跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子萱
研究生(外文):Tzu-Hsuan Yang
論文名稱:以Gompertz數值模型探討披針舟形藻之動力學生長模式及其單位細胞數量質量與培養基濃度之關係
論文名稱(外文):Using the Gompertz Model to Investigate the Growth Kinetics of Navicula Lanceolate and the Relationship between Cell Number/Unit Biomass and Culture Medium Concentration
指導教授:張厚謙
指導教授(外文):Hou-Chien Chang
口試委員:王敏盈施志欣
口試委員(外文):Min-Ying WangChih-Hsin Shih
口試日期:2024-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:52
中文關鍵詞:矽藻Gompertz 模型動力學生長曲線批次培養半連續式培養
外文關鍵詞:DiatomsGompertz modelGrowth kineticBatchSemi-continuous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽藻是一種具有極高生物利用價值的真核單細胞光合生物,是水生生態系中重要的初級生產者,也是顆粒性有機碳轉移至深海的推動者,對海洋碳封存貢獻巨大。矽藻對環境變化高度敏感,是水質監測和環境評估的理想指標之一。矽藻可提供多種具生物活性潛力的化合物,如岩藻黃素、脂肪酸、多醣及多酚等,尤其岩藻黃素在健康促進中營養保健食品被廣泛利用。矽藻具有生命週期短、生長速率快、生產成本低及在封閉控制系統中生長能力的特點,是農業、工業、製藥與食品業等多個產業領域具有前瞻性和高價值的資源。
本研究透過以Gompertz模型探討於不同生物操作模式下培養基濃度對矽藻Navicula Lanceolate的生長動力學影響。在批次培養與半連續式培養的實驗與理論數據證實都顯示,隨著培養基濃度的增加,細胞密度顯著提升,且達穩定期所需時長較久,可得知時間與培養基濃度皆與細胞密度呈正相關。在批次培養的最高培養基濃度10f下,最大細胞密度達298 × 104 cells/mL,是基礎培養基濃度0.5f的七倍;在半連續式培養10f的最大細胞密度為475 × 104 cells/mL,是該培養基濃度批次培養的1.6倍,相較於批次培養模式具有明顯的優勢。藉此可判斷出富集營養基對於提升矽藻的生長速率與生物質產量有顯著效益,並證實半連續式培養可提供更為穩定且長期收穫產物的生產模式,且Gompertz模型能準確描述矽藻Navicula Lanceolate的動力學生長趨勢。
Diatoms are eukaryotic unicellular photosynthetic organisms with high bioavailability. They are important primary producers in aquatic ecosystems and promoters of the transfer of particulate organic carbon to the deep sea, contributing significantly to ocean carbon sequestration. Diatoms are highly sensitive to environmental changes and are one of the ideal indicators for water quality monitoring and environmental assessment. Diatoms can provide a variety of compounds with bioactive potential, such as Fucoxanthin, fatty acids, polysaccharides and polyphenols, etc. Fucoxanthin in particular have been widely used as dietary supplements for health promotion. Diatoms have short life cycles, fast growth rates, low production costs and the ability to grow in closed control systems, making them a promising and valuable resource for the agricultural, industrial, pharmaceutical and food industries.
In this study, we investigated the effect of medium concentration on the growth kinetics of the diatom Navicula Lanceolate under different biological operating modes using the Gompertz model. Experimental and theoretical data from batch and semi-continuous cultures showed that cell density increased significantly with increasing medium concentration and took longer to stationary phase, indicating that both time and medium concentration are positively correlated with cell density. At the highest medium concentration of 10f in batch culture, the maximum cell density reached 298 × 104 cells/mL, which was seven times that of the basic medium concentration of 0.5f;at the maximum cell density of 10f in semi-continuous culture, the maximum cell density was 475 × 104 cells/mL, which was 1.6 times that of the batch culture with the same medium concentration, and it had a clear advantage over the batch culture mode. It can be concluded that the enriched nutrient medium has a significant effect on increasing the growth rate and biomass production of diatoms, and confirms that the semi-continuous culture can provide a more stable and long-term production mode, and that the Gompertz model can accurately describe the dynamics of the diatom Navicula Lanceolate.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章、前言 1
第二章、研究動機與目的 2
第三章、文獻回顧 3
3-1 矽藻簡介 3
3-2生物程序操作模式介紹 6
3-2-1 批次(Batch)培養 6
3-2-2 饋料批次(Fed-batch)培養 6
3-3-3 半連續式(Semi-continuous)培養 7
3-3 生長模型 8
3-3-1 Monod 方程式 8
3-3-2 Verhulst Logistic方程式 9
3-3-3 Zwietering Modified Gompertz 方程式 10
第四章、實驗與方法 13
4-1 矽藻簡介 13
4-2 矽藻培養方式 13
4-2-1 培養基製備 13
4-2-2 實驗設備 13
4-2-3 五百毫升光生物反應器之批次培養 14
4-2-4 五百毫升光生物反應器之半連續式培養 15
4-3 矽藻培養分析 16
4-3-1 細胞計數 16
4-3-2 矽酸鹽含量測定(OD410) 16
4-4 Verhulst Logistic 模型 17
4-5 Zwietering Modified Gompertz 模型 18
4-5-1 批次培養之Gompertz模型建立 18
4-5-1-1 批次培養之Gompertz二維模型建立 21
4-5-1-2 批次培養之Gompertz三維模型建立 21
4-5-2 半連續式培養之Gompertz模型建立 22
第五章、結果與討論 29
5-1 Verhulst Logistic 模型與Zwietering Gompertz 模型之比較 29
5-2 批次培養與其Gompertz動力學模型 33
5-2-1 批次培養之二維Gompertz動力學模型 33
5-2-2 批次培養之三維Gompertz動力學模型 35
5-3 半連續式培養與其Gompertz動力學模型 37
5-3-1 半連續式培養 之Gompertz動力學模型 37
5-3-2 半連式培養於不同培養基濃度之比較 40
第六章、結論 43
第七章、參考文獻 45
附錄圖表 50
1. Viso, R. and S. Blanco, River Diatoms Reflect Better Past than Current Environmental Conditions. Water, 2023. 15(2): p. 333.
