跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖妤瑄
研究生(外文):Yu-Hsuan Liao
論文名稱:氮摻雜微晶纖維素之高分子薄膜合成及其在碳捕捉之應用
論文名稱(外文):Synthesis of nitrogen-doped microcrystalline cellulose polymeric membrane and its application for carbon capture
指導教授:曾惠馨
指導教授(外文):Hui-Hsin Tseng
口試委員:侯嘉洪周子勤陳志成
口試委員(外文):Chia-Hung HouTsu-Chin ChouJyh-Cherng Chen
口試日期:2024-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:79
中文關鍵詞:碳捕獲微晶纖維素高分子膜氮摻雜二氧化碳促進傳輸
外文關鍵詞:carbon capturemicrocrystalline cellulose-based polymeric membranenitrogen-dopedCO₂ facilitated transportation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文選用結構富含羥基的微晶纖維素作為薄膜材料,為提升膜材對於
二氧化碳分離效能,於纖維素化學結構中摻混對二氧化碳有強親和力的胺
基,以期促進二氧化碳傳輸,達精準且有效之分離。為此,本文藉由高溫
反應將三種不同鹼度之含胺化合物分別接枝聚合在微晶纖維素上,並透過
旋轉塗佈技術製備出氮摻雜微晶纖維素高分子薄膜,並探討塗覆層數影響
之厚度與孔洞及氮摻雜微晶纖維素對衍生膜材氣體分離效能之影響。
結合場發射掃描式電子顯微鏡(FE-SEM)觀察結果、氮摻雜前後之纖維
素粉體重量的量測、X射線光電子能譜之化學鍵結擬合分析,確認含胺化
合物非但成功地接枝於材料上,亦對粉體形貌無負面影響; 由氣體分離試
驗結果可知,不同級別胺接枝之氮摻雜微晶纖維素膜確實比純微晶纖維素
膜更為理想,其中以鹼度最高之接枝二級胺之微晶纖維素膜的氣體分離性
能為最佳,其二氧化碳滲透率由1.26 GPU增長到了1.79 GPU,二氧化碳/
氮氣氣體對之選擇率也從26上升到57,此結果表明在膜結構中添加胺基
是有利於二氧化碳分離的。
Present work adopted microcrystalline cellulose (MCC) possessing abundant
hydroxyl groups as the precursor for gas separation membrane. In order to enhance the CO₂ separation performance, amine groups were incorporated into the chemical structure of MCC to facilitate CO₂ transport and thus achieve precise and efficient separation, which is because of the strong affinity for CO₂. As such, three kinds alkalinity of amine-containing compounds were grafted onto MCC through high-temperature reaction, and then nitrogen-doped MCC polymeric membranes were obtained through spin-coating technique. Moreover, the effects of coating layer thickness and porosity, as well as the influence of nitrogen-doped microcrystalline cellulose on the gas separation performance of the derived membrane materials, were also investigated. Based on observations from field emission scanning electron microscopy (FE-SEM), weight measurements of MCC powder with/without nitrogen doping, and chemical bond fitting analysis from X-ray photo electron spectroscopy, it can be found that the amine-containing compounds were successfully grafted onto the MCC material and the morphology of the nitrogen-doped precursor was akin to pristine ones. Single-gas permeation test also showed that separation performance
of nitrogen-doped MCC membranes grafted with different levels of amines were outstanding than that of pristine membrane. Among them, the microcrystalline cellulose membrane grafted with secondary amine, which has the highest basicity, exhibited the best gas separation performance. The CO₂ permeance increased from 1.26 GPU to 1.79 GPU, and the CO₂/N₂ selectivity also increased from 26 to 57. These results indicate that the presence of amine groups within the membrane structure is beneficial for CO₂ separation.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究目的 7
1.4 研究架構 8
第二章 文獻回顧 9
2.1 氣體分離薄膜技術 9
2.1.1 膜材料 10
2.1.2 氣體分離之傳輸機制 13
2.1.3 氣體傳輸方程式 17
2.1.4 影響膜材氣體分離性能之關鍵因子 21
2.1.5 應用領域 23
2.2 高分子膜介紹 25
2.2.1 膜形態 25
2.2.2 成膜方式 26
2.2.3 膜製備方法 29
2.2.4 影響高分子膜氣體分離性能之關鍵因子 31
2.2.5 化學結構改質 35
