., Kreuzenbeck, N.B., Kildgaard, S., Krath Christensen, S., Larsen, L.L.M., Aanen, D.K., Rasmussen, S.A., Beemelmanns, C., Poulsen, M., 2019. Disease-free monoculture farming by fungus-growing termites. Sci. Rep. 9, 8819. https://doi.org/10.1038/s41598-019-45364-z
Peng, P., Lang, Y.-H., Wang, X.-M., 2016. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol. Eng. 90, 225–233.
Peters, N., Verma, D., 1990. Phenolic compounds as regulators of gene expression in plant-microbe relations. Mol. Plant. Microbe. Interact. 3, 4–8.
Pietro, A.Di, Madrid, M.P., Caracuel, Z., Delgado-Jarana, J., Roncero, M.I., 2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol. 4, 315–325.
Power, J.F., Follett, R.F., 1987. Monoculture. Sci. Am. 256, 78–87.
Pradhan, B.K., Sandle, N.K., 1999. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon N. Y. 37, 1323–1332. https://doi.org/https://doi.org/10.1016/S0008-6223(98)00328-5
Prati, D., Bossdorf, O., 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91, 285–288.
Qian, L., Chen, B., 2014. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J. Agric. Food Chem. 62, 373–380.
Qu, X.H., Wang, J.G., 2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 39, 172–179.
Quayyum, H.A., Mallik, A.U., Orr, D.E., Lee, P.F., 1999. Allelopathic potential of aquatic plants associated with wild rice: II. Isolation and identification of allelochemicals. J. Chem. Ecol. 25, 221–228.
Rajapaksha, A.U., Chen, S.S., Tsang, D.C.W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148, 276–291. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.01.043
Rajkovich, S.R., Enders, A., Hanley, K.L., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284.
Rodríguez-Reinoso, F., Molina-Sabio, M., 1992. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon N. Y. 30, 1111–1118. https://doi.org/10.1016/0008-6223(92)90143-K
Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y., Baldwin, I.T., 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. U. S. A. 112, E5013-20. https://doi.org/10.1073/pnas.1505765112
Sasse, J., Martinoia, E., Northen, T., 2018. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41.
Satyanarayana, T., Deshmukh, S.K., Johri, B.N., 2017. Developments in fungal biology and applied mycology. Springer.
Schreiner, O., Reed, H.S., 1907. The production of deleterious excretions by roots. Bull. Torrey Bot. Club 34, 279–303.
Shin, W., 2017. Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis. Environ. earth Sci. 76, 1–9.
Shipton, P.J., 1977. Monoculture and soilborne plant pathogens. Annu. Rev. Phytopathol. 15, 387–407.
Siqueira, J.O., Hammerschmidt, R., Nair, M.G., 1991. Significance of phenolic compounds in plant-soil-microbial systems. CRC. Crit. Rev. Plant Sci. 10, 63–121. https://doi.org/10.1080/07352689109382307
Smith-Becker, J., Marois, E., Huguet, E.J., Midland, S.L., Sims, J.J., Keen, N.T., 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol. 116, 231–238.
Solum, M.S., Pugmire, R.J., Jagtoyen, M., Derbyshire, F., 1995. Evolution of carbon structure in chemically activated wood. Carbon N. Y. 33, 1247–1254. https://doi.org/10.1016/0008-6223(95)00067-N
Song, T.T., Lai, X., Wang, Z.W., Fang, M., Yang, D.L., Ju, X.H., Li, J., Zhang, G.L., 2018. Adsorption of ammonium nitrogen by biochars produced from different biomasses. J. Agro-Environment Sci. 37, 576–584.
Spann, T.M., Schumann, A.W., 2009. The role of plant nutrients in disease development with emphasis on citrus and huanglongbing, in: Proc. Fla. State Hort. Soc. pp. 169–171.
Sparling, G.P., Ord, B.G., Vaughan, D., 1981. Microbial biomass and activity in soils amended with glucose. Soil Biol. Biochem. 13, 99–104.
Stankevičius, M., Akuņeca, I., Jãkobsone, I., Maruška, A., 2010. Analysis of phenolic compounds and radical scavenging activities of spice plants extracts. Maisto Chem. ir Technol. 44, 85–91.
Stowe, L.G., Osborn, A., 1980. The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Can. J. Bot. 58, 1149–1153. https://doi.org/10.1139/b80-142
Tan, X., Liu, Shao-bo, Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., Liu, Shao-heng, Jiang, L., 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 227, 359–372. https://doi.org/10.1016/j.biortech.2016.12.083
Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, Shao-bo, Wang, X., Liu, Si-mian, Li, J., 2016. Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour. Technol. 212, 318–333.
Tan, Z., Qiu, J., Zeng, H., Liu, H., Xiang, J., 2011. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90, 1471–1475.
Tang, C.S., Young, C.C., 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol. 69, 155–160. https://doi.org/10.1104/pp.69.1.155
Tang, S., Zhang, Z., Liu, X., Gao, Z., 2023. Study on screening and degradation effect of autotoxin-degrading bacteria in muskmelon. Agronomy 13, 1334.
Tharayil, N., Bhowmik, P.C., Xing, B., 2006. Preferential sorption of phenolic phytotoxins to soil: Implications for altering the availability of allelochemicals. J. Agric. Food Chem. 54, 3033–3040. https://doi.org/10.1021/jf053167q
Tohma, H., Gülçin, İ., Bursal, E., Gören, A.C., Alwasel, S.H., Köksal, E., 2017. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 11, 556–566. https://doi.org/10.1007/s11694-016-9423-z
Toyomasu, T., Kagahara, T., Okada, K., Koga, J., Hasegawa, M., Mitsuhashi, W., Sassa, T., Yamane, H., 2008. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 72, 562–567.
Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. energy Rev. 55, 467–481.
van deVoorde, T.F.J., Ruijten, M., van derPutten, W.H., Bezemer, T.M., 2012. Can the negative plant–soil feedback of Jacobaea vulgaris be explained by autotoxicity? Basic Appl. Ecol. 13, 533–541.
vanElsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., Salles, J.F., 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. U. S. A. 109, 1159–1164.
Wang, T.S.C., Cheng, S.-Y., Tung, H., 1967. Extraction and analysis of soil organic acids. Soil Sci. 103, 360–366.
Wang, W., Bai, J., Lu, Q., Zhang, G., Wang, D., Jia, J., Guan, Y., Yu, L., 2021. Pyrolysis temperature and feedstock alter the functional groups and carbon sequestration potential of Phragmites australis‐ and Spartina alterniflora‐derived biochars. GCB Bioenergy 13. https://doi.org/10.1111/gcbb.12795
Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C., 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46, 450–456.
Watanabe, F.S., Olsen, S.R., 1965. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil1. Soil Sci. Soc. Am. J. 29, 677. https://doi.org/10.2136/sssaj1965.03615995002900060025x
Wehner, J., Antunes, P.M., Powell, J.R., Mazukatow, J., Rillig, M.C., 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia (Jena). 53, 197–201.
Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., Jousset, A., 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413.
Wu, H.-S., Raza, W., Fan, J.-Q., Sun, Y.-G., Bao, W., Liu, D.-Y., Huang, Q.-W., Mao, Z., Shen, Q.-R., Miao, W.-G., 2008. Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74, 45–50.
Xiao, C.-L., Zheng, J.-H., Zou, L.-Y., Sun, Y., Zhou, Y.-H., Yu, J.Q., 2006. Autotoxic effects of root exudates of soybean. Allelopath. J. 18, 121–127.
Xu, W., Ge, Z., Poudel, D.R., 2015. Application and optimization of biolog ecoplates in functional diversity studies of soil microbial communities, in: MATEC Web of Conferences. EDP Sciences, p. 4015.
Yakout, S.M., Daifullah, A.E.H.M., El-Reefy, S.A., 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environ. Eng. Manag. J. 14. https://doi.org/10.30638/eemj.2015.049
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.
Yao, J., Allen, C., 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188, 3697–3708.
Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471.
Yao, Y., Ren, G., 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci. Technol. 44, 181–185.
Yao, Y., Sang, W., Zhou, M., Ren, G., 2010. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 75, 9–13.
Yi, S., Gao, B., Sun, Y., Wu, J., Shi, X., Wu, B., Hu, X., 2016. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere 150, 694–701. https://doi.org/10.1016/j.chemosphere.2015.12.112
Ying, Y.X., Ding, W.L., Li, Y., 2012. Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng. Biochem. Genet. 50, 848–859. https://doi.org/10.1007/s10528-012-9525-1
Young, C.C., 1984. Autointoxication in root exudates of Asparagus officinalis L. Plant Soil 82, 247–253. https://doi.org/10.1007/BF02220251
Yu, J.Q., Lee, K.S., Matsui, Y., 1993. Effect of the addition of activated charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 39, 13–22. https://doi.org/10.1080/00380768.1993.10416970
Yu, J.Q., Matsui, Y., 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23, 817–827.
Yu, J.Q., Matsui, Y., 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20, 21–31.
Yu, J.Q., Matsui, Y., 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci. Plant Nutr. 39, 691–700. https://doi.org/10.1080/00380768.1993.10419186
Yu, J.Q., Ye, S.F., Zhang, M.F., Hu, W.H., 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139. https://doi.org/10.1016/S0305-1978(02)00150-3
Yuan, J.-H., Xu, R.-K., Zhang, H., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497.
Zeeshan Ul Haq, M., Yu, J., Yao, G., Yang, H., Iqbal, H.A., Tahir, H., Cui, H., Liu, Y., Wu, Y., 2023. A systematic review on the continuous cropping obstacles and control strategies in medicinal plants. Int. J. Mol. Sci. 24, 12470.
Zhang, Bao, Weston, P.A., Gu, L., Zhang, Bingyong, Li, M., Wang, F., Tu, W., Wang, J., Weston, L.A., Zhang, Z., 2019. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem. Plant Soil 441, 439–454.
Zhang, D., Pan, B., Zhang, H., Ning, P., Xing, B., 2010. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol. 44, 3806–3811.
Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., Chen, H., 2014. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chem. Eng. J. 257, 20–27. https://doi.org/10.1016/j.cej.2014.07.024
Zhang, X., Zhang, S., Yang, H., Shao, J., Chen, Y., Feng, Y., Wang, X., Chen, H., 2015. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy 91, 903–910.
Zhang, Z., Lin, W., 2009. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Zhongguo Shengtai Nongye Xuebao/Chinese J. Eco-Agriculture 17, 189–196.
Zhao, R.F., 2001. The mechanism of continuous cropping obstacle in ginseng and American ginseng. Sp Wild Econ Anim Plant Res 1, 40–45.
Zhou, X., Wu, F., 2012a. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 80, 469–478. https://doi.org/10.1111/j.1574-6941.2012.01312.x
Zhou, X., Wu, F., 2012b. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS One 7, e48288.
Zou, W., Bai, H., Gao, S., Li, K., 2013. Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean J. Chem. Eng. 30, 111–122. https://doi.org/10.1007/s11814-012-0096-y
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