|
[1]G. Clarizia, P. Bernardo, A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation, Polymers 14 (2022) 10. [2]S. Kim, Y.M. Lee, High performance polymer membranes for CO2 separation, Current Opinion in Chemical Engineering 2 (2013) 238–244. [3]K. Yang, Y. Dai, X. Ruan, W. Zheng, X. Yang, R. Ding, G. He, Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes, Journal of Membrane Science 601 (2020), 117934. [4]Y. Song, M. Wei, F. Xu, Y. Wang, Transport Mechanism of Water Molecules Passing through Polyamide/COF Mixed Matrix Membranes, Physical Chemistry Chemical Physics 21 (2019), 26591-26597. [5]S. Aydin, C. Altintas, S. Keskin, High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification, ACS Applied Materials & Interfaces 14 (2022), 21738-21749. [6]Y. Chen, L. Zhao, B. Wang, P. Dutta, W.S. Winston Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, Journal of Membrane Science 497 (2016) 21-28. [7]G. Golemme, A. Policicchio, E. Sardella, G. De Luca, B. Russo, P.F. Liguori, A. Melicchio, R.G. Agostino, Surface modification of molecular sieve fillers for mixed matrix membranes, Colloids and Surfaces A: Physicochemical and Engineering Aspects 538 (2018) 333-342. [8]H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, Journal of Membrane Science 465 (2014) 78-90. [9]H. Strathmann, Membrane separation processes, Journal of Membrane Science 9 (1981) 121-189. [10]E. Drioli, L. Giorno, Comprehensive membrane science and engineering, 1 (2010) 1-354. [11]H. Verweij, Inorganic membranes, Current opinion in chemical engineering 1 (2012) 156-162. [12]M. Ulbricht, Advanced functional polymer membranes, Polymer 47 (2006) 2217-2262. [13]L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science 62 (1991) 165-185. [14]S. Bachler, M. Ort, S.D. KräMer, P.S. Dittrich, Permeation studies across symmetric and asymmetric membranes in microdroplet arrays, Analytical Chemistry 93 (2021) 5137-5144. [15]B. Hiebl, K. Lützow, M. Lange, F. Jung, B. Seifert, F. Klein, T. Weigel, K. Kratz, A. Lendlein, Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding, Journal of biotechnology 148 (2010) 76-82. [16]A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology 2 (2016) 17-42. [17]Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of materials science 41 (2006) 763-777. [18]L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van Der Bruggen, Membrane synthesis for membrane distillation: A review, Separation and Purification Technology 182 (2017) 36-51. [19]P. Apel, Track etching technique in membrane technology, Radiation measurements 34 (2001) 559-566. [20]T. Miyazaki, M. Takenaka, Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 394 (2017) 121-125. [21]R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids, Principles and Applications, University of California Press, Berkeley, 1975. [22]D. Nikezic, K. Yu, Formation and growth of tracks in nuclear track materials, Materials Science and Engineering: R: Reports 46 (2004) 51-123. [23]Y. Komaki, Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride, Nuclear Tracks 3 (1979) 33-44. [24]L. Rozelle, J. Cadotte, R. Corneliussen, E. Erickson, K. Cobian, C. Kopp Jr, Phase inversion membranes, Encyclopedia of separation science (2000) 3331-3346. [25]B.P. Binks, R. Murakami, Phase inversion of particle-stabilized materials from foams to dry water, Nature materials 5 (2006) 865-869. [26]L.L. Hench, J.K. West, The sol-gel process, Chemical reviews 90 (1990) 33-72. [27]D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol-gel method: synthesis and application, Advances in Materials Science and Engineering 2021 (2021) 1-21. [28]W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17 (2006) R89. [29]N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology advances 28 (2010) 325-347. [30]T. Turel, Gas