2.3 微晶纖維素 38
2.3.1 溶劑選擇 39
2.3.2 纖維素之氣體分離性能 39
2.3.3 微晶纖維素改質 40
2.4 文獻總結 42
第三章 材料與方法 44
3.1 材料與儀器 44
3.2 微晶纖維素接枝含胺化合物之步驟 46
3.3 微晶纖維素平板膜製備之步驟 47
3.4 特性分析 48
3.5 單一氣體滲透測試 49
第四章 結果與討論 51
4.1 氮摻雜微晶纖維素之粉體特性分析 51
4.1.1 氮摻雜前後微晶纖維素之表面形貌比較 51
4.1.2 氮摻雜前後微晶纖維素之熱穩定性比較 54
4.1.3 氮摻雜前後微晶纖維素之元素分析 55
4.2 氮摻雜微晶纖維素膜之氣體分離性能 58
4.2.1 純微晶纖維素膜不同層數之單一氣體分離性能比較 59
4.2.2 不同級別胺接枝之氮摻雜微晶纖維素之單一氣體分離性能比較 61
4.2.3 不同級別胺接枝之氮摻雜微晶纖維素與相關纖維素膜之氣體分離性能比較 63
第五章 結論與建議 65
5.1 結論 65
5.2 建議 66
參考資料 67
1.經濟部商業發展署. 溫室氣體排放資訊(2023年版). 2023.
2.J.F.D. Tapia, J.-Y. Lee, R.E.H. Ooi, D.C.Y. Foo, and R.R. Tan, A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 2018. 13: p. 1-15.
3.M.T. Mon, R. Tansuchat, and W. Yamaka CCUS Technology and Carbon Emissions: Evidence from the United States. Energies, 2024. 17.
4.S. Davoodi, M. Al-Shargabi, D.A. Wood, V.S. Rukavishnikov, and K.M. Minaev, Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Science and Engineering, 2023. 117: p. 205070.
5.R.M. Cuéllar-Franca and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 2015. 9: p. 82-102.
6.R. Maniarasu, S.K. Rathore, and S. Murugan, A review on materials and processes for carbon dioxide separation and capture. Energy & Environment, 2021. 34(1): p. 3-57.
7.W.L. Theo, J.S. Lim, H. Hashim, A.A. Mustaffa, and W.S. Ho, Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 2016. 183: p. 1633-1663.
8.A.N. Rakhiemah and Y. Xu, Economic viability of full-chain CCUS-EOR in Indonesia. Resources, Conservation and Recycling, 2022. 179: p. 106069.
9.李幸宜. 從CCS進階CCUS 實現綠能循環經濟.
10.T.M. Gür, Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022. 89: p. 100965.
11.O.d.Q.F. Araújo and J.L. de Medeiros, Carbon capture and storage technologies: present scenario and drivers of innovation. Current Opinion in Chemical Engineering, 2017. 17: p. 22-34.
12.S.E. Zanco, J.-F. Pérez-Calvo, A. Gasós, B. Cordiano, V. Becattini, and M. Mazzotti, Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Engineering Au, 2021. 1(1): p. 50-72.
13.C.-Y. Cheng, C.-C. Kuo, M.-W. Yang, Z.-Y. Zhuang, P.-W. Lin, Y.-F. Chen, H.-S. Yang, and C.-T. Chou CO2 Capture from Flue Gas of a Coal-Fired Power Plant Using Three-Bed PSA Process. Energies, 2021. 14.
14.G.K. Rath, G. Pandey, S. Singh, N. Molokitina, A. Kumar, S. Joshi, and G. Chauhan Carbon Dioxide Separation Technologies: Applicable to Net Zero. Energies, 2023. 16, DOI: 10.3390/en16104100.
15.M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, and Y. Ding, Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review. Separation and Purification Technology, 2022. 299: p. 121734.
16.A. Dubey and A. Arora, Advancements in carbon capture technologies: A review. Journal of Cleaner Production, 2022. 373: p. 133932.
17.K. Li, W. Leigh, P. Feron, H. Yu, and M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 2016. 165: p. 648-659.
18.S. Yun, S.-Y. Oh, and J.-K. Kim, Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant. Applied Energy, 2020. 268: p. 114933.
19.P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 2016. 380: p. 93-99.
20.D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014. 39: p. 426-443.
