|
1.經濟部商業發展署. 溫室氣體排放資訊(2023年版). 2023. 2.J.F.D. Tapia, J.-Y. Lee, R.E.H. Ooi, D.C.Y. Foo, and R.R. Tan, A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 2018. 13: p. 1-15. 3.M.T. Mon, R. Tansuchat, and W. Yamaka CCUS Technology and Carbon Emissions: Evidence from the United States. Energies, 2024. 17. 4.S. Davoodi, M. Al-Shargabi, D.A. Wood, V.S. Rukavishnikov, and K.M. Minaev, Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Science and Engineering, 2023. 117: p. 205070. 5.R.M. Cuéllar-Franca and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 2015. 9: p. 82-102. 6.R. Maniarasu, S.K. Rathore, and S. Murugan, A review on materials and processes for carbon dioxide separation and capture. Energy & Environment, 2021. 34(1): p. 3-57. 7.W.L. Theo, J.S. Lim, H. Hashim, A.A. Mustaffa, and W.S. Ho, Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 2016. 183: p. 1633-1663. 8.A.N. Rakhiemah and Y. Xu, Economic viability of full-chain CCUS-EOR in Indonesia. Resources, Conservation and Recycling, 2022. 179: p. 106069. 9.李幸宜. 從CCS進階CCUS 實現綠能循環經濟. 10.T.M. Gür, Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022. 89: p. 100965. 11.O.d.Q.F. Araújo and J.L. de Medeiros, Carbon capture and storage technologies: present scenario and drivers of innovation. Current Opinion in Chemical Engineering, 2017. 17: p. 22-34. 12.S.E. Zanco, J.-F. Pérez-Calvo, A. Gasós, B. Cordiano, V. Becattini, and M. Mazzotti, Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Engineering Au, 2021. 1(1): p. 50-72. 13.C.-Y. Cheng, C.-C. Kuo, M.-W. Yang, Z.-Y. Zhuang, P.-W. Lin, Y.-F. Chen, H.-S. Yang, and C.-T. Chou CO2 Capture from Flue Gas of a Coal-Fired Power Plant Using Three-Bed PSA Process. Energies, 2021. 14. 14.G.K. Rath, G. Pandey, S. Singh, N. Molokitina, A. Kumar, S. Joshi, and G. Chauhan Carbon Dioxide Separation Technologies: Applicable to Net Zero. Energies, 2023. 16, DOI: 10.3390/en16104100. 15.M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, and Y. Ding, Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review. Separation and Purification Technology, 2022. 299: p. 121734. 16.A. Dubey and A. Arora, Advancements in carbon capture technologies: A review. Journal of Cleaner Production, 2022. 373: p. 133932. 17.K. Li, W. Leigh, P. Feron, H. Yu, and M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 2016. 165: p. 648-659. 18.S. Yun, S.-Y. Oh, and J.-K. Kim, Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant. Applied Energy, 2020. 268: p. 114933. 19.P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 2016. 380: p. 93-99. 20.D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014. 39: p. 426-443. 21.C.F. Song, Y. Kitamura, and S.H. Li, Evaluation of Stirling cooler system for cryogenic CO2 capture. Applied Energy, 2012. 98: p. 491-501. 22.D. Song, B. Li, Y. Qu, and Y. Chen, Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation. Progress In Electromagnetics Research C, 2019. 95: p. 265+. 23.M.J. Tuinier, M. van Sint Annaland, and J.A.M. Kuipers, A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study. International Journal of Greenhouse Gas Control, 2011. 5(4): p. 694-701. 24.C. Font-Palma, D. Cann, and C. Udemu Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C, 2021. 7. 25.H. Zhai and E.S. Rubin, Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants. Energy Procedia, 2014. 63: p. 1321-1328. 26.M. Pasichnyk, P. Stanovsky, P. Polezhaev, B. Zach, M. Šyc, M. Bobák, J.C. Jansen, M. Přibyl, J.E. Bara, K. Friess, J. Havlica, D.L. Gin, R.D. Noble, and P. Izák, Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases. Separation and Purification Technology, 2023. 323: p. 124436. 