跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林軒羽
研究生(外文):Hsuan-Yu Lin
論文名稱:促進CO2傳輸與CO2/N2分離效能之Pebax-PEG/胺基改質TiO2顆粒混合基質薄膜
論文名稱(外文):Enhanced CO2 Transport and CO2/N2 Selectivity Using Pebax-PEG/Amine-Functionalized TiO2 Particles Mixed Matrix Membranes
指導教授:孫幸宜
指導教授(外文):Shing-Yi Suen
口試委員:張博凱黃書賢
口試委員(外文):Bor-Kae ChangShu-Hsien Huang
口試日期:2024-05-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:84
中文關鍵詞:碳捕獲氣體分離混合基質薄膜PebaxTiO2胺基
外文關鍵詞:Carbon captureGas separationMixed matrix membranesPebaxTiO2Amino group
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑒於氣候變遷對環境威脅與日俱增,以「2050淨零碳排」目標創造具競爭力又永續循環的綠色經濟已是全球趨勢,因此碳捕獲、碳儲存、碳利用等技術備受矚目。而在碳捕獲技術中,高分子薄膜因具備低成本、低耗能、低污染等優點,已廣泛應用於二氧化碳分離程序。 促進CO2傳輸型氣體分離膜多使用富含胺基之薄膜,乃鑒於胺基上氮原子含有未配對電子,可與CO2產生作用,增加CO2對薄膜之溶解度,促進傳輸效果。本研究著眼於使用富含胺基之高分子Pebax,摻入胺基改質之TiO2顆粒,製備成混合基質薄膜,既強化薄膜機械強度,又增加薄膜中胺基數量以促進CO2傳輸,且可拉大與薄膜親和力弱的氣體N2間之分離選擇率。此外,高分子鑄膜液採用綠色溶劑70%乙醇水溶液,且使用後高分子容易回收,為環境友善程序。本研究探討200 nm TiO2顆粒表面接枝不同數量胺基(1-3)之矽烷分子以及摻混wt%對氣體分離效果的影響,可得摻混0.5 wt% TiO2-AAAPTMS (3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane)時獲致最佳CO2滲透率及CO2 /N2分離選擇率。為更提升氣體分離效能,本研究採用PEG 200為添加劑,因其EO單元對極性CO2具強親和力,且可增加Pebax基材的無定型區域,提高薄膜內自由體積。本研究所製備之以0.2 μm PTFE/PP為支撐層、膜厚10 μm的Pebax-80% PEG 200/0.5% TiO2-AAAPTMS混合基質薄膜可達到15.5 GPU之CO2通量、170 barrer之CO2滲透率、68之CO2 /N2分離選擇率,與純Pebax薄膜相比,效能有顯著提升,且已超越2008年Robeson’s upper bound。考慮薄膜碳捕獲技術於工業實際應用,本研究亦測試混合氣體之分離效率,純Pebax薄膜及混合基質薄膜均可獲致高達89%以上之CO2的純化效果,且高溫下可獲得較大之氣體通量。
The escalating threat of climate change accentuates the global imperative to pursue the "Net-Zero Emissions by 2050" target and instigate a competitive, sustainable, and circular green economy. Among the myriad Carbon capture and storage (CCS) technologies, polymer membranes stand out as particularly noteworthy due to their inherent advantages, including low cost, low energy consumption, simplified operation, and minimal environmental impact, leading to their extensive application in carbon dioxide separation processes. The technological highlights of this work involve the utilization of amino group based polymer (Pebax 1657), incorporating amine functionalized titanium dioxide particles to fabricate Pebax/TiO2-NH2 mixed matrix membranes (MMMs), subsequently applied in CO2/N2 separation processes. Since the unpaired electrons on nitrogen atom facilitate interaction with CO2, amplifying CO2 solubility. Therefore, the incorporation of amino-functionalized titanium dioxide particles not only enhances the mechanical strength of membranes but also augments the density of amino groups within, facilitating the reaction between carbon dioxide and amino-functionalized carrier-solution-diffusion mechanism. This not only facilitates CO2 transport but also increases the separation selectivity between CO2 and other gases. Furthermore, the solvent utilize in this work is 70% ethanol aqueous solution, which is easily to recyclable, making it an environmentally friendly fabrication process. Meanwhile, this work investigates the influence of grafting silanol compounds with varying quantities