Transmission Trough Microporous Membranes (Ph.D. Thesis), Auburn University, Alabama, USA, 2008. [31]P.G. Crawford, Zeolite Membranes for the Separation of Krypton and Xenon from Spent Nuclear Fuel Reprocessing Off-Gas (Master Thesis), Georgia Institute of Technology, Atlanta, Georgia, 2013. [32]S.T. Oyama, M. Yamada, T. Sugawara, A. Takagaki, R. Kikuchi, Review on mechanisms of gas permeation through inorganic membranes, Journal of the Japan Petroleum Institute 54 (2011) 298-309. [33]R.S.K. Valappil, N. Ghasem, M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review, Journal of Industrial and Engineering Chemistry 98 (2021) 103-129. [34]W.S.W. Ho, K.K. Sirkar, eds., Membrane Handbook, Van Nostrand Reinhold, New York (1992). [35]P. Pandey, R. Chauhan, Membranes for gas separation, Progress in polymer science 26 (2001) 853-893. [36]R. Abedini, A. Nezhadmoghadam, Application of membrane in gas separation processes: its suitability and mechanisms, Petroleum & Coal 52 (2010) 69-80. [37]T. Graham, XVIII. On the absorption and dialytic separation of gases by colloid septa, Philosophical transactions of the Royal Society of London (1866) 399-439. [38]C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96 (2012) 15-28. [39]R.W. Baker, Future directions of membrane gas separation technology, Industrial & engineering chemistry research 41 (2002) 1393-1411. [40]Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K. Mizrahi Rodriguez, S. Lin, F.M. Benedetti, A.X. Wu, W.S. Chi, Z.P. Smith, MOF-based membranes for gas separations, Chemical reviews 120 (2020) 8161-8266. [41]T. Ashirov, A. Coskun, Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities, Chem 7 (2021) 2385-2394. [42]R.W. Baker, Membrane Technology and Applications, 2nd Ed., John Wiley & Sons, Chichester, England (2004). [43]Y. Yampolskii, I. Pinnau, B.D. Freeman, eds., Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Chichester, England (2006). [44]R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: an overview, Industrial & Engineering Chemistry Research 47 (2008) 2109-2121. [45]A.B. Koltuniewic, E. Drioli, eds., Membrane in Clean Technology, Theory and Practice, Vol. 1 and 2, Wiley-VCH, New York (2008). [46]Y. Yampolskii, B. Freeman, Membrane Gas Separation, (2010), . [47]L.M. Robeson, The upper bound revisited, Journal of membrane science 320 (2008) 390-400. [48]Z. Wang, T. Chen, J. Xu, Gas transport properties of novel cardo poly (aryl ether ketone) s with pendant alkyl groups, Macromolecules 33 (2000) 5672-5679. [49]C. Wright, D. Paul, Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone, Journal of membrane science 124 (1997) 161-174. [50]J. Won, M.H. Kim, Y.S. Kang, H.C. Park, U.Y. Kim, S.C. Choi, S.K. Koh, Surface modification of polyimide and polysulfone membranes by ion beam for gas separation, Journal of Applied Polymer Science 75 (2000) 1554-1560. [51]L. Shao, T.-S. Chung, S. Goh, K. Pramoda, Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance, Journal of membrane science 256 (2005) 46-56. [52]J. Zou, W.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly (vinyl alcohol), Journal of Membrane Science 286 (2006) 310-321. [53]T. Johnson, S. Thomas, Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends, Polymer 40 (1999) 3223-3228. [54]S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49 (2008) 1594-1603. [55]W. Yong, F. Li, Y. Xiao, P. Li, K. Pramoda, Y. Tong, T. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, Journal of membrane science 407 (2012) 47-57. [56]A. Mushtaq, H.B. Mukhtar, A.M. Shariff, H.A. Mannan, A review: development of polymeric blend membrane for removal of CO2 from natural gas, Int. J. Eng. Technol. IJET-IJENS 13 (2013) 53-60. [57]F. Ruiz‐Treviño, D. Paul, Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive, Journal of applied polymer science 68 (1998) 403-415. [58]S.H. Chen, S.S. Lin, D.J. Chang, J.S. Chang, Gas transport properties of CoAlPO4‐5/PC membranes, Journal of Applied Polymer Science 77 (2000) 89-95. [59]T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in polymer science 32 (2007) 483-507. [60]M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: A review, Separation and purification Technology 75 (2010) 229-242. [61]F. Krull, C. Fritzmann, T. Melin, Liquid membranes for gas/vapor separations, Journal of Membrane Science 325 (2008) 509-519. [62]P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S. Suen, Ionic liquid membranes for carbon dioxide–methane separation, Journal of membrane science 383 (2011) 262-271. [63]Y. Li, T.-S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, Journal of Membrane Science 260 (2005) 45-55. [64]Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes, Journal of Membrane Science 275 (2006) 17-28. [65]C.-C. Hu, T.-C. Liu, K.-R. Lee, R.-C. Ruaan, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties, Desalination 193 (2006) 14-24. [66]Y.-J. Fu, C.-C. Hu, K.-R. Lee, Y.-J. Chen, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties, Desalination 200 (2006) 250-252. [67]D. Şen, H. Kalıpçılar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes, Journal of Membrane Science 303 (2007) 194-203. [68]J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Separation and purification technology 115 (2013) 163-171. [69]J. Ahmad, M.-B. Hägg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation, Journal of Membrane Science 427 (2013) 73-84. [70]S. Basu, A. Cano-Odena, I.F. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Separation and Purification Technology 81 (2011) 31-40. [71]O.G. Nik, X.Y. Chen, S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science 413 (2012) 48-61. [72]S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural-and bio-gas upgrading, Journal of membrane science 452 (2014) 184-192. [73]M. Valero, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53 (Al) in glassy polymers, Microporous and mesoporous materials 192 (2014) 23-28. [74]T.-L. Chew, A.L. Ahmad, S. Bhatia, Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2), Advances in colloid and interface science 153 (2010) 43-57. [75]Y. Shen, A.C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chemical engineering journal 192 (2012) 201-210. [76]A. Ahmad, Z. Jawad, S. Low, S. Zein, A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation, Journal of Membrane Science 451 (2014) 55-66. [77]A. Moghadassi, Z. Rajabi, S. Hosseini, M. Mohammadi, Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties, Journal of Industrial and Engineering Chemistry 20 (2014) 1050-1060. [78]M.F.A. Wahab, A.F. Ismail, S.J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers, Separation and Purification Technology 86 (2012) 41-48. [79]S. Hassanajili, E. Masoudi, G. Karimi, M. Khademi, Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases, Separation and Purification Technology 116 (2013) 1-12. [80]F. Moghadam, M. Omidkhah, E. Vasheghani-Farahani, M. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology 77 (2011) 128-136. [81]C. Li, H. Shao, S. Zhong, Preparation technology of organic-inorganic hybrid membrane, Progress in Chemistry 16 (2004) 83. [82]S. Hashemifard, A.F. Ismail, T. Matsuura, Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal, Chemical Engineering Journal 170 (2011) 316-325. [83]M. Sadeghi, G. Khanbabaei, A.H.S. Dehaghani, M. Sadeghi, M.A. Aravand, M. Akbarzade, S. Khatti, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes, Journal of Membrane Science 322 (2008) 423-428. [84]J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane science 314 (2008) 123-133. [85]J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), Journal of membrane science 346 (2010) 280-287. [86]R. Barrer, S. James, Electrochemistry of crystal—polymer membranes. Part I. Resistance measurements, The Journal of Physical Chemistry 64 (1960) 417-421. [87]Duval JM. Adsorbent filled polymeric membranes. PhD thesis. The Netherlands: University of Twente; 1995. [88]J.P. Boom, I. Pünt, H. Zwijnenberg, R. De Boer, D. Bargeman, C. Smolders, H. Strathmann, Transport through zeolite filled polymeric membranes, Journal of membrane science 138 (1998) 237-258. [89]M.