27.D. Nikolaeva, I. Azcune, M. Tanczyk, K. Warmuzinski, M. Jaschik, M. Sandru, P.I. Dahl, A. Genua, S. Loïs, E. Sheridan, A. Fuoco, and I.F.J. Vankelecom, The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. Journal of Membrane Science, 2018. 564: p. 552-561. 28.L. Zhang, G. He, W. Zhao, M. Tan, and X. Li, Effect of formamide additive on the structure and gas permeation performance of polyethermide membrane. Separation and Purification Technology, 2010. 73(2): p. 188-193. 29.D.F. Mohshim, H.b. Mukhtar, Z. Man, and R. Nasir, Latest Development on Membrane Fabrication for Natural Gas Purification: A Review. Journal of Engineering, 2013. 2013: p. 101746. 30.A. Jana and A. Modi, Recent progress on functional polymeric membranes for CO2 separation from flue gases: A review. Carbon Capture Science & Technology, 2024. 11: p. 100204. 31.A. Kayvani Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, and M. Atieh, Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials (Basel), 2018. 11(1). 32.R. Rea, M.G. De Angelis, and M.G. Baschetti Models for Facilitated Transport Membranes: A Review. Membranes, 2019. 9. 33.Y. Zhang, J. Sunarso, S. Liu, and R. Wang, Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013. 12: p. 84-107. 34.Y. Han and W.S.W. Ho, Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 2018. 26(11): p. 2238-2254. 35.Y. Li, S. Wang, G. He, H. Wu, F. Pan, and Z. Jiang, Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015. 44(1): p. 103-118. 36.L. Ansaloni, Y. Zhao, B.T. Jung, K. Ramasubramanian, M.G. Baschetti, and W.S.W. Ho, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. Journal of Membrane Science, 2015. 490: p. 18-28. 37.L. Shao, B.T. Low, T.-S. Chung, and A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009. 327(1): p. 18-31. 38.R. Sidhikku Kandath Valappil, N. Ghasem, and M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021. 98: p. 103-129. 39.P. Pandey and R.S. Chauhan, Membranes for gas separation. Progress in Polymer Science, 2001. 26(6): p. 853-893. 40.H. Zeng, S. He, S.S. Hosseini, B. Zhu, and L. Shao, Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes, 2022. 2: p. 100015. 41.Z. Xu, Z. Fan, C. Shen, Q. Meng, G. Zhang, and C. Gao, Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. Advanced Membranes, 2022. 2: p. 100027. 42.Y. Dai, Z. Niu, W. Luo, Y. Wang, P. Mu, and J. Li, A review on the recent advances in composite membranes for CO2 capture processes. Separation and Purification Technology, 2023. 307: p. 122752. 43.Z. Sahin, D. Emmery, A.R. Mamaghani, M. Gazzani, and F. Gallucci, Mass transport in carbon membranes. Current Opinion in Chemical Engineering, 2023. 39: p. 100896. 44.H. Li, K. Haas-Santo, U. Schygulla, and R. Dittmeyer, Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress. Chemical Engineering Science, 2015. 127: p. 401-417. 45.Y. Yampolskii, Polymeric Gas Separation Membranes. Macromolecules, 2012. 45(8): p. 3298-3311. 46.G. Li, W. Kujawski, R. Válek, and S. Koter, A review - The development of hollow fibre membranes for gas separation processes. International Journal of Greenhouse Gas Control, 2021. 104: p. 103195. 47.F. Ahmad, K.K. Lau, A.M. Shariff, and Y. Fong Yeong, Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system. Journal of Membrane Science, 2013. 430: p. 44-55. 48.K.A. Stevens, J.D. Moon, H. Borjigin, R. Liu, R.M. Joseph, J.S. Riffle, and B.D. Freeman, Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles. Journal of Membrane Science, 2020. 593: p. 117427. 49.M. Anderson, H. Wang, and Y.S. Lin, Inorganic membranes for carbon dioxide and nitrogen separation. 2012. 28(2-3): p. 101-121. 50.Z. Qiao, J. Zhou, and X. Lu, Designing new amine functionalized metal-organic frameworks for carbon dioxide/methane separation. Fluid Phase Equilibria, 2014. 