of amine groups (1-3) on TiO2 particles and the incorporation of loading wt% on gas separation performance. It is revealed that the addition of 0.5wt% TiO2-AAAPTMS yields the optimal CO2 permeability and CO2/N2 selectivity. To further enhance gas permeability and separation performance, polyethylene glycol (PEG 200) is selected as an additive. PEG 200, with its high chain mobility, increases the amount of amorphous EO segments and thus the free volume of the membrane. The 10 μm MMMs with 0.5 wt% TiO2-AAAPTMS and 80% PEG, consisting of a 0.2 μm PTFE/PP support layer showed the best separation performance exhibiting distinct increases of 130% permeability and 40% selectivity (CO2 170 barrer, CO2/N2 = 68) compared to primitive Pebax membrane, and surpassed 2008 Robeson’s upper bound. Considering the practical application of membrane carbon capture technology in industry, this study conducted mixed gas experiments using different ratios of CO2 and N2. Both pure Pebax membranes and mixed matrix membranes achieved purification of over 89% CO2. Additionally, higher gas fluxes were obtained at elevated temperatures.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 4
2.1 薄膜分離技術簡介 4
2.2 高分子薄膜製備方法 6
2.3 氣體分離程序 8
2.3.1 薄膜於氣體分離之機制 8
2.3.2 薄膜於氣體分離之應用 10
2.4混合基質薄膜 13
2.5 填料 18
2.5.1 無機填料 18
2.5.2 胺基改質填料 19
2.6 以Pebax為基材之混合基質薄膜 22
第三章 研究方法 24
3.1 材料 24
3.2 儀器 25
3.3含氨基TiO2顆粒之製備 26
3.3.1 TiO2-APTMS顆粒製備 26
3.3.2 TiO2-AAPTMS和TiO2-AAPTMS顆粒製備 26
3.4 TiO2顆粒之特性分析 27
3.4.1 FTIR分析 27
3.4.2 TGA分析 27
3.4.3 XRD分析 28
3.4.4 XPS分析 28
3.5 高分子薄膜之製備 29
3.5.1 純高分子薄膜之製備 29
3.5.2 Pebax/TiO2-APTMS混合基質薄膜之製備 29
3.6 混合基質薄膜之特性分析 30
3.6.1 SEM、EDS分析 30
3.6.2 FTIR分析 30
3.6.3 TGA分析 30
3.6.4 XPS分析 31
3.6.5 GC分析 31
3.7 氣體滲透分離實驗 31
第四章 結果與討論 35
4.1 TiO2顆粒之特性分析結果 35
4.2 Pebax/TiO2混合基材薄膜之特性分析 39
4.3 Pebax純膜與Pebax/TiO2-NH2混合基質薄膜氣體分離結果 44
4.4 Pebax/TiO2-NH2 on PTFE/PP氣體分離結果 52
4.5進料壓力對Pebax純膜及Pebax/0.5% TiO2-AAAPTMS on PTFE/PP混合基質薄膜影響 54
4.6 溫度對Pebax純膜及Pebax/0.5% TiO2-AAAPTMS on PTFE/PP混合基質薄膜影響 56
4.7 Pebax/PEG 200混合基質薄膜氣體分離結果 58
4.8 Pebax-PEG200/TiO2-AAAPTMS混合基質薄膜氣體分離結果 60
4.9混合氣體分離結果 63
第五章 結論 66
參考文獻 67
[1]G. Clarizia, P. Bernardo, A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation, Polymers 14 (2022) 10.
[2]S. Kim, Y.M. Lee, High performance polymer membranes for CO2 separation, Current Opinion in Chemical Engineering 2 (2013) 238–244.
[3]K. Yang, Y. Dai, X. Ruan, W. Zheng, X. Yang, R. Ding, G. He, Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes, Journal of Membrane Science 601 (2020), 117934.
[4]Y. Song, M. Wei, F. Xu, Y. Wang, Transport Mechanism of Water Molecules Passing through Polyamide/COF Mixed Matrix Membranes, Physical Chemistry Chemical Physics 21 (2019), 26591-26597.
[5]S. Aydin, C. Altintas, S. Keskin, High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification, ACS Applied Materials & Interfaces 14 (2022), 21738-21749.
[6]Y. Chen, L. Zhao, B. Wang, P. Dutta, W.S. Winston Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, Journal of Membrane Science 497 (2016) 21-28.
