|
1.Zou, X.D., et al., A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature, 2005. 437(7059): p. 716-719. 2.Tian, Z.R., et al., Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science, 1997. 276(5314): p. 926-930. 3.Yang, P.D., et al., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998. 396(6707): p. 152-155. 4.Baldi, M., et al., Characterization of manganese and iron oxides as combustion catalysts for propane and propene. Appl. Catal. B-Environ. , 1998. 17(3): p. L175-L182. 5.Navrotsky, A., et al., Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria. Science, 2010. 330(6001): p. 199-201. 6.Park, J.N., et al., Highly Ordered Mesoporous alpha-Mn2O3 for Catalytic Decomposition of H2O2 at Low Temperatures. Chem. Lett. , 2010. 39(5): p. 493-495. 7.Wen, W., et al., Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage. Scientific Reports, 2015. 5(1): p. 11804. 8.Wakatsuki, N. and T. Tojo, Fabrication of Titanium Oxide Thin-Film Electrodes with Photocatalytic Activities and an Evaluation of Their Photoelectrochemical Properties. Engineering Proceedings, 2023. 55(1): p. 57. 9.Chen, J.S. and X.W. Lou, The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources, 2010. 195(9): p. 2905-2908. 10.Therdthianwong, A., P. Manomayidthikarn, and S. Therdthianwong, Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell. Energy, 2007. 32: p. 2401-2411. 11.Kang, C., et al., Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Journal of Power Sources, 2015. 299: p. 465-471. 12.Najafi Roudbari, M., R. Ojani, and J.B. Raoof, Investigation of hot pressing parameters for manufacture of catalyst-coated membrane electrode (CCME) for polymer electrolyte membrane fuel cells by response surface method. Energy, 2017. 140: p. 794-803. 13.Zou, H., et al., Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Materials & Design, 2021. 198: p. 109334. 14.Li, Z., et al., Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 2015. 6(1): p. 8850. 15.Kim, S.J., et al., High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochimica Acta, 2015. 163: p. 246-251. 16.Xu, K., et al., 3D printing of ultrathick natural graphite anodes for high-performance interdigitated three-dimensional lithium-ion batteries. Electrochemistry Communications, 2022. 139: p. 107312. 17.Ryu, M., et al., Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023. 14(1): p. 1316. 18.He, W.L., et al., Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J. Cryst. Growth 2003. 252(1-3): p. 285-288.
|