跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖奕昕
研究生(外文):Yi-Hsin Liao
論文名稱:以磷脂酸肌醇3激酶-催化α亞型作為標的之藥物開發研究
論文名稱(外文):Drug Discovery Study of Phosphatidylinositol-3-Kinase Catalytic Subunit Alpha
指導教授:侯明宏
指導教授(外文):Ming-Hon Hou
口試委員:胡念仁林士超
口試日期:2023-12-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:70
中文關鍵詞:磷脂酸肌醇3激酶-催化α亞型藥物開發研究抑制劑機轉
外文關鍵詞:Pi3kcainhibitorbreast cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
PI3K(phosphatidylinositol-3-kinase)是一種酶,能夠把磷酸肌醇二磷酸(PIP2)
轉換為磷酸肌醇三磷酸(PIP3)。PIP3 在細胞膜上的存在可以啟動多種訊號傳遞路
徑。PI3K/AKT/mTOR 等激酶訊息傳導路徑,在調節乳癌細胞增殖、生長、存活
方面扮演著重要的角色。PI3K 由兩個次單位 p110、p85 所組成,p110 有四個異
構體,分別為 p110α、p110β、p110γ、p110δ,PI3KCA 基因為主要負責製造
p110α(PI3Kα)的基因。因此 PI3KCA 基因突變會導致 PI3K/AKT/mTOR 信號通路
異常活化,最終導致癌細胞不受控制的增殖。在不同類型的癌症中,PI3KCA 基
因突變的發生率有所差異,尤其在乳腺癌與子宮內膜癌,其發生率佔比最高。由
於 PI3KCA 突變與癌症的發生和進展密切相關,它已成為潛在的治療標靶點。許
多研究致力於開發 PI3Kα 抑制劑,以阻斷訊息傳遞鏈的過度活化,抑制腫瘤生
長和轉移。BYL719,一種 PI3Kα 的抑制劑,為乳癌患者臨床用藥,已顯示出臨
床的治療效果。然而 BYL719 仍顯現出許多的副作用,造成皮疹、噁心嘔吐、體
重減輕、口腔潰瘍、掉髮及疲倦虛弱等問題。因此本研究利用 ZINC database 找
出 BYL719 的相似物,並用 iGEMDOOCK 進行分子對接(molecular docking)分析
這些衍生物與 PI3Kα 蛋白激酶結構域的作用與結合處。由結果顯示,我們篩選
出 9 個衍生物,可藉由氫鍵和凡得瓦力與 PI3Kα 激酶結構域穩定結合,更重要
的是這些衍生物皆能作用在激酶重要的催化位點,如催化迴路(Catalytic Loop),
活化迴路(Activation Loop)與 ATP 迴路(ATP Pocket Loop)。因此這些衍生物可能
具備潛力能阻斷 ATP 與 PI3Kα 的結合,進而抑制 PI3Kα 的活性並干擾信號傳遞
路徑,抑制腫瘤細胞增殖和生長。研究 PI3Kα 的功能和開發相應的治療策略對
於癌症的治療具有重要的意義。篩選出的 9 個候選藥物對 PI3Kα 蛋白具有高度
親和力,可結合在激酶的活性位點並形成穩固的複合物,我們期望未來能利用本
研究的結果精確且更高效地設計相關藥物,或增強藥物效能並減緩現有用藥副作
用,為癌症治療提供重要突破。
PI3K (phosphatidylinositol-3-kinase) is an enzyme that converts phosphoinositide diphosphate (PIP2) into phosphoinositide triphosphate (PIP3). The presence of PIP3 on the cell membrane can initiate a variety of signaling pathways. Kinase signaling pathways such as PI3K/AKT/mTOR play an important role in regulating the proliferation, growth, and survival of breast cancer cells. PI3K is composed of two subunits p110 and p85. p110 has four isomers, namely p110α, p110β, p110γ, and p110δ. The PI3KCA gene is the gene mainly responsible for manufacturing p110α (PI3Kα). Therefore, PI3KCA gene mutations will lead to abnormal activation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to uncontrolled proliferation of cancer cells. The incidence of PI3KCA gene mutations varies among different types of cancer, where breast cancer and endometrial cancer account for the highest incidence rates. Because PI3KCA mutations are closely related to the occurrence and progression of cancer, it has become a potential therapeutic target. Many studies are devoted to developing PI3Kα inhibitors to block the excessive activation of the signaling chain and inhibit tumor growth and metastasis. BYL719, an inhibitor of PI3Kα, is used clinically for breast cancer patients and has shown clinical therapeutic effects. However, BYL719 still shows many side effects, causing problems such as rash, nausea and vomiting, weight loss, oral ulcers, hair loss, fatigue, and weakness. Therefore, this study used the ZINC database to find analogs of BYL719 and used iGEMDOCK to perform molecular docking to analyze the role and binding of these derivatives with the PI3Kα protein kinase domain. The results showed that we screened out 9 derivatives. It can be stably combined with the PI3Kα kinase domain through hydrogen bonds and van der Waals forces. More importantly, these derivatives can act on important catalytic sites of the kinase, such as the catalytic loop、 activation loop , and ATP Pocket Loop. Therefore, these derivatives may have the potential to block the combination of ATP and PI3Kα, thereby inhibiting the activity of PI3Kα, interfering with signal transmission pathways, and inhibiting tumor cell proliferation and growth. The nine screened drug candidates have a high affinity for the PI3Kα protein and could bind to the active site of the kinase and form a stable complex. We expect to use the results of this study to accurately and more efficiently design related drugs or enhance drugs in the future. Ultimately, the new drugs may provide important breakthroughs in cancer treatment.
