跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邵亞崙
研究生(外文):Ya-Lun Shao
論文名稱:解析鄰近河川之拘限含水層受多口抽水井之地下水位
論文名稱(外文):Analytical solutions for groundwater level in a confined aquifer near a river under multiple pumping wells
指導教授:謝平城謝平城引用關係
指導教授(外文):Ping-Cheng Hsieh
口試委員:蔡東霖王昱力吳明昌
口試委員(外文):Tung-Lin TsaiYu-Li WangMing-Chang Wu
口試日期:2024-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:80
中文關鍵詞:解析解拘限含水層抽水井
外文關鍵詞:analytical solutionconfined aquiferpumping well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
Abstract ii
目 錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 前言 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究內容 3
1-4 章節介紹 4
第二章 文獻回顧 5
第三章 研究方法與材料 8
3-1 一維解析解-Case 1 9
3-1-1建立控制方程式 9
3-1-2 初始條件與邊界條件 10
3-1-3 控制方程式轉化 10
3-1-4廣義積分轉換法 11
3-2 一維解析解-Case 2 12
3-2-1建立控制方程式 13
3-2-2 初始條件與邊界條件 13
3-2-3 控制方程式轉化 13
3-2-4廣義積分轉換法 14
3-3二維解析解-Case 1 16
3-3-1建立控制方程式 16
3-3-2邊界條件與初始條件 16
3-3-3控制方程式轉化 16
3-3-4廣義積分轉換法 17
3-4二維解析解-Case 2 19
3-4-1建立控制方程式 20
3-4-2邊界條件與初始條件 20
3-4-3控制方程式轉化 20
3-4-4廣義積分轉換法 21
第四章 結果與討論 24
4-1 驗證 24
4-2不同水力傳導度之含水層地下水位 38
4-3 不同比儲蓄係數之地下水位 46
4-4 Case 2之不同γ值之地下水位 50
4-5 收斂項數 67
第五章 結論與建議 69
5-1 結論 69
5-2 建議 71
參考文獻 72
附錄A 一維Case 1 Matlab程式 75
附錄B 一維Case 2 Matlab程式 76
附錄C 二維Case 1 Matlab程式 77
附錄D 二維Case 2 Matlab程式 79
1Asadi-Aghbolaghi, M., and Seyyedian, H., (2010) ‘‘An analytical solution for groundwater flow to a vertical well in a triangle-shaped aquifer’’ Journal of Hydrology, 393, 341-348.
2Das, B. M., (2013) ‘‘Principles of Foundation Engineering’’ Cengage Learning, India.
3Deng, B., Si, Y., and Wang, J., (2017) ‘‘Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage’’ Journal of Hydrology, 555, 323–329.
4Hayek M. (2019) ‘‘Accurate approximate semi-analytical solutions to the Boussinesq groundwater flow equation for recharging and discharging of horizontal unconfined aquifers’’ Journal of Hydrology, 570, 411-422.
5Huang, C. H., Chen Y. L., and Yeh, H. D., (2011) “A general analytical solution for flow to a single horizontal well by Fourier and Laplace transforms” Advance in Water Resources, 34, 640-648.
6Istavors, and Papadopulos, S., (1965) ‘‘Nonsteady flow to a well in an infinite anisotropic aquifer’’ Hydrology of Fractured Rocks, 21-31.
7Jiang, Q., and Tang, Y., (2015) ‘‘A general approximate method for the groundwater response problem cause by water level variation’’ Journal of Hydrology, 529, 398-409.
8Liu, C., Szecsody, J. E., Zachara J. M., and Ball, W. P., (2000) ‘‘Use of the generalized integral transform method for solving equations of solute transport in porous media’’ Advances in Water Resources, 23, 483-492.
9Lockington D. A., (1997) ‘‘Response of unconfined aquifer to sudden change in boundary head’’ Journal of Irrigation and Drainage Enguneerung, 124, 24-27.
10Malama, B., Kuhlman, L. K., and Revil, A., (2009) ‘‘Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers’’ Geophysical Journal International, 179, 990-1003.
11Manglik A. and Rai S. N., (2014) ‘‘Modeling water table fluctuations in anisotropic unconfined aquifer due to time varying recharge from multiple heterogeneous basins and pumping from multiple wells’’ Water Resour Manage, 29, 1019-1030.
12Moutsopoulos, K. N., (2010) ‘‘The analytical solution of the boussinesq equation for flow induced by a step vhange of water elevation revisited’’ Transp in Porous Media, 85, 919-940.
13Özisik, M. N., (1968) ‘‘Boundary value problems of heat conduction’’ Dover Publications, New York.
14Pérez Guerrero, J. S., Pimentel, L. C. G., Skaggs, T. H., and Genuchten, M. Th. Van., (2009). ‘‘Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique’’ International Journal of Heat and Mass Transfer, 52, 3297–3304.
15Polubarinova-Kochina, P. Y. A., (1962) ‘‘Theory of Groundwater Movement’’ Princeton University Press, Princeton, 613.
16Todd, D.K., (1980) ‘‘Groundwater hydrology’’ John Wiley & Sons, New York.
17Tsou, P. R., Feng, Z. Y., Yeh, H.D. and Huang, C. S., (2010) ‘‘Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream’’ Hydrology and Earth System Sciences, 14, 1477-1485.
18Wang, J. Z., Wang, X. S., Li, Q. B., and Wan, W. F. (2020) ‘‘Analytical Solutions for Steady-State Multiwell Aquifer Tests in Rectangular Aquifers by Using Double Fourier Transform: A Case Study in the Ordos Plateau, China’’ Geofluids, 2020.
19Yeh, H. D. and Chang, Y. C. (2006) ‘‘New analytical solutions for groundwater flow in wedgeshaped aquifers eith various topographic boundary conditions’’ Advances in Water Resources, 29, 471-480.
20Zhan, H., and Zlotnik, V. A., (2002) “Groundwater flow to a horizontal or slanted well in an unconfined aquifer” Water Resources Research, 38, 1-11.
電子全文 電子全文(網際網路公開日期:20270808)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top