[7]G. Golemme, A. Policicchio, E. Sardella, G. De Luca, B. Russo, P.F. Liguori, A. Melicchio, R.G. Agostino, Surface modification of molecular sieve fillers for mixed matrix membranes, Colloids and Surfaces A: Physicochemical and Engineering Aspects 538 (2018) 333-342.
[8]H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, Journal of Membrane Science 465 (2014) 78-90.
[9]H. Strathmann, Membrane separation processes, Journal of Membrane Science 9 (1981) 121-189.
[10]E. Drioli, L. Giorno, Comprehensive membrane science and engineering, 1 (2010) 1-354.
[11]H. Verweij, Inorganic membranes, Current opinion in chemical engineering 1 (2012) 156-162.
[12]M. Ulbricht, Advanced functional polymer membranes, Polymer 47 (2006) 2217-2262.
[13]L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science 62 (1991) 165-185.
[14]S. Bachler, M. Ort, S.D. KräMer, P.S. Dittrich, Permeation studies across symmetric and asymmetric membranes in microdroplet arrays, Analytical Chemistry 93 (2021) 5137-5144.
[15]B. Hiebl, K. Lützow, M. Lange, F. Jung, B. Seifert, F. Klein, T. Weigel, K. Kratz, A. Lendlein, Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding, Journal of biotechnology 148 (2010) 76-82.
[16]A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology 2 (2016) 17-42.
[17]Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of materials science 41 (2006) 763-777.
[18]L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van Der Bruggen, Membrane synthesis for membrane distillation: A review, Separation and Purification Technology 182 (2017) 36-51.
[19]P. Apel, Track etching technique in membrane technology, Radiation measurements 34 (2001) 559-566.
[20]T. Miyazaki, M. Takenaka, Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 394 (2017) 121-125.
[21]R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids, Principles and Applications, University of California Press, Berkeley, 1975.
[22]D. Nikezic, K. Yu, Formation and growth of tracks in nuclear track materials, Materials Science and Engineering: R: Reports 46 (2004) 51-123.
[23]Y. Komaki, Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride, Nuclear Tracks 3 (1979) 33-44.
[24]L. Rozelle, J. Cadotte, R. Corneliussen, E. Erickson, K. Cobian, C. Kopp Jr, Phase inversion membranes, Encyclopedia of separation science (2000) 3331-3346.
[25]B.P. Binks, R. Murakami, Phase inversion of particle-stabilized materials from foams to dry water, Nature materials 5 (2006) 865-869.
[26]L.L. Hench, J.K. West, The sol-gel process, Chemical reviews 90 (1990) 33-72.
[27]D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol-gel method: synthesis and application, Advances in Materials Science and Engineering 2021 (2021) 1-21.
[28]W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17 (2006) R89.
[29]N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology advances 28 (2010) 325-347.
[30]T. Turel, Gas Transmission Trough Microporous Membranes (Ph.D. Thesis), Auburn University, Alabama, USA, 2008.
[31]P.G. Crawford, Zeolite Membranes for the Separation of Krypton and Xenon from Spent Nuclear Fuel Reprocessing Off-Gas (Master Thesis), Georgia Institute of Technology, Atlanta, Georgia, 2013.
[32]S.T. Oyama, M. Yamada, T. Sugawara, A. Takagaki, R. Kikuchi, Review on mechanisms of gas permeation through inorganic membranes, Journal of the Japan Petroleum Institute 54 (2011) 298-309.
[33]R.S.K. Valappil, N. Ghasem, M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review, Journal of Industrial and Engineering Chemistry 98 (2021) 103-129.
[34]W.S.W. Ho, K.K. Sirkar, eds., Membrane Handbook, Van Nostrand Reinhold, New York (1992).
[35]P. Pandey, R. Chauhan, Membranes for gas separation, Progress in polymer science 26 (2001) 853-893.
[36]R. Abedini, A. Nezhadmoghadam, Application of membrane in gas separation processes: its suitability and mechanisms, Petroleum & Coal 52 (2010) 69-80.
[37]T. Graham, XVIII. On the absorption and dialytic separation of gases by colloid septa, Philosophical transactions of the Royal Society of London (1866) 399-439.
[38]C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96 (2012) 15-28.
[39]R.W. Baker, Future directions of membrane gas separation technology, Industrial & engineering chemistry research 41 (2002) 1393-1411.
[40]Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K. Mizrahi Rodriguez, S. Lin, F.M. Benedetti, A.X. Wu, W.S. Chi, Z.P. Smith, MOF-based membranes for gas separations, Chemical reviews 120 (2020) 8161-8266.