2. Benoiston, A.-S., et al., The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1728): p. 20160397.
3. Jin, X., et al., Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles, 2006. 20(2).
4. Tréguer, P., et al., Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 2018. 11(1): p. 27-37.
5. Hildebrand, M., Diatoms, biomineralization processes, and genomics. Chemical reviews, 2008. 108(11): p. 4855-4874.
6. Yool, A. and T. Tyrrell, Role of diatoms in regulating the ocean's silicon cycle. Global Biogeochemical Cycles, 2003. 17(4).
7. Tréguer, P.J. and C.L. De La Rocha, The world ocean silica cycle. Annual review of marine science, 2013. 5: p. 477-501.
8. Rogato, A. and E. De Tommasi, Physical, chemical, and genetic techniques for diatom frustule modification: Applications in nanotechnology. Applied Sciences, 2020. 10(23): p. 8738.
9. Wang, Y., et al., Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Applied microbiology and biotechnology, 2013. 97: p. 453-460.
10. Yang, C., et al., Morphological and physicochemical characteristics, biological functions, and biomedical applications of diatom frustule. Algal Research, 2023. 72: p. 103104.
11. Zahajská, P., et al., What is diatomite? Quaternary Research, 2020. 96: p. 48-52.
12. Cong, P., S. Chen, and H. Chen, Effects of diatomite on the properties of asphalt binder. Construction and Building Materials, 2012. 30: p. 495-499.
13. Situ, Y., et al., Synthesis and application of super absorbent polymers synthesized with ammonia solution and diatomaceous earth with low toxic residues. Environmental Technology & Innovation, 2023. 32: p. 103371.
14. Mukerabigwi, J.F., et al., Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC advances, 2016. 6(38): p. 31607-31618.
15. Ediz, N., İ. Bentli, and İ. Tatar, Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing, 2010. 94(3-4): p. 129-134.
16. Gómez, J., et al., Diatomite releases silica during spirit filtration. Food chemistry, 2014. 159: p. 381-387.
17. Guo, D., et al., Diatomite precoat filtration for wastewater treatment: Filtration performance and pollution mechanisms. Chemical Engineering Research and Design, 2018. 137: p. 403-411.
18. Şan, O. and A. İmaretli, Preparation and filtration testing of diatomite filtering layer by acid leaching. Ceramics International, 2011. 37(1): p. 73-78.
19. Dembitsky, V.M. and T. Maoka, Allenic and cumulenic lipids. Progress in lipid research, 2007. 46(6): p. 328-375.
20. Tiwari, A., et al., Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—A review. International Journal of Biological Macromolecules, 2021. 171: p. 398-413.
21. Lourenço-Lopes, C., et al., Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science & Technology, 2021. 117: p. 163-181.
22. Wang, S., et al., A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnology advances, 2021. 53: p. 107865.
23. Arora, N. and G.P. Philippidis, Fucoxanthin production from diatoms: current advances and challenges. Algae: Multifarious Applications for a Sustainable World, 2021: p. 227-242.
24. Steele, D.J., D.J. Franklin, and G.J. Underwood, Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling, 2014. 30(8): p. 987-998.
25. Tong, C. and C. Derek, Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. Algal Research, 2021. 55: p. 102260.
26. Adeleye, A.S. and A.A. Keller, Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environmental science & technology, 2016. 50(22): p. 12258-12265.
27. Calvo, C., et al., Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. Journal of industrial microbiology and biotechnology, 1998. 20(3-4): p. 205-209.
28. Demir-Yilmaz, I., et al., Investigation of the role of cell hydrophobicity and EPS production in the aggregation of the marine diatom Cylindrotheca closterium under hypo-saline conditions. Marine environmental research, 2023. 188: p. 106020.
29. Abdalla, A.K., et al., Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Frontiers in Microbiology, 2021. 12: p. 664395.