362: p. 342-348. 51.G.M. Iyer, C.-E. Ku, and C. Zhang, Polyamide-imide copolymer-derived carbon molecular sieve membranes for efficient hydrogen/carbon dioxide separation. Carbon, 2024. 216: p. 118598. 52.C.A. Scholes, G.W. Stevens, and S.E. Kentish, Membrane gas separation applications in natural gas processing. Fuel, 2012. 96: p. 15-28. 53.S. Sridhar, B. Smitha, and T.M. Aminabhavi, Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review. Separation & Purification Reviews, 2007. 36(2): p. 113-174. 54.P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, and J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science, 1996. 117(1): p. 1-31. 55.D.-M. Wang and J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013. 2(2): p. 229-237. 56.X. Tan and D. Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers (Basel), 2019. 11(7). 57.X. Tan and D. Rodrigue A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers, 2019. 11. 58.W.J. Lee, P.S. Goh, W.J. Lau, A.F. Ismail, and N. Hilal Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 2021. 11. 59.H.A. Mustafa and D.A. Jameel, Modeling and the main stages of spin coating process: A review. Journal of Applied Science and Technology Trends, 2021. 60.L. Marbelia, A. Ilyas, M. Dierick, J. Qian, C. Achille, R. Ameloot, and I.F.J. Vankelecom, Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques. Journal of Membrane Science, 2020. 597: p. 117621. 61.A.F. Ismail and K. Li, From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes, in Membrane Science and Technology. 2008, Elsevier. p. 81-119. 62.T. Araújo, G. Bernardo, and A. Mendes Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review. Molecules, 2020. 25. 63.G. Huo, S. Xu, L. Wu, S. Kang, Z. Zhang, Y. Fan, and N. Li, Structural engineering on copolyimide membranes for improved gas separation performance. Journal of Membrane Science, 2022. 643: p. 119989. 64.C. Ye, L. Bai, Y. Weng, Z. Xu, L. Huang, J. Huang, J. Li, Y. Wang, and X. Ma, Fine tune gas separation property of intrinsic microporous polyimides and their carbon molecular sieve membranes by gradient bromine substitution/removal. Journal of Membrane Science, 2023. 669: p. 121310. 65.J. Xin, X. Zhou, G. Huo, Z. Zhang, Y. Zhang, S. Kang, Z. Dai, and N. Li, Development of high performance carbon molecular sieve membranes via tuning the side groups on PI precursors. Journal of Membrane Science, 2023. 688: p. 122124. 66.N.R. Horn, A critical review of free volume and occupied volume calculation methods. Journal of Membrane Science, 2016. 518: p. 289-294. 67.C.E. Powell and G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006. 279(1): p. 1-49. 68.A. Mansourizadeh and A.F. Ismail, Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: Effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011. 5(4): p. 640-648. 69.S.C. Kumbharkar and K. Li, Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. Journal of Membrane Science, 2012. 415-416: p. 793-800. 70.M.S. Boroglu and M.A. Gurkaynak, The preparation of novel silica modified polyimide membranes: synthesis, characterization, and gas separation properties. Polymers for Advanced Technologies, 2011. 22(5): p. 545-553. 71.R. Surya Murali, M. Padaki, T. Matsuura, M.S. Abdullah, and A.F. Ismail, Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Separation and Purification Technology, 2014. 132: p. 187-194. 72.Z. Liang, X. Li, M. Li, and Y. Hong Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules, 2023. 28. 73.B. Yavuzturk Gul, E. Pekgenc, V. Vatanpour, and I. Koyuncu, A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydrate Polymers, 2023. 321: p. 121296. 74.D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, and M.K.M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 2016. 