[41]T. Ashirov, A. Coskun, Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities, Chem 7 (2021) 2385-2394.
[42]R.W. Baker, Membrane Technology and Applications, 2nd Ed., John Wiley & Sons, Chichester, England (2004).
[43]Y. Yampolskii, I. Pinnau, B.D. Freeman, eds., Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Chichester, England (2006).
[44]R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: an overview, Industrial & Engineering Chemistry Research 47 (2008) 2109-2121.
[45]A.B. Koltuniewic, E. Drioli, eds., Membrane in Clean Technology, Theory and Practice, Vol. 1 and 2, Wiley-VCH, New York (2008).
[46]Y. Yampolskii, B. Freeman, Membrane Gas Separation, (2010), .
[47]L.M. Robeson, The upper bound revisited, Journal of membrane science 320 (2008) 390-400.
[48]Z. Wang, T. Chen, J. Xu, Gas transport properties of novel cardo poly (aryl ether ketone) s with pendant alkyl groups, Macromolecules 33 (2000) 5672-5679.
[49]C. Wright, D. Paul, Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone, Journal of membrane science 124 (1997) 161-174.
[50]J. Won, M.H. Kim, Y.S. Kang, H.C. Park, U.Y. Kim, S.C. Choi, S.K. Koh, Surface modification of polyimide and polysulfone membranes by ion beam for gas separation, Journal of Applied Polymer Science 75 (2000) 1554-1560.
[51]L. Shao, T.-S. Chung, S. Goh, K. Pramoda, Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance, Journal of membrane science 256 (2005) 46-56.
[52]J. Zou, W.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly (vinyl alcohol), Journal of Membrane Science 286 (2006) 310-321.
[53]T. Johnson, S. Thomas, Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends, Polymer 40 (1999) 3223-3228.
[54]S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49 (2008) 1594-1603.
[55]W. Yong, F. Li, Y. Xiao, P. Li, K. Pramoda, Y. Tong, T. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, Journal of membrane science 407 (2012) 47-57.
[56]A. Mushtaq, H.B. Mukhtar, A.M. Shariff, H.A. Mannan, A review: development of polymeric blend membrane for removal of CO2 from natural gas, Int. J. Eng. Technol. IJET-IJENS 13 (2013) 53-60.
[57]F. Ruiz‐Treviño, D. Paul, Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive, Journal of applied polymer science 68 (1998) 403-415.
[58]S.H. Chen, S.S. Lin, D.J. Chang, J.S. Chang, Gas transport properties of CoAlPO4‐5/PC membranes, Journal of Applied Polymer Science 77 (2000) 89-95.
[59]T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in polymer science 32 (2007) 483-507.
[60]M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: A review, Separation and purification Technology 75 (2010) 229-242.
[61]F. Krull, C. Fritzmann, T. Melin, Liquid membranes for gas/vapor separations, Journal of Membrane Science 325 (2008) 509-519.
[62]P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S. Suen, Ionic liquid membranes for carbon dioxide–methane separation, Journal of membrane science 383 (2011) 262-271.
[63]Y. Li, T.-S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, Journal of Membrane Science 260 (2005) 45-55.
[64]Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes, Journal of Membrane Science 275 (2006) 17-28.
[65]C.-C. Hu, T.-C. Liu, K.-R. Lee, R.-C. Ruaan, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties, Desalination 193 (2006) 14-24.
[66]Y.-J. Fu, C.-C. Hu, K.-R. Lee, Y.-J. Chen, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties, Desalination 200 (2006) 250-252.
[67]D. Şen, H. Kalıpçılar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes, Journal of Membrane Science 303 (2007) 194-203.
[68]J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Separation and purification technology 115 (2013) 163-171.
[69]J. Ahmad, M.-B. Hägg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation, Journal of Membrane Science 427 (2013) 73-84.
[70]S. Basu, A. Cano-Odena, I.F. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Separation and Purification Technology 81 (2011) 31-40.
[71]O.G. Nik, X.Y. Chen, S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science 413 (2012) 48-61.
[72]S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural-and bio-gas upgrading, Journal of membrane science 452 (2014) 184-192.
[73]M. Valero, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53 (Al) in glassy polymers, Microporous and mesoporous materials 192 (2014) 23-28.
[74]T.-L. Chew, A.L. Ahmad, S. Bhatia, Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2), Advances in colloid and interface science 153 (2010) 43-57.