30. Zhang, J., et al., Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International journal of biological macromolecules, 2019. 128: p. 761-767.
31. Grassi, G., et al., Interplay between extracellular polymeric substances (EPS) from a marine diatom and model nanoplastic through eco-corona formation. Science of the total environment, 2020. 725: p. 138457.
32. Xiao, R. and Y. Zheng, Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, 2016. 34(7): p. 1225-1244.
33. Masouras, A., et al., Benthic diatoms in river biomonitoring—Present and future perspectives within the water framework directive. Water, 2021. 13(4): p. 478.
34. Pandey, L.K., et al., River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators, 2018. 84: p. 140-151.
35. Coste, M., Étude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Cemagref QE Lyon-AF Bassin Rhône Méditerranée Corse, 1982. 218.
36. Gomà, J., et al., Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie et Milieu/Life & Environment, 2004: p. 81-90.
37. Blanco, S., et al., Diatom assemblages and water quality assessment in the Duero Basin (NW Spain). Belgian Journal of Botany, 2008: p. 39-50.
38. Cinar, A., et al., Batch fermentation: modeling: monitoring, and control. 2003: CRC press.
39. Giri, T., et al., Effect of nutrients on diatom growth: a review. Trends in Sciences, 2022. 19(2): p. 1752-1752.
40. Lee, J., et al., Control of fed-batch fermentations. Biotechnology advances, 1999. 17(1): p. 29-48.
41. Nancib, A., et al., The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus. Brazilian Journal of Microbiology, 2015. 46: p. 893-902.
42. Ding, S. and T. Tan, L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry, 2006. 41(6): p. 1451-1454.
43. Ng, I.-S., et al., Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess and Biosystems engineering, 2014. 37: p. 415-423.
44. Youn, J.K., et al., Enhanced production of human serum albumin by fed-batch culture of Hansenula polymorpha with high-purity oxygen. Journal of microbiology and biotechnology, 2010. 20(11): p. 1534-1538.
45. Monod, J., The growth of bacterial cultures. Annual review of microbiology, 1949. 3(1): p. 371-394.
46. Blok, J. and J. Struys, Measurement and validation of kinetic parameter values for prediction of biodegradation rates in sewage treatment. Ecotoxicology and environmental safety, 1996. 33(3): p. 217-227.
47. Geng, X., et al., Modeling oil biodegradation and bioremediation within beaches. Current Opinion in Chemical Engineering, 2022. 35: p. 100751.
48. Maleki, E., A. Bokhary, and B. Liao, A review of anaerobic digestion bio-kinetics. Reviews in Environmental Science and Bio/Technology, 2018. 17(4): p. 691-705.
49. Kong, J.D., Modeling microbial dynamics: effects on environmental and human health. 2017.
50. Muloiwa, M., S. Nyende-Byakika, and M. Dinka, Comparison of unstructured kinetic bacterial growth models. South African Journal of Chemical Engineering, 2020. 33: p. 141-150.
51. Bacaër, N. and N. Bacaër, Verhulst and the logistic equation (1838). A short history of mathematical population dynamics, 2011: p. 35-39.
52. Horowitz, J., et al., Probabilistic model of microbial cell growth, division, and mortality. Applied and environmental microbiology, 2010. 76(1): p. 230-242.
53. Gompertz, B., XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London, 1825(115): p. 513-583.
54. Wang, J. and X. Guo, The Gompertz model and its applications in microbial growth and bioproduction kinetics: Past, present and future. Biotechnology Advances, 2024: p. 108335.
55. Halmi, M., et al., Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2014. 2(1): p. 1-6.
56. Zwietering, M.H., et al., Modeling of the bacterial growth curve. Applied and environmental microbiology, 1990. 56(6): p. 1875-1881.
57. Goshu, A.T. and P.R. Koya, Derivation of inflection points of nonlinear regression curves-implications to statistics. Am. J. Theor. Appl. Stat, 2013. 2(6): p. 268-272.
58. Guillard, R.R. and J.H. Ryther, Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology, 1962. 8(2): p. 229-239.
59. Lai, H.-L., et al., Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. International journal of biological macromolecules, 2020. 155: p. 951-960.
60. Armstrong, F., The determination of silicate in sea water. Journal of the marine biological association of the United Kingdom, 1951. 30(1): p. 149-160.
61. Coradin, T., D. Eglin, and J. Livage, The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy, 2004. 18(4): p. 567-576.
62. Orefice, I., et al., Role of nutrient concentrations and water movement on diatom’s productivity in culture. Scientific reports, 2019. 9(1): p. 1479.
63. Lin, C.-H., et al., An integrated process for enhanced production and purification of fucoxanthin and sulfated polysaccharides in diatom Hyalosynedra toxoneides cultures. Journal of the Taiwan Institute of Chemical Engineers, 2024. 155: p. 105308.
64. Laing, I., Growth response of Chaetoceros calcitrans (Bacillariophyceae) in batch culture to a range of initial silica concentrations. Marine Biology, 1985. 85: p. 37-41.
電子全文 電子全文(網際網路公開日期:20290717)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top