21.C.F. Song, Y. Kitamura, and S.H. Li, Evaluation of Stirling cooler system for cryogenic CO2 capture. Applied Energy, 2012. 98: p. 491-501.
22.D. Song, B. Li, Y. Qu, and Y. Chen, Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation. Progress In Electromagnetics Research C, 2019. 95: p. 265+.
23.M.J. Tuinier, M. van Sint Annaland, and J.A.M. Kuipers, A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study. International Journal of Greenhouse Gas Control, 2011. 5(4): p. 694-701.
24.C. Font-Palma, D. Cann, and C. Udemu Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C, 2021. 7.
25.H. Zhai and E.S. Rubin, Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants. Energy Procedia, 2014. 63: p. 1321-1328.
26.M. Pasichnyk, P. Stanovsky, P. Polezhaev, B. Zach, M. Šyc, M. Bobák, J.C. Jansen, M. Přibyl, J.E. Bara, K. Friess, J. Havlica, D.L. Gin, R.D. Noble, and P. Izák, Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases. Separation and Purification Technology, 2023. 323: p. 124436.
27.D. Nikolaeva, I. Azcune, M. Tanczyk, K. Warmuzinski, M. Jaschik, M. Sandru, P.I. Dahl, A. Genua, S. Loïs, E. Sheridan, A. Fuoco, and I.F.J. Vankelecom, The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. Journal of Membrane Science, 2018. 564: p. 552-561.
28.L. Zhang, G. He, W. Zhao, M. Tan, and X. Li, Effect of formamide additive on the structure and gas permeation performance of polyethermide membrane. Separation and Purification Technology, 2010. 73(2): p. 188-193.
29.D.F. Mohshim, H.b. Mukhtar, Z. Man, and R. Nasir, Latest Development on Membrane Fabrication for Natural Gas Purification: A Review. Journal of Engineering, 2013. 2013: p. 101746.
30.A. Jana and A. Modi, Recent progress on functional polymeric membranes for CO2 separation from flue gases: A review. Carbon Capture Science & Technology, 2024. 11: p. 100204.
31.A. Kayvani Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, and M. Atieh, Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials (Basel), 2018. 11(1).
32.R. Rea, M.G. De Angelis, and M.G. Baschetti Models for Facilitated Transport Membranes: A Review. Membranes, 2019. 9.
33.Y. Zhang, J. Sunarso, S. Liu, and R. Wang, Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013. 12: p. 84-107.
34.Y. Han and W.S.W. Ho, Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 2018. 26(11): p. 2238-2254.
35.Y. Li, S. Wang, G. He, H. Wu, F. Pan, and Z. Jiang, Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015. 44(1): p. 103-118.
36.L. Ansaloni, Y. Zhao, B.T. Jung, K. Ramasubramanian, M.G. Baschetti, and W.S.W. Ho, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. Journal of Membrane Science, 2015. 490: p. 18-28.
37.L. Shao, B.T. Low, T.-S. Chung, and A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009. 327(1): p. 18-31.
38.R. Sidhikku Kandath Valappil, N. Ghasem, and M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021. 98: p. 103-129.
39.P. Pandey and R.S. Chauhan, Membranes for gas separation. Progress in Polymer Science, 2001. 26(6): p. 853-893.
40.H. Zeng, S. He, S.S. Hosseini, B. Zhu, and L. Shao, Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes, 2022. 2: p. 100015.
41.Z. Xu, Z. Fan, C. Shen, Q. Meng, G. Zhang, and C. Gao, Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. Advanced Membranes, 2022. 2: p. 100027.
42.Y. Dai, Z. Niu, W. Luo, Y. Wang, P. Mu, and J. Li, A review on the recent advances in composite membranes for CO2 capture processes. Separation and Purification Technology, 2023. 307: p. 122752.
43.Z. Sahin, D. Emmery, A.R. Mamaghani, M. Gazzani, and F. Gallucci, Mass transport in carbon membranes. Current Opinion in Chemical Engineering, 2023. 39: p. 100896.
44.H. Li, K. Haas-Santo, U. Schygulla, and R. Dittmeyer, Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress. Chemical Engineering Science, 2015. 127: p. 401-417.
45.Y. Yampolskii, Polymeric Gas Separation Membranes. Macromolecules, 2012. 45(8): p. 3298-3311.
46.G. Li, W. Kujawski, R. Válek, and S. Koter, A review - The development of hollow fibre membranes for gas separation processes. International Journal of Greenhouse Gas Control, 2021. 104: p. 103195.