-D. Jia, K.-V. Pleinemann, R.-D. Behling, Preparation and characterization of thin-film zeolite–PDMS composite membranes, Journal of Membrane Science 73 (1992) 119-128. [90]R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Industrial & Engineering Chemistry Research 39 (2000) 2692-2696. [91]B.D. Reid, F.A. Ruiz-Trevino, I.H. Musselman, K.J. Balkus, J.P. Ferraris, Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41, Chemistry of materials 13 (2001) 2366-2373. [92]Shu, S. Husain, W.J. Koros, A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces, The journal of physical chemistry C 111 (2007) 652-657. [93]R. Mahajan, W.J. Koros, Mixed matrix membrane materials with glassy polymers. Part 1, Polymer Engineering & Science 42 (2002) 1420-1431. [94]R. Mahajan, W.J. Koros, Mixed matrix membrane materials with glassy polymers. Part 2, Polymer Engineering & Science 42 (2002) 1432-1441. [95]K.J. Balkus, K. Cattanach, I.H. Musselman, J.P. Ferraris, Selective Matrimid Membranes Containing Mesoporous Molecular Sieves, MRS Online Proceedings Library (OPL) 752 (2002), . [96]P. Goh, A. Ismail, S. Sanip, B. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology 81 (2011) 243-264. [97]P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Industrial & engineering chemistry research 48 (2009) 4638-4663. [98]L. Ge, Z. Zhu, V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Separation and purification technology 78 (2011) 76-82. [99]S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment, Journal of Membrane Science 294 (2007) 147-158. [100]S. Sanip, A. Ismail, P. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Gas separation properties of functionalized carbon nanotubes mixed matrix membranes, Separation and Purification Technology 78 (2011) 208-213. [101]B. Shimekit, H. Mukhtar, T. Murugesan, Prediction of the relative permeability of gases in mixed matrix membranes, Journal of membrane science 373 (2011) 152-159. [102]E. Ahmadpour, M.V. Sarfaraz, R.M. Behbahani, A.A. Shamsabadi, M. Aghajani, Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax 1657 as a copolymer on an ultra-porous PVC support, Journal of Natural Gas Science and Engineering 35 (2016) 33-41. [103]N. Azizi, T. Mohammadi, R.M. Behbahani, Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation, Chemical Engineering Research and Design 117 (2017) 177-189. [104]A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: Titanium Dioxide Applications, Energy Procedia 157 (2019) 17-29. [105]M. C. Park, W. H. Yoon, D. H. Lee, J. M. Myoung, S. H. Bae, S. Y. Lee and I. Yun, “Effect of Misfit Strain on Properties of TiO2 Films Grown by Pulsed Laser Deposition”, Mat. Res. Soc. Symp. Proc. 696. (2002), . [106]E. Kaidashev, M.V. Lorenz, H. Von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters 82 (2003) 3901-3903. [107]S. O. Kasap , “ Principles of Electronic Materials and Devices “ , second edition , McGrow Hill , (2002) 557 . [108]A. Cirera Hernández, New technologies and their characterisation for nanostructured SnO2 Gas sensor devices, (2000), . [109]K. Gnanasekar, B. Rambabu, Nanostructure semiconductor oxide powders and thin films for gas sensor, Surf. Sci 200 (2002) 780. [110]R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, G. He, Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation, Separation and Purification Technology 236 (2020), 116209. [111]Y. Ding, H. Wang, M. Yu, W. Zheng, X. Ruan, X. Li, Y. Xi, Y. Dai, H. Liu, G. He, Amine group graft ZIF-93 to create gas storage space to improve the gas separation performance of Pebax-1657 MMMs, Separation and Purification Technology 309 (2023), 122949. [112]M. Jia, Y. Feng, J. Qiu, X.