[75]Y. Shen, A.C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chemical engineering journal 192 (2012) 201-210.
[76]A. Ahmad, Z. Jawad, S. Low, S. Zein, A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation, Journal of Membrane Science 451 (2014) 55-66.
[77]A. Moghadassi, Z. Rajabi, S. Hosseini, M. Mohammadi, Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties, Journal of Industrial and Engineering Chemistry 20 (2014) 1050-1060.
[78]M.F.A. Wahab, A.F. Ismail, S.J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers, Separation and Purification Technology 86 (2012) 41-48.
[79]S. Hassanajili, E. Masoudi, G. Karimi, M. Khademi, Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases, Separation and Purification Technology 116 (2013) 1-12.
[80]F. Moghadam, M. Omidkhah, E. Vasheghani-Farahani, M. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology 77 (2011) 128-136.
[81]C. Li, H. Shao, S. Zhong, Preparation technology of organic-inorganic hybrid membrane, Progress in Chemistry 16 (2004) 83.
[82]S. Hashemifard, A.F. Ismail, T. Matsuura, Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal, Chemical Engineering Journal 170 (2011) 316-325.
[83]M. Sadeghi, G. Khanbabaei, A.H.S. Dehaghani, M. Sadeghi, M.A. Aravand, M. Akbarzade, S. Khatti, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes, Journal of Membrane Science 322 (2008) 423-428.
[84]J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane science 314 (2008) 123-133.
[85]J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), Journal of membrane science 346 (2010) 280-287.
[86]R. Barrer, S. James, Electrochemistry of crystal—polymer membranes. Part I. Resistance measurements, The Journal of Physical Chemistry 64 (1960) 417-421.
[87]Duval JM. Adsorbent filled polymeric membranes. PhD thesis. The Netherlands: University of Twente; 1995.
[88]J.P. Boom, I. Pünt, H. Zwijnenberg, R. De Boer, D. Bargeman, C. Smolders, H. Strathmann, Transport through zeolite filled polymeric membranes, Journal of membrane science 138 (1998) 237-258.
[89]M.-D. Jia, K.-V. Pleinemann, R.-D. Behling, Preparation and characterization of thin-film zeolite–PDMS composite membranes, Journal of Membrane Science 73 (1992) 119-128.
[90]R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Industrial & Engineering Chemistry Research 39 (2000) 2692-2696.
[91]B.D. Reid, F.A. Ruiz-Trevino, I.H. Musselman, K.J. Balkus, J.P. Ferraris, Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41, Chemistry of materials 13 (2001) 2366-2373.
[92]Shu, S. Husain, W.J. Koros, A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces, The journal of physical chemistry C 111 (2007) 652-657.
[93]R. Mahajan, W.J. Koros, Mixed matrix membrane materials with glassy polymers. Part 1, Polymer Engineering & Science 42 (2002) 1420-1431.
[94]R. Mahajan, W.J. Koros, Mixed matrix membrane materials with glassy polymers. Part 2, Polymer Engineering & Science 42 (2002) 1432-1441.
[95]K.J. Balkus, K. Cattanach, I.H. Musselman, J.P. Ferraris, Selective Matrimid Membranes Containing Mesoporous Molecular Sieves, MRS Online Proceedings Library (OPL) 752 (2002), .
[96]P. Goh, A. Ismail, S. Sanip, B. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology 81 (2011) 243-264.
[97]P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Industrial & engineering chemistry research 48 (2009) 4638-4663.
[98]L. Ge, Z. Zhu, V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Separation and purification technology 78 (2011) 76-82.
[99]S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment, Journal of Membrane Science 294 (2007) 147-158.
[100]S. Sanip, A. Ismail, P. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Gas separation properties of functionalized carbon nanotubes mixed matrix membranes, Separation and Purification Technology 78 (2011) 208-213.
[101]B. Shimekit, H. Mukhtar, T. Murugesan, Prediction of the relative permeability of gases in mixed matrix membranes, Journal of membrane science 373 (2011) 152-159.
[102]E. Ahmadpour, M.V. Sarfaraz, R.M. Behbahani, A.A. Shamsabadi, M. Aghajani, Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax 1657 as a copolymer on an ultra-porous PVC support, Journal of Natural Gas Science and Engineering 35 (2016) 33-41.
[103]N. Azizi, T. Mohammadi, R.M. Behbahani, Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation, Chemical Engineering Research and Design 117 (2017) 177-189.