摘 要 i
Abstract ii
目 錄 iii
表 次 v
圖 次 vi
第一章 緒 論 8
一、PI3K(phosphatidylinositol-3-kinase)概述 8
二、PI3K(phosphatidylinositol-3-kinase)/mTOR(mammalian target of rapamycin)訊息傳導路徑簡介 9
三、PI3Kα突變在癌症中扮演的角色 9
四、蛋白質磷酸化 10
五、蛋白質激酶結構域 11
六、PI3Kα抑制劑的開發 12
七、PI3Kα抑制劑化學結構特色 13
八、研究動機 14
第二章 研究流程與材料 15
一、研究流程圖 15
二、研究材料 15
(一) iGEMDOCK v2.1軟體 15
(二) PyMOL軟體 15
(三) NCBI資料庫檢索 16
(四) ZINC 20化學資料庫 16
(五) LigPlot軟體 16
第三章 研究方法 17
一、生物資訊虛擬預測 17
(一) 蛋白質序列之選取 17
(二) 藥物結合區預測 18
(三) 分子對接(molecular docking)實驗 18
第四章 研究結果 19
一、尋找於激酶蛋白質結構域中的藥物結合區 19
二、PI3K基因在不同物種之比對結果 19
三、以Zinc Database找出與BYL719的相似藥物 20
四、分子對接(molecular docking)實驗結果 20
第五章 討 論 23
第六章 結 論 25
第七章 表 次 27
第八章 圖 次 30
第九章 參考文獻 66
1.Vanhaesebroeck, B., P.K. Vogt, and C. Rommel, PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol, 2010. 347: p. 1-19.
2.Liu, P., et al., Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov, 2009. 8(8): p. 627-44.
3.Bilanges, B., Y. Posor, and B. Vanhaesebroeck, PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol, 2019. 20(9): p. 515-534.
4.Vanhaesebroeck, B., et al., The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol, 2010. 11(5): p. 329-41.
5.Tate, J.G., et al., COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res, 2019. 47(D1): p. D941-d947.
6.Janku, F., et al., PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther, 2011. 10(3): p. 558-65.
7.Huang, C.H., et al., The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science, 2007. 318(5857): p. 1744-8.
8.Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-74.
9.Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 2005. 4(12): p. 988-1004.
10.van der Ploeg, P., et al., The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecol Oncol, 2021. 163(2): p. 433-444.
11.Benetatos, L., E. Voulgaris, and G. Vartholomatos, The crosstalk between long non-coding RNAs and PI3K in cancer. Med Oncol, 2017. 34(3): p. 39.
12.Dong, P., et al., The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med, 2014. 12: p. 231.
13.Thomas, R.K., et al., High-throughput oncogene mutation profiling in human cancer. Nat Genet, 2007. 39(3): p. 347-51.
14.Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008. 455(7216): p. 1061-8.
15.Parsons, D.W., et al., An integrated genomic analysis of human glioblastoma multiforme. Science, 2008. 321(5897): p. 1807-12.
16.Stemke-Hale, K., et al., An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res, 2008. 68(15): p. 6084-91.
17.Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554.
18.Bader, A.G., et al., Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer, 2005. 5(12): p. 921-9.
19.Zhao, J.J., et al., The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18443-8.
20.Isakoff, S.J., et al., Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res, 2005. 65(23): p. 10992-1000.
21.Jiang, W., et al., The PIK3CA E542K and E545K mutations promote glycolysis and proliferation via induction of the β-catenin/SIRT3 signaling pathway in cervical cancer. J Hematol Oncol, 2018. 11(1): p. 139.
22.Ikenoue, T., et al., Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res, 2005. 65(11): p. 4562-7.
23.Kang, S., A.G. Bader, and P.K. Vogt, Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A, 2005. 102(3): p. 802-7.
24.Zhao, L. and P.K. Vogt, Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A, 2008. 105(7): p. 2652-7.