-F. Zhang, J. Yao, Amine-functionalized MOFs@ GO as filler in mixed matrix membrane for selective CO2 separation, Separation and Purification Technology 213 (2019) 63-69. [113]M.G. Buonomenna, G. Golemme, C.M. Tone, M.P. De Santo, F. Ciuchi, E. Perrotta, Amine-functionalized SBA-15 in poly (styrene-b-butadiene-b-styrene)(SBS) yields permeable and selective nanostructured membranes for gas separation, Journal of Materials Chemistry A 1 (2013) 11853-11866. [114]A.L. Khan, C. Klaysom, A. Gahlaut, A.U. Khan, I.F. Vankelecom, Mixed matrix membranes comprising of Matrimid and–SO3H functionalized mesoporous MCM-41 for gas separation, Journal of membrane science 447 (2013) 73-79. [115]A.L. Khan, C. Klaysom, A. Gahlaut, X. Li, I.F. Vankelecom, SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO 2 separations, Journal of Materials Chemistry 22 (2012) 20057-20064. [116]S. Kim, E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix, Microporous and Mesoporous Materials 114 (2008) 129-136. [117]A.L. Khan, C. Klaysom, A. Gahlaut, I.F. Vankelecom, Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation, Journal of membrane science 436 (2013) 145-153. [118]S. Hashemifard, A. Ismail, T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental, Journal of colloid and interface science 359 (2011) 359-370. [119]H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Separation and Purification Technology 214 (2019) 78-86. [120]O. Khantamat, C.-H. Li, S.-P. Liu, T. Liu, H.J. Lee, O. Zenasni, T.-C. Lee, C. Cai, T.R. Lee, Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells, Journal of colloid and interface science 513 (2018) 715-725. [121]P. Dobrowolska, A. Krajewska, M. Gajda-Rączka, B. Bartosewicz, P. Nyga, B.J. Jankiewicz, Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@ Au and TiO2@ Au core-shell nanostructures, Materials 8 (2015) 2849-2862. [122]J. Xie, X. Pan, M. Wang, J. Ma, Y. Fei, P.-N. Wang, L. Mi, The role of surface modification for TiO2 nanoparticles in cancer cells, Colloids and Surfaces B: Biointerfaces 143 (2016) 148-155. [123]E. Tocci, A. Gugliuzza, L. De Lorenzo, M. Macchione, G. De Luca, E. Drioli, Transport properties of a co-poly (amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results, Journal of Membrane Science 323 (2008) 316-327. [124]J. Potreck, K. Nijmeijer, T. Kosinski, M. Wessling, Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074, Journal of Membrane Science 338 (2009) 11-16. [125]L. Liu, A. Chakma, X. Feng, Propylene separation from nitrogen by poly (ether block amide) composite membranes, Journal of membrane science 279 (2006) 645-654. [126]V. Bondar, B. Freeman, I. Pinnau, Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers, Journal of Polymer Science Part B: Polymer Physics 37 (1999) 2463-2475. [127]J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly (amide-6-b-ethylene oxide) copolymer, Journal of Membrane Science 190 (2001) 179-193. [128]A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation, Journal of Membrane Science 307 (2008) 88-95. [129]W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, Journal of Membrane Science 350 (2010) 124-129. [130]W. Yave, A. Car, K.-V. Peinemann, M.Q. Shaikh, K. Rätzke, F. Faupel, Gas permeability and free volume in poly (amide-b-ethylene oxide)/polyethylene glycol blend membranes, Journal of Membrane Science 339 (2009) 177-183. [131]R.S. Murali, S. Sridhar, T. Sankarshana, Y. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Industrial & Engineering Chemistry Research 49 (2010) 6530-6538. [132]T.C. Merkel, Z. He, I. Pinnau, B.D. Freeman, P. Meakin, A.J. Hill, Effect of nanoparticles on gas sorption and transport in poly (1-trimethylsilyl-1-propyne), Macromolecules 36 (2003) 6844-6855. [133]R. Surudžić, A. Janković, M. Mitrić, I. Matić, Z.D. Juranić, L. Živković, V. Mišković-Stanković, K.Y. Rhee, S.J. Park, D. Hui, The effect of graphene loading on mechanical, thermal and biological properties of poly (vinyl alcohol)/graphene nanocomposites, Journal of industrial and engineering chemistry 34 (2016) 250-257. [134]G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, Journal of Membrane Science 520 (2016) 860-868. [135]J. Yuan, H. Zhu, J. Sun, Y. Mao, G. Liu, W. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS applied materials & interfaces 9 (2017) 38575-38583. [136]H. Wang, W. Zheng, X. Yang, M. Ning, X. Li, Y. Xi, X. Yan, X. Zhang, Y. Dai, H. Liu, G. He, Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation, Separation and Purification Technology 274 (2021) 119015. [137]B. Yu, H. Cong, Z. Li, J. Tang, X.S. Zhao, Pebax‐1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation, Journal of Applied Polymer Science 130 (2013) 2867-2876. [138]J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, Journal of Membrane Science 513 (2016) 155-165. [139]L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation, Journal of Membrane Science 500 (2016) 66-75. [140]M.M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M.M. Khan, V. Abetz, PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation, Journal of Membrane Science 437 (2013) 286-297. [141]D. Nobakht, R. Abedini, Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds, Journal of Environmental Chemical Engineering 10 (2022) 107568. [142]M. Mehdinia Lichaei, F. Pazani, A. Aroujalian, D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide, Process Safety and Environmental Protection 163 (2022) 36-47. [143]T.V. Prabhu, J. Chandrasekaran, D. Thangaraju, P. Vivek, S. Gopi, Fabrication and performance analysis of set standard natural dye-sensitized solar cell (N-DSSC) using extracted Terminalia kattapa (Red), Azadirachia indica (Green), and Clitoria ternatea (Blue) dyes with virgin Degussa p25 photo-anode, Journal of Materials Science. Materials in Electronics 33 (2022) 17331-17342. [144]J. Wang, J. Yu, X. Zhu, X.Z. Kong, Preparation of hollow TiO 2 nanoparticles through TiO 2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity, Nanoscale research letters 7 (2012) 1-8. [145]J. Zhao, M. Milanova, M.M. Warmoeskerken, V. Dutschk, Surface modification of TiO2 nanoparticles with silane coupling agents, Colloids and surfaces A: Physicochemical and engineering aspects 413 (2012) 273-279. [146]B. Zeynizadeh, H. Mousavi, F. Sepehraddin, A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe 3 O 4@ APTMS@ Cp 2 ZrCl x (x= 0, 1, 2) MNPs in PEG-400, Research on Chemical Intermediates 46 (2020) 3361-3382. [147]J. Włoch, A.P. Terzyk, M. WiśNiewski, P. Kowalczyk, Nanoscale water contact angle on Polytetrafluoroethylene surfaces characterized by molecular Dynamics–Atomic force microscopy imaging, Langmuir 34 (2018) 4526-4534. [148]R. Habibi, O. Bakhtiari, Preparation and characterization of modified halloysite nanotubes—Pebax nanocomposite membranes for CO2/CH4 separation, Chemical Engineering Research and Design 174 (2021) 199-212. [149]N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance, Journal of Energy Chemistry 26 (2017) 454-465. [150]D. Zhao, Y. Wu, J. Ren, H. Li, Y. Qiu, M. Deng, Improved CO2 separation performance of composite membrane with the aids of low-temperature plasma treatment, Journal of membrane science 570 (2019) 184-193. [151]Y. Wu, D. Zhao, J. Ren, Y. Qiu, M. Deng, A novel Pebax-C60 (OH) 24/PAN thin film composite membrane for carbon dioxide capture, Separation and Purification Technology 215 (2019) 480-489. [152]S.