[104]A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: Titanium Dioxide Applications, Energy Procedia 157 (2019) 17-29.
[105]M. C. Park, W. H. Yoon, D. H. Lee, J. M. Myoung, S. H. Bae, S. Y. Lee and I. Yun, “Effect of Misfit Strain on Properties of TiO2 Films Grown by Pulsed Laser Deposition”, Mat. Res. Soc. Symp. Proc. 696. (2002), .
[106]E. Kaidashev, M.V. Lorenz, H. Von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters 82 (2003) 3901-3903.
[107]S. O. Kasap , “ Principles of Electronic Materials and Devices “ , second edition , McGrow Hill , (2002) 557 .
[108]A. Cirera Hernández, New technologies and their characterisation for nanostructured SnO2 Gas sensor devices, (2000), .
[109]K. Gnanasekar, B. Rambabu, Nanostructure semiconductor oxide powders and thin films for gas sensor, Surf. Sci 200 (2002) 780.
[110]R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, G. He, Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation, Separation and Purification Technology 236 (2020), 116209.
[111]Y. Ding, H. Wang, M. Yu, W. Zheng, X. Ruan, X. Li, Y. Xi, Y. Dai, H. Liu, G. He, Amine group graft ZIF-93 to create gas storage space to improve the gas separation performance of Pebax-1657 MMMs, Separation and Purification Technology 309 (2023), 122949.
[112]M. Jia, Y. Feng, J. Qiu, X.-F. Zhang, J. Yao, Amine-functionalized MOFs@ GO as filler in mixed matrix membrane for selective CO2 separation, Separation and Purification Technology 213 (2019) 63-69.
[113]M.G. Buonomenna, G. Golemme, C.M. Tone, M.P. De Santo, F. Ciuchi, E. Perrotta, Amine-functionalized SBA-15 in poly (styrene-b-butadiene-b-styrene)(SBS) yields permeable and selective nanostructured membranes for gas separation, Journal of Materials Chemistry A 1 (2013) 11853-11866.
[114]A.L. Khan, C. Klaysom, A. Gahlaut, A.U. Khan, I.F. Vankelecom, Mixed matrix membranes comprising of Matrimid and–SO3H functionalized mesoporous MCM-41 for gas separation, Journal of membrane science 447 (2013) 73-79.
[115]A.L. Khan, C. Klaysom, A. Gahlaut, X. Li, I.F. Vankelecom, SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO 2 separations, Journal of Materials Chemistry 22 (2012) 20057-20064.
[116]S. Kim, E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix, Microporous and Mesoporous Materials 114 (2008) 129-136.
[117]A.L. Khan, C. Klaysom, A. Gahlaut, I.F. Vankelecom, Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation, Journal of membrane science 436 (2013) 145-153.
[118]S. Hashemifard, A. Ismail, T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental, Journal of colloid and interface science 359 (2011) 359-370.
[119]H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Separation and Purification Technology 214 (2019) 78-86.
[120]O. Khantamat, C.-H. Li, S.-P. Liu, T. Liu, H.J. Lee, O. Zenasni, T.-C. Lee, C. Cai, T.R. Lee, Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells, Journal of colloid and interface science 513 (2018) 715-725.
[121]P. Dobrowolska, A. Krajewska, M. Gajda-Rączka, B. Bartosewicz, P. Nyga, B.J. Jankiewicz, Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@ Au and TiO2@ Au core-shell nanostructures, Materials 8 (2015) 2849-2862.
[122]J. Xie, X. Pan, M. Wang, J. Ma, Y. Fei, P.-N. Wang, L. Mi, The role of surface modification for TiO2 nanoparticles in cancer cells, Colloids and Surfaces B: Biointerfaces 143 (2016) 148-155.
[123]E. Tocci, A. Gugliuzza, L. De Lorenzo, M. Macchione, G. De Luca, E. Drioli, Transport properties of a co-poly (amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results, Journal of Membrane Science 323 (2008) 316-327.
[124]J. Potreck, K. Nijmeijer, T. Kosinski, M. Wessling, Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074, Journal of Membrane Science 338 (2009) 11-16.
[125]L. Liu, A. Chakma, X. Feng, Propylene separation from nitrogen by poly (ether block amide) composite membranes, Journal of membrane science 279 (2006) 645-654.
[126]V. Bondar, B. Freeman, I. Pinnau, Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers, Journal of Polymer Science Part B: Polymer Physics 37 (1999) 2463-2475.