93: p. 789-804. 75.L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He, and M.D. Guiver, Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nature Communications, 2021. 12(1): p. 268. 76.L. Lei, A. Lindbråthen, M. Sandru, M.T. Gutierrez, X. Zhang, M. Hillestad, and X. He Spinning Cellulose Hollow Fibers Using 1-Ethyl-3-methylimidazolium Acetate–Dimethylsulfoxide Co-Solvent. Polymers, 2018. 10. 77.L. Lei, A. Lindbråthen, X. Zhang, E.P. Favvas, M. Sandru, M. Hillestad, and X. He, Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. Journal of Membrane Science, 2020. 614: p. 118529. 78.X.-G. Li, I. Kresse, Z.-K. Xu, and J. Springer, Effect of temperature and pressure on gas transport in ethyl cellulose membrane. Polymer, 2001. 42(16): p. 6801-6810. 79.K. Yang, Y. Dai, W. Zheng, X. Ruan, H. Li, and G. He, ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf. Separation and Purification Technology, 2019. 214: p. 87-94. 80.X.-F. Zhang, T. Hou, J. Chen, Y. Feng, B. Li, X. Gu, M. He, and J. Yao, Facilitated Transport of CO2 Through the Transparent and Flexible Cellulose Membrane Promoted by Fixed-Site Carrier. ACS Applied Materials & Interfaces, 2018. 10(29): p. 24930-24936. 81.A.R. Moghadassi, Z. Rajabi, S.M. Hosseini, and M. Mohammadi, Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties. Journal of Industrial and Engineering Chemistry, 2014. 20(3): p. 1050-1060. 82.T. Zhang, Y. Zhang, H. Jiang, and X. Wang, Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity. Environmental Science and Pollution Research, 2019. 26(16): p. 16716-16726. 83.J.D. Porras, S.M. Arteta, and L.D. Pérez, Development of an Adsorbent for Bisphenol A Based on a Polymer Grafted from Microcrystalline Cellulose. Water, Air, & Soil Pollution, 2020. 231(10): p. 499. 84.F. Deng, X. Ge, Y. Zhang, M.-C. Li, and U.R. Cho, Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements. Journal of Applied Polymer Science, 2015. 132(41). 85.Y. Liu, Li, L., Li, X., Wang, Y., Ren, X., and Liang, J., Antibacterial Modification of Microcrystalline Cellulose by Grafting Copolymerization. BioRes. 86.E. Princi, S. Vicini, E. Pedemonte, A. Mulas, E. Franceschi, G. Luciano, and V. Trefiletti, Thermal analysis and characterisation of cellulose grafted with acrylic monomers. Thermochimica Acta, 2005. 425(1): p. 173-179. 87.M. Sadeghi, S. Safari, H. Shahsavari, H. Sadeghi, and F. Soleimani, Investigation on Effective Parameters onto Graft Copolymerization Pectin with Methacrylamide. Asian Journal of Chemistry, 2013. 25(8): p. 4611-4614. 88.M. Sadeghi, S. Safari, H. Shahsavari, H. Sadeghi, and F. Soleimani, Effective Parameters onto Graft Copolymer Based on Carboxymethyl with Acrylic Monomer. Asian Journal of Chemistry, 2013. 25(9): p. 5029-5032. 89.H. He, Y. Hu, S. Chen, L. Zhuang, B. Ma, and Q. Wu, Preparation and Properties of A Hyperbranch-Structured Polyamine adsorbent for Carbon Dioxide Capture. Scientific Reports, 2017. 7(1): p. 3913. 90.S. Ravi, S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim, J.-W. Ahn, and W.-S. Ahn, EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018. 67: p. 210-218. 91.Y. Wang, J. Yu, W. Peng, J. Tian, and C. Yang, Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Scientific Reports, 2019. 9(1): p. 5932. 92.C.S.R. Vusa, M. Venkatesan, A. K, S. Berchmans, and P. Arumugam, Tactical tuning of the surface and interfacial properties of graphene: A Versatile and rational electrochemical approach. Scientific Reports, 2017. 7(1): p. 8354. 93.P. Ji, Y. Cao, X. Jie, M. Li, and Q. Yuan, Impacts of coating condition on composite membrane performance for CO2 separation. Separation and Purification Technology, 2010. 71(2): p. 160-167.
|