-C. Lu, T. Wichidit, T. Narkkun, K.-L. Tung, K. Faungnawakij, C. Klaysom, Aminosilane-Functionalized Zeolite Y in Pebax Mixed Matrix Hollow Fiber Membranes for CO2/CH4 Separation, Polymers 15 (2022) 102. [153]H. Sanaeepur, R. Ahmadi, M. Sinaei, A. Kargari, Pebax-modified cellulose acetate membrane for CO2/N2 separation, Journal of Membrane Science and Research 5 (2019) 25-32. [154]W. Aframehr, B. Molki, R. Bagheri, N. Sarami, Capturing CO2 by a fixed-site-carrier polyvinylamine-/matrimid-facilitated transport membrane, ACS Applied Polymer Materials 4 (2022) 3380-3393. [155]L. Deng, T.-J. Kim, M.-B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, Journal of Membrane Science 340 (2009) 154-163. [156]L.A. El-Azzami, E.A. Grulke, Parametric study of CO2 fixed carrier facilitated transport through swollen chitosan membranes, Industrial & Engineering Chemistry Research 48 (2009) 894-902. [157]L.A. El-Azzami, E.A. Grulke, Carbon dioxide separation from hydrogen and nitrogen: Facilitated transport in arginine salt–chitosan membranes, Journal of Membrane Science 328 (2009) 15-22. [158]N. Azizi, H.R. Mahdavi, M. Isanejad, T. Mohammadi, Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO 2 and CH 4, Journal of Polymer Research 24 (2017) 1-14. [159]S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties, Journal of membrane science 460 (2014) 62-70. [160]A. Mahmoudi, M. Asghari, V. Zargar, CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane, Journal of Industrial and Engineering Chemistry 23 (2015) 238-242. [161]H. Rabiee, A. Ghadimi, S. Abbasi, CO2 separation performance of poly (ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties, Chemical Engineering Research and Design 98 (2015) 96-106. [162]H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, science 311 (2006) 639-642. [163]N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4, Journal of Natural Gas Science and Engineering 37 (2017) 39-51. [164]K. Duan, J. Wang, Y. Zhang, J. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, Journal of membrane science 572 (2019) 588-595. [165]X. Wu, Z. Tian, S. Wang, D. Peng, L. Yang, Y. Wu, Q. Xin, H. Wu, Z. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, Journal of Membrane Science 528 (2017) 273-283. [166]B.H. Park, M.-H. Lee, S.B. Kim, Y.M. Jo, Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements, Applied Surface Science 257 (2011) 3709-3716. [167]H. Rabiee, S.M. Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas permeation and sorption properties of poly (amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, Journal of Industrial and Engineering Chemistry 27 (2015) 223-239. [168]M. Sadeghi, M.M. Talakesh, B. Ghalei, M. Shafiei, Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane, Journal of Membrane Science 427 (2013) 21-29. [169]N. Azizi, M. Isanejad, T. Mohammadi, R.M. Behbahani, Effect of TiO 2 loading on the morphology and CO 2/CH 4 separation performance of PEBAX-based membranes, Frontiers of Chemical Science and Engineering 13 (2019) 517-530. [170]A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Separation and Purification Technology 62 (2008) 110-117. [171]T. Visser, G. Koops, M. Wessling, On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes, Journal of Membrane Science 252 (2005) 265-277. [172] S. Hafeez, T. Safdar, E. Pallari, G. Manos, E. Aristodemou, Z. Zhang, S.M. Al-Salem, A. Constantinou, CO2 capture using membrane contactors: a systematic literature review, Frontiers of Chemical Science and Engineering 15 (2021) 720-754. [173] D. Zhao, J. Ren, H. Li, X. Li, M. Deng, Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes, Journal of Membrane Science 467 (2014) 41-47.
|