跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/12 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王承瀚
研究生(外文):Cheng-Han Wang
論文名稱:熱壓技術提升鋰離子電池效能之探討
論文名稱(外文):Exploration of Hot Pressing Technology for Improving the Performance of Lithium-Ion Batteries
指導教授:林寬鋸
指導教授(外文):Kuan-Jiuh Lin
口試委員:果尚志嚴大任
口試委員(外文):Shan-Gjr GwoTa-Jen Yen
口試日期:2024-07-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:52
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室目前合成出許多電化學性質良好的活性材料,但以往在製成電極的過程中,實驗室無法製備出高負載質量的電極,電極也因此無法達到商用條件(Loading mass ≥ 10 mg/cm2)。本研究利用熱壓的方式降低傳統塗布法的電極厚度,並以提高塗布的次數以達到負載質量能夠高於10 mg/cm2的目的。
此研究中,我們以銳鈦礦二氧化鈦作為活性材料,碳黑作為導電材以及聚偏二氟乙烯(PVDF)作為黏合劑,利用塗布機將漿料以7:2:1(活性材料:導電材:黏合劑)的比例均勻地塗布在銅箔上,再以熱壓機將電極的厚度降低,並利用調整熱壓機參數進行電極材料塗佈的控制,在最優化條件下,製備出負載質量達4.537 mg/cm2的鋰離子電池負極。與傳統的塗布法比較,發現當以此方式製備電極時,不僅可以大量製備具備高負載質量且低厚度的電極,且其電阻可以有效的下降。並由充放電的循環測試可以發現由此方式製備出的高負載質量的電極可以維持與傳統塗布法的循環穩定性,且由於負載質量的提升,塗布再熱壓所製備的三層電極的電容值(0.0953mA h)可以擁有遠高於傳統塗布法的電容值(0.0162 mA h)。
Our laboratory has synthesized many active materials with excellent electrochemical properties. However, in the past, we were unable to produce electrodes with high loading mass during electrode fabrication, which prevented the electrodes from meeting commercial standards (Loading mass ≥ 10 mg/cm²). In this study, we employed a hot-pressing technique to reduce the thickness of electrodes made by traditional coating methods and increased the number of coating layers to achieve a loading mass greater than 10 mg/cm².
In this research, we used anatase titanium dioxide as the active material, carbon black as the conductive material, and polyvinylidene fluoride as the binder. The slurry, with a ratio of 7:2:1 (active material: conductive material: binder), was uniformly coated onto copper foil using a coating machine. Subsequently, a hot press was used to reduce the electrode thickness, and by adjusting the parameters of the hot press, the coating process of the electrode material was controlled. Under optimized conditions, we produced a lithium-ion battery anode with a loading mass of 4.537 mg/cm².Compared to the traditional coating method, this approach allows for the mass production of electrodes with high loading mass and low thickness, while effectively reducing their resistance. From the charge-discharge cycling tests, it was observed that the electrodes fabricated with this method maintained the cycling stability comparable to that of the traditional coating method. Furthermore, due to the increased loading mass, the three-layer electrodes prepared by the coating and hot-press method exhibited a significantly higher capacity (0.0953 mAh) compared to the traditional coating method (0.0162 mAh).
中文摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 引言 1
1-2 鋰離子電池 2
1-2-1 鋰離子電池的發展 2
1-2-2 鋰離子電池的工作機制與原理 3
第二章 基礎理論與文獻回顧 6
2-1 二氧化鈦 6
2-1-1 銳鈦礦 (Anatase) 7
2-1-2 金紅石 (Rutile) 8
2-1-3 TiO2-B (Bronze) 9
2-2 18650電池 11
2-3 熱壓原理與文獻回顧 13
2-4 提高負載質量的方式 15
第三章 研究動機 18
第四章 實驗部分 19
4-1 實驗藥品及儀器 19
4-1-1 實驗藥品 19
4-1-2 實驗儀器 20
4-2 熱壓機的使用 21
4-3 電極的製備 23
4-4 鈕扣電池的組裝 26
4-5 電化學分析 28
4-5-1充放電循環測試(Charge/Discharge) 28
4-5-2電化學阻抗測試(Electrochemical impedance spectroscopy, EIS) 30
第五章 實驗部分 32
5-1 不同塗布機刻度塗布電極之負載質量 32
5-2 溫度、滾輪速度、上下軸高度對電極的影響 34
5-2-1 滾輪速度的影響 34
5-2-2 不同溫度對於電極表面的影響 35
5-2-3 利用不同步驟的製作電極方式比較負載質量的多寡 40
5-2-4 不同層數電極的厚度和負載質量 42
5-3 電化學分析 45
5-3-1 充放電循環測試 (Charge/Discharge) 45
5-3-1-1 恆電流密度充放電測試 (Cyclic performance) 45
5-3-1-2 不同電流密度充放電測試 (Rate performance) 47
第六章 總結 49
第七章 未來展望 50
參考文獻 51
1.Zou, X.D., et al., A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature, 2005. 437(7059): p. 716-719.