47.F. Ahmad, K.K. Lau, A.M. Shariff, and Y. Fong Yeong, Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system. Journal of Membrane Science, 2013. 430: p. 44-55.
48.K.A. Stevens, J.D. Moon, H. Borjigin, R. Liu, R.M. Joseph, J.S. Riffle, and B.D. Freeman, Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles. Journal of Membrane Science, 2020. 593: p. 117427.
49.M. Anderson, H. Wang, and Y.S. Lin, Inorganic membranes for carbon dioxide and nitrogen separation. 2012. 28(2-3): p. 101-121.
50.Z. Qiao, J. Zhou, and X. Lu, Designing new amine functionalized metal-organic frameworks for carbon dioxide/methane separation. Fluid Phase Equilibria, 2014. 362: p. 342-348.
51.G.M. Iyer, C.-E. Ku, and C. Zhang, Polyamide-imide copolymer-derived carbon molecular sieve membranes for efficient hydrogen/carbon dioxide separation. Carbon, 2024. 216: p. 118598.
52.C.A. Scholes, G.W. Stevens, and S.E. Kentish, Membrane gas separation applications in natural gas processing. Fuel, 2012. 96: p. 15-28.
53.S. Sridhar, B. Smitha, and T.M. Aminabhavi, Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review. Separation & Purification Reviews, 2007. 36(2): p. 113-174.
54.P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, and J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science, 1996. 117(1): p. 1-31.
55.D.-M. Wang and J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013. 2(2): p. 229-237.
56.X. Tan and D. Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers (Basel), 2019. 11(7).
57.X. Tan and D. Rodrigue A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers, 2019. 11.
58.W.J. Lee, P.S. Goh, W.J. Lau, A.F. Ismail, and N. Hilal Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 2021. 11.
59.H.A. Mustafa and D.A. Jameel, Modeling and the main stages of spin coating process: A review. Journal of Applied Science and Technology Trends, 2021.
60.L. Marbelia, A. Ilyas, M. Dierick, J. Qian, C. Achille, R. Ameloot, and I.F.J. Vankelecom, Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques. Journal of Membrane Science, 2020. 597: p. 117621.
61.A.F. Ismail and K. Li, From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes, in Membrane Science and Technology. 2008, Elsevier. p. 81-119.
62.T. Araújo, G. Bernardo, and A. Mendes Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review. Molecules, 2020. 25.
63.G. Huo, S. Xu, L. Wu, S. Kang, Z. Zhang, Y. Fan, and N. Li, Structural engineering on copolyimide membranes for improved gas separation performance. Journal of Membrane Science, 2022. 643: p. 119989.
64.C. Ye, L. Bai, Y. Weng, Z. Xu, L. Huang, J. Huang, J. Li, Y. Wang, and X. Ma, Fine tune gas separation property of intrinsic microporous polyimides and their carbon molecular sieve membranes by gradient bromine substitution/removal. Journal of Membrane Science, 2023. 669: p. 121310.
65.J. Xin, X. Zhou, G. Huo, Z. Zhang, Y. Zhang, S. Kang, Z. Dai, and N. Li, Development of high performance carbon molecular sieve membranes via tuning the side groups on PI precursors. Journal of Membrane Science, 2023. 688: p. 122124.
66.N.R. Horn, A critical review of free volume and occupied volume calculation methods. Journal of Membrane Science, 2016. 518: p. 289-294.
67.C.E. Powell and G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006. 279(1): p. 1-49.
68.A. Mansourizadeh and A.F. Ismail, Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: Effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011. 5(4): p. 640-648.
69.S.C. Kumbharkar and K. Li, Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. Journal of Membrane Science, 2012. 415-416: p. 793-800.
70.M.S. Boroglu and M.A. Gurkaynak, The preparation of novel silica modified polyimide membranes: synthesis, characterization, and gas separation properties. Polymers for Advanced Technologies, 2011. 22(5): p. 545-553.
71.R. Surya Murali, M. Padaki, T. Matsuura, M.S. Abdullah, and A.F. Ismail, Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Separation and Purification Technology, 2014. 132: p. 187-194.
72.Z. Liang, X. Li, M. Li, and Y. Hong Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules, 2023. 28.
73.B. Yavuzturk Gul, E. Pekgenc, V. Vatanpour, and I. Koyuncu, A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydrate Polymers, 2023. 321: p. 121296.