[127]J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly (amide-6-b-ethylene oxide) copolymer, Journal of Membrane Science 190 (2001) 179-193.
[128]A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation, Journal of Membrane Science 307 (2008) 88-95.
[129]W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, Journal of Membrane Science 350 (2010) 124-129.
[130]W. Yave, A. Car, K.-V. Peinemann, M.Q. Shaikh, K. Rätzke, F. Faupel, Gas permeability and free volume in poly (amide-b-ethylene oxide)/polyethylene glycol blend membranes, Journal of Membrane Science 339 (2009) 177-183.
[131]R.S. Murali, S. Sridhar, T. Sankarshana, Y. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Industrial & Engineering Chemistry Research 49 (2010) 6530-6538.
[132]T.C. Merkel, Z. He, I. Pinnau, B.D. Freeman, P. Meakin, A.J. Hill, Effect of nanoparticles on gas sorption and transport in poly (1-trimethylsilyl-1-propyne), Macromolecules 36 (2003) 6844-6855.
[133]R. Surudžić, A. Janković, M. Mitrić, I. Matić, Z.D. Juranić, L. Živković, V. Mišković-Stanković, K.Y. Rhee, S.J. Park, D. Hui, The effect of graphene loading on mechanical, thermal and biological properties of poly (vinyl alcohol)/graphene nanocomposites, Journal of industrial and engineering chemistry 34 (2016) 250-257.
[134]G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, Journal of Membrane Science 520 (2016) 860-868.
[135]J. Yuan, H. Zhu, J. Sun, Y. Mao, G. Liu, W. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS applied materials & interfaces 9 (2017) 38575-38583.
[136]H. Wang, W. Zheng, X. Yang, M. Ning, X. Li, Y. Xi, X. Yan, X. Zhang, Y. Dai, H. Liu, G. He, Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation, Separation and Purification Technology 274 (2021) 119015.
[137]B. Yu, H. Cong, Z. Li, J. Tang, X.S. Zhao, Pebax‐1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation, Journal of Applied Polymer Science 130 (2013) 2867-2876.
[138]J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, Journal of Membrane Science 513 (2016) 155-165.
[139]L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation, Journal of Membrane Science 500 (2016) 66-75.
[140]M.M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M.M. Khan, V. Abetz, PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation, Journal of Membrane Science 437 (2013) 286-297.
[141]D. Nobakht, R. Abedini, Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds, Journal of Environmental Chemical Engineering 10 (2022) 107568.
[142]M. Mehdinia Lichaei, F. Pazani, A. Aroujalian, D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide, Process Safety and Environmental Protection 163 (2022) 36-47.
[143]T.V. Prabhu, J. Chandrasekaran, D. Thangaraju, P. Vivek, S. Gopi, Fabrication and performance analysis of set standard natural dye-sensitized solar cell (N-DSSC) using extracted Terminalia kattapa (Red), Azadirachia indica (Green), and Clitoria ternatea (Blue) dyes with virgin Degussa p25 photo-anode, Journal of Materials Science. Materials in Electronics 33 (2022) 17331-17342.
[144]J. Wang, J. Yu, X. Zhu, X.Z. Kong, Preparation of hollow TiO 2 nanoparticles through TiO 2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity, Nanoscale research letters 7 (2012) 1-8.
[145]J. Zhao, M. Milanova, M.M. Warmoeskerken, V. Dutschk, Surface modification of TiO2 nanoparticles with silane coupling agents, Colloids and surfaces A: Physicochemical and engineering aspects 413 (2012) 273-279.
[146]B. Zeynizadeh, H. Mousavi, F. Sepehraddin, A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe 3 O 4@ APTMS@ Cp 2 ZrCl x (x= 0, 1, 2) MNPs in PEG-400, Research on Chemical Intermediates 46 (2020) 3361-3382.
[147]J. Włoch, A.P. Terzyk, M. WiśNiewski, P. Kowalczyk, Nanoscale water contact angle on Polytetrafluoroethylene surfaces characterized by molecular Dynamics–Atomic force microscopy imaging, Langmuir 34 (2018) 4526-4534.
[148]R. Habibi, O. Bakhtiari, Preparation and characterization of modified halloysite nanotubes—Pebax nanocomposite membranes for CO2/CH4 separation, Chemical Engineering Research and Design 174 (2021) 199-212.
[149]N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance, Journal of Energy Chemistry 26 (2017) 454-465.