2.Tian, Z.R., et al., Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science, 1997. 276(5314): p. 926-930.
3.Yang, P.D., et al., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998. 396(6707): p. 152-155.
4.Baldi, M., et al., Characterization of manganese and iron oxides as combustion catalysts for propane and propene. Appl. Catal. B-Environ. , 1998. 17(3): p. L175-L182.
5.Navrotsky, A., et al., Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria. Science, 2010. 330(6001): p. 199-201.
6.Park, J.N., et al., Highly Ordered Mesoporous alpha-Mn2O3 for Catalytic Decomposition of H2O2 at Low Temperatures. Chem. Lett. , 2010. 39(5): p. 493-495.
7.Wen, W., et al., Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage. Scientific Reports, 2015. 5(1): p. 11804.
8.Wakatsuki, N. and T. Tojo, Fabrication of Titanium Oxide Thin-Film Electrodes with Photocatalytic Activities and an Evaluation of Their Photoelectrochemical Properties. Engineering Proceedings, 2023. 55(1): p. 57.
9.Chen, J.S. and X.W. Lou, The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources, 2010. 195(9): p. 2905-2908.
10.Therdthianwong, A., P. Manomayidthikarn, and S. Therdthianwong, Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell. Energy, 2007. 32: p. 2401-2411.
11.Kang, C., et al., Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Journal of Power Sources, 2015. 299: p. 465-471.
12.Najafi Roudbari, M., R. Ojani, and J.B. Raoof, Investigation of hot pressing parameters for manufacture of catalyst-coated membrane electrode (CCME) for polymer electrolyte membrane fuel cells by response surface method. Energy, 2017. 140: p. 794-803.
13.Zou, H., et al., Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Materials & Design, 2021. 198: p. 109334.
14.Li, Z., et al., Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 2015. 6(1): p. 8850.
15.Kim, S.J., et al., High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochimica Acta, 2015. 163: p. 246-251.
16.Xu, K., et al., 3D printing of ultrathick natural graphite anodes for high-performance interdigitated three-dimensional lithium-ion batteries. Electrochemistry Communications, 2022. 139: p. 107312.
17.Ryu, M., et al., Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023. 14(1): p. 1316.
18.He, W.L., et al., Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J. Cryst. Growth 2003. 252(1-3): p. 285-288.
電子全文 電子全文(網際網路公開日期:20290801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 碳化矽晶背Cr/Ni/Ag與Cr/Ag奈米孿晶薄膜分析 及其與DBC陶瓷基板固晶接合
2. 離子液體基質與快速冷凍乾燥法應用於基質輔助雷射脫附游離法的探討
3. 開發4D列印可編程樣品前處理裝置串聯感應耦合電漿質譜儀進行環境及生物樣品中的微量金屬元素分析
4. 開發3D列印具孔洞及4D列印溫度響應整體式固相萃取吸附材輔助分析高鹽基質樣品中的微量金屬元素
5. 製備碳上金屬氧化物搭載單原子鉑金屬之催化劑用於電化學析氫反應
6. 製備搭載鐵單原子位點石墨碳氮化合物催化劑應用於電化學氮氣還原反應
7. 氣溶膠噴墨技術製備全光譜光催化基板
8. 於可攜式質譜儀上開發基質輔助游離法的快速進樣裝置與游離機制研究
9. 探究1,3-茚滿二酮螺環己烯化合物在鹼性條件下的重排擴環及開環反應
10. 利用簡便電分析方法探討單寧酸分子在奈米碳材上的吸附
11. 1. 利用氟化醇促進β-酮酸對各式親電試劑之脫羧加成反應2. 有機小分子催化茚滿二酮與烯醇的插烯串級環化反應及其重排反應
12. 聚氯乙烯/遠紅外線礦石粉的複合材料製備與性質研究
13. 開發以流洗曲線解析度為導向的4D列印酸鹼與溫度響應整體式固相萃取管柱
14. 開發4D列印脲酶功能化指針型檢測裝置及探討指針形變模式對於尿素定量分析效能的影響
15. 開發4D列印磁驅動樣品前處理裝置串聯感應耦合電漿質譜儀進行環境及生物樣品中的微量元素分析