74.D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, and M.K.M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 2016. 93: p. 789-804.
75.L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He, and M.D. Guiver, Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nature Communications, 2021. 12(1): p. 268.
76.L. Lei, A. Lindbråthen, M. Sandru, M.T. Gutierrez, X. Zhang, M. Hillestad, and X. He Spinning Cellulose Hollow Fibers Using 1-Ethyl-3-methylimidazolium Acetate–Dimethylsulfoxide Co-Solvent. Polymers, 2018. 10.
77.L. Lei, A. Lindbråthen, X. Zhang, E.P. Favvas, M. Sandru, M. Hillestad, and X. He, Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. Journal of Membrane Science, 2020. 614: p. 118529.
78.X.-G. Li, I. Kresse, Z.-K. Xu, and J. Springer, Effect of temperature and pressure on gas transport in ethyl cellulose membrane. Polymer, 2001. 42(16): p. 6801-6810.
79.K. Yang, Y. Dai, W. Zheng, X. Ruan, H. Li, and G. He, ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf. Separation and Purification Technology, 2019. 214: p. 87-94.
80.X.-F. Zhang, T. Hou, J. Chen, Y. Feng, B. Li, X. Gu, M. He, and J. Yao, Facilitated Transport of CO2 Through the Transparent and Flexible Cellulose Membrane Promoted by Fixed-Site Carrier. ACS Applied Materials & Interfaces, 2018. 10(29): p. 24930-24936.
81.A.R. Moghadassi, Z. Rajabi, S.M. Hosseini, and M. Mohammadi, Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties. Journal of Industrial and Engineering Chemistry, 2014. 20(3): p. 1050-1060.
82.T. Zhang, Y. Zhang, H. Jiang, and X. Wang, Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity. Environmental Science and Pollution Research, 2019. 26(16): p. 16716-16726.
83.J.D. Porras, S.M. Arteta, and L.D. Pérez, Development of an Adsorbent for Bisphenol A Based on a Polymer Grafted from Microcrystalline Cellulose. Water, Air, & Soil Pollution, 2020. 231(10): p. 499.
84.F. Deng, X. Ge, Y. Zhang, M.-C. Li, and U.R. Cho, Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements. Journal of Applied Polymer Science, 2015. 132(41).
85.Y. Liu, Li, L., Li, X., Wang, Y., Ren, X., and Liang, J., Antibacterial Modification of Microcrystalline Cellulose by Grafting Copolymerization. BioRes.
86.E. Princi, S. Vicini, E. Pedemonte, A. Mulas, E. Franceschi, G. Luciano, and V. Trefiletti, Thermal analysis and characterisation of cellulose grafted with acrylic monomers. Thermochimica Acta, 2005. 425(1): p. 173-179.
87.M. Sadeghi, S. Safari, H. Shahsavari, H. Sadeghi, and F. Soleimani, Investigation on Effective Parameters onto Graft Copolymerization Pectin with Methacrylamide. Asian Journal of Chemistry, 2013. 25(8): p. 4611-4614.
88.M. Sadeghi, S. Safari, H. Shahsavari, H. Sadeghi, and F. Soleimani, Effective Parameters onto Graft Copolymer Based on Carboxymethyl with Acrylic Monomer. Asian Journal of Chemistry, 2013. 25(9): p. 5029-5032.
89.H. He, Y. Hu, S. Chen, L. Zhuang, B. Ma, and Q. Wu, Preparation and Properties of A Hyperbranch-Structured Polyamine adsorbent for Carbon Dioxide Capture. Scientific Reports, 2017. 7(1): p. 3913.
90.S. Ravi, S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim, J.-W. Ahn, and W.-S. Ahn, EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018. 67: p. 210-218.
91.Y. Wang, J. Yu, W. Peng, J. Tian, and C. Yang, Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Scientific Reports, 2019. 9(1): p. 5932.
92.C.S.R. Vusa, M. Venkatesan, A. K, S. Berchmans, and P. Arumugam, Tactical tuning of the surface and interfacial properties of graphene: A Versatile and rational electrochemical approach. Scientific Reports, 2017. 7(1): p. 8354.
93.P. Ji, Y. Cao, X. Jie, M. Li, and Q. Yuan, Impacts of coating condition on composite membrane performance for CO2 separation. Separation and Purification Technology, 2010. 71(2): p. 160-167.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top