25.Croessmann, S., et al., PIK3CA C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3Kα Inhibitors. Clin Cancer Res, 2018. 24(6): p. 1426-1435.
26.Levine, D.A., et al., Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res, 2005. 11(8): p. 2875-8.
27.Bauer, R.A., J.M. Wurst, and D.S. Tan, Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective. Curr Opin Chem Biol, 2010. 14(3): p. 308-14.
28.Cohen, P., The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci, 2000. 25(12): p. 596-601.
29.Cohen, P., Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov, 2002. 1(4): p. 309-15.
30.Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 169(3): p. 381-405.
31.Hunter, T., The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell, 2007. 28(5): p. 730-8.
32.Strebhardt, K., Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov, 2010. 9(8): p. 643-60.
33.Gharwan, H. and H. Groninger, Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol, 2016. 13(4): p. 209-27.
34.Ferguson, F.M. and N.S. Gray, Kinase inhibitors: the road ahead. Nat Rev Drug Discov, 2018. 17(5): p. 353-377.
35.Attwood, M.M., et al., Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov, 2021. 20(11): p. 839-861.
36.Arteaga, C.L., et al., Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol, 2011. 9(1): p. 16-32.
37.Zhang, J., P.L. Yang, and N.S. Gray, Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer, 2009. 9(1): p. 28-39.
38.Hendriks, R.W., S. Yuvaraj, and L.P. Kil, Targeting Bruton's tyrosine kinase in B cell malignancies. Nat Rev Cancer, 2014. 14(4): p. 219-32.
39.Dancey, J., mTOR signaling and drug development in cancer. Nat Rev Clin Oncol, 2010. 7(4): p. 209-19.
40.Dey, A., V. Tergaonkar, and D.P. Lane, Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov, 2008. 7(12): p. 1031-40.
41.Walker, E.H., et al., Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell, 2000. 6(4): p. 909-19.
42.Roskoski, R., Jr., Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res, 2016. 103: p. 26-48.
43.Fabian, M.A., et al., A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol, 2005. 23(3): p. 329-36.
44.Taylor, S.S. and A.P. Kornev, Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci, 2011. 36(2): p. 65-77.
45.Spangenberg, H.C., R. Thimme, and H.E. Blum, Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2009. 6(7): p. 423-32.
46.Fritsch, C., et al., Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther, 2014. 13(5): p. 1117-29.
47.Elkabets, M., et al., mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med, 2013. 5(196): p. 196ra99.
48.Markham, A., Alpelisib: First Global Approval. Drugs, 2019. 79(11): p. 1249-1253.
49.Furet, P., et al., Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett, 2013. 23(13): p. 3741-8.
50.Knight, Z.A., et al., A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell, 2006. 125(4): p. 733-47.
51.Joseph-McCarthy, D., et al., Lead optimization via high-throughput molecular docking. Curr Opin Drug Discov Devel, 2007. 10(3): p. 264-74.
52.Gong, G.Q., et al., A small-molecule PI3Kα activator for cardioprotection and neuroregeneration. Nature, 2023. 618(7963): p. 159-168.
53.Engelman, J.A., Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer, 2009. 9(8): p. 550-62.
54.Du, D., et al., Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B, 2022. 12(2): p. 558-580.
55.Yeong, J., et al., Early Triple-Negative Breast Cancers in a Singapore Cohort Exhibit High PIK3CA Mutation Rates Associated With Low PD-L1 Expression. Mod Pathol, 2023. 36(4): p. 100056.
56.Campbell, I.G., et al., Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res, 2004. 64(21): p. 7678-81.
57.Guarente, V. and P. Sportoletti, Lessons, Challenges and Future Therapeutic Opportunities for PI3K Inhibition in CLL. Cancers (Basel), 2021. 13(6).
58.Fruman, D.A. and C. Rommel, PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov, 2014. 13(2): p. 140-56.
59.Gkeka, P., et al., Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant. PLoS Comput Biol, 2014. 10(10): p. e1003895.
60.Huang, S.Y. and X. Zou, Advances and challenges in protein-ligand docking. Int J Mol Sci, 2010. 11(8): p. 3016-34.
61.Minarro-Lleonar, M., et al., Development of an Automatic Pipeline for Participation in the CELPP Challenge. Int J Mol Sci, 2022. 23(9).
62.Morris, G.M., et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 2009. 30(16): p. 2785-91.
63.Vanhaesebroeck, B., et al., PI3K inhibitors are finally coming of age. Nat Rev Drug Discov, 2021. 20(10): p. 741-769.
64.Vanhaesebroeck, B., et al., Author Correction: PI3K inhibitors are finally coming of age. Nat Rev Drug Discov, 2021. 20(10): p. 798.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top