[150]D. Zhao, Y. Wu, J. Ren, H. Li, Y. Qiu, M. Deng, Improved CO2 separation performance of composite membrane with the aids of low-temperature plasma treatment, Journal of membrane science 570 (2019) 184-193.
[151]Y. Wu, D. Zhao, J. Ren, Y. Qiu, M. Deng, A novel Pebax-C60 (OH) 24/PAN thin film composite membrane for carbon dioxide capture, Separation and Purification Technology 215 (2019) 480-489.
[152]S.-C. Lu, T. Wichidit, T. Narkkun, K.-L. Tung, K. Faungnawakij, C. Klaysom, Aminosilane-Functionalized Zeolite Y in Pebax Mixed Matrix Hollow Fiber Membranes for CO2/CH4 Separation, Polymers 15 (2022) 102.
[153]H. Sanaeepur, R. Ahmadi, M. Sinaei, A. Kargari, Pebax-modified cellulose acetate membrane for CO2/N2 separation, Journal of Membrane Science and Research 5 (2019) 25-32.
[154]W. Aframehr, B. Molki, R. Bagheri, N. Sarami, Capturing CO2 by a fixed-site-carrier polyvinylamine-/matrimid-facilitated transport membrane, ACS Applied Polymer Materials 4 (2022) 3380-3393.
[155]L. Deng, T.-J. Kim, M.-B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, Journal of Membrane Science 340 (2009) 154-163.
[156]L.A. El-Azzami, E.A. Grulke, Parametric study of CO2 fixed carrier facilitated transport through swollen chitosan membranes, Industrial & Engineering Chemistry Research 48 (2009) 894-902.
[157]L.A. El-Azzami, E.A. Grulke, Carbon dioxide separation from hydrogen and nitrogen: Facilitated transport in arginine salt–chitosan membranes, Journal of Membrane Science 328 (2009) 15-22.
[158]N. Azizi, H.R. Mahdavi, M. Isanejad, T. Mohammadi, Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO 2 and CH 4, Journal of Polymer Research 24 (2017) 1-14.
[159]S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties, Journal of membrane science 460 (2014) 62-70.
[160]A. Mahmoudi, M. Asghari, V. Zargar, CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane, Journal of Industrial and Engineering Chemistry 23 (2015) 238-242.
[161]H. Rabiee, A. Ghadimi, S. Abbasi, CO2 separation performance of poly (ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties, Chemical Engineering Research and Design 98 (2015) 96-106.
[162]H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, science 311 (2006) 639-642.
[163]N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4, Journal of Natural Gas Science and Engineering 37 (2017) 39-51.
[164]K. Duan, J. Wang, Y. Zhang, J. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, Journal of membrane science 572 (2019) 588-595.
[165]X. Wu, Z. Tian, S. Wang, D. Peng, L. Yang, Y. Wu, Q. Xin, H. Wu, Z. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, Journal of Membrane Science 528 (2017) 273-283.
[166]B.H. Park, M.-H. Lee, S.B. Kim, Y.M. Jo, Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements, Applied Surface Science 257 (2011) 3709-3716.
[167]H. Rabiee, S.M. Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas permeation and sorption properties of poly (amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, Journal of Industrial and Engineering Chemistry 27 (2015) 223-239.
[168]M. Sadeghi, M.M. Talakesh, B. Ghalei, M. Shafiei, Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane, Journal of Membrane Science 427 (2013) 21-29.
[169]N. Azizi, M. Isanejad, T. Mohammadi, R.M. Behbahani, Effect of TiO 2 loading on the morphology and CO 2/CH 4 separation performance of PEBAX-based membranes, Frontiers of Chemical Science and Engineering 13 (2019) 517-530.
[170]A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Separation and Purification Technology 62 (2008) 110-117.
[171]T. Visser, G. Koops, M. Wessling, On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes, Journal of Membrane Science 252 (2005) 265-277.
[172] S. Hafeez, T. Safdar, E. Pallari, G. Manos, E. Aristodemou, Z. Zhang, S.M. Al-Salem, A. Constantinou, CO2 capture using membrane contactors: a systematic literature review, Frontiers of Chemical Science and Engineering 15 (2021) 720-754.
[173] D. Zhao, J. Ren, H. Li, X. Li, M. Deng, Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes, Journal of Membrane Science 467 (2014) 41-47.
電子全文 電子全文(網際